Impact of Stratospheric Geoengineering on Sea Surface Temperature in the Northern Gulf of Guinea
Abstract
:1. Introduction
2. Data and Methods
3. Results
3.1. Evaluation of Model’s Ability to Simulate SST in NGG
3.2. Changes in SST of SUC Region and Associated Causes
3.3. Changes in SST of TUG Region and Associated Causes
4. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ADH | Horizontal advection |
ENT | Entrainment at the base of the mixed layer |
ERAI | ERA-Interim |
GLENS | Geoengineering Large Ensemble |
HIST | Historical simulation |
IFREMER | Institut français de recherche pour l’exploitation de la mer |
ISAS | In Situ Analysis System |
LH | Latent heat flux |
LW | Net longwave radiation |
MLD | Mixed-layer depth |
NGG | Northern Gulf of Guinea |
NHF | Net Heat Flux |
OCP | Oceanic processes |
OISST | Optimum Interpolation Sea Surface Temperature |
POP2 | Parallel Ocean Program version 2 |
R | Residual term |
RCP8.5 | Representative Concentration Pathway 8.5 |
SAG | Stratospheric Aerosol Geoengineering |
SH | Sensible heat flux |
SRM | Solar Radiation Management |
SST | Sea Surface Temperature |
SUC | Sassandra Upwelling in Côte d’Ivoire |
SW | Solar shortwave radiation |
TOT | Total temperature tendency |
TUG | Takoradi Upwelling in Ghana |
WACCM | Whole Atmosphere Community Climate Model |
ZAD | Horizontal advection |
References
- Peters, G.P.; Andrew, R.M.; Boden, T.; Canadell, J.G.; Ciais, P.; Le Quéré, C.; Marland, G.; Raupach, M.R.; Wilson, C. The Challenge to Keep Global Warming below 2 °C. Nat. Clim. Chang. 2013, 3, 4–6. [Google Scholar] [CrossRef]
- Rogelj, J.; den Elzen, M.; Höhne, N.; Fransen, T.; Fekete, H.; Winkler, H.; Schaeffer, R.; Sha, F.; Riahi, K.; Meinshausen, M. Paris Agreement Climate Proposals Need a Boost to Keep Warming Well below 2 °C. Nature 2016, 534, 631–639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- den Elzen, M.; Dafnomilis, I.; Forsell, N.; Fragkos, P.; Fragkiadakis, K.; Höhne, N.; Kuramochi, T.; Nascimento, L.; Roelfsema, M.; van Soest, H.; et al. Updated Nationally Determined Contributions Collectively Raise Ambition Levels but Need Strengthening Further to Keep Paris Goals within Reach. Mitig. Adapt. Strateg. Glob. Chang. 2022, 27, 33. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, S.A. The Status of Wetlands, Threats and the Predicted Effect of Global Climate Change: The Situation in Sub-Saharan Africa. Aquat. Sci. 2013, 75, 95–112. [Google Scholar] [CrossRef]
- Niang, I.; Ruppel, O.C.; Abdrabo, M.A.; Essel, C.; Lennard, C.; Padgham, J.; Urquhart, P.; Descheemaeker, K.K.E. Chapter 22: Africa. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment; Cambridge University Press: Cambridge, UK, 2014; pp. 1199–1265. [Google Scholar] [CrossRef]
- Crutzen, P.J. Albedo Enhancement by Stratospheric Sulfur Injections: A Contribution to Resolve a Policy Dilemma? Clim. Chang. 2006, 77, 211. [Google Scholar] [CrossRef] [Green Version]
- Ming, T.; de_Richter, R.; Liu, W.; Caillol, S. Fighting Global Warming by Climate Engineering: Is the Earth Radiation Management and the Solar Radiation Management Any Option for Fighting Climate Change? Renew. Sustain. Energy Rev. 2014, 31, 792–834. [Google Scholar] [CrossRef]
- Council, N.R. Climate Intervention: Reflecting Sunlight to Cool Earth; The National Academies Press: Washington, DC, USA, 2015; pp. 1199–1266. [Google Scholar] [CrossRef]
- Robock, A.; Oman, L.; Stenchikov, G.L. Regional Climate Responses to Geoengineering with Tropical and Arctic SO2 Injections. J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef] [Green Version]
- MacMartin, D.G.; Kravitz, B.; Tilmes, S.; Richter, J.H.; Mills, M.J.; Lamarque, J.F.; Tribbia, J.J.; Vitt, F. The Climate Response to Stratospheric Aerosol Geoengineering Can Be Tailored Using Multiple Injection Locations. J. Geophys. Res. Atmos. 2017, 122, 12574–12590. [Google Scholar] [CrossRef]
- Smith, C.J.; Crook, J.A.; Crook, R.; Jackson, L.S.; Osprey, S.M.; Forster, P.M. Impacts of Stratospheric Sulfate Geoengineering on Global Solar Photovoltaic and Concentrating Solar Power Resource. J. Appl. Meteorol. Climatol. 2017, 56, 1483–1497. [Google Scholar] [CrossRef]
- Tilmes, S.; Richter, J.H.; Kravitz, B.; MacMartin, D.G.; Mills, M.J.; Simpson, I.R.; Glanville, A.S.; Fasullo, J.T.; Phillips, A.S.; Lamarque, J.F.; et al. CESM1(WACCM) Stratospheric Aerosol Geoengineering Large Ensemble Project. Bull. Am. Meteorol. Soc. 2018, 99, 2361–2371. [Google Scholar] [CrossRef]
- Bala, G.; Duffy, P.B.; Taylor, K.E. Impact of Geoengineering Schemes on the Global Hydrological Cycle. Proc. Natl. Acad. Sci. USA 2008, 105, 7664–7669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tilmes, S.; Fasullo, J.; Lamarque, J.F.; Marsh, D.R.; Mills, M.; Alterskjær, K.; Muri, H.; Kristjánsson, J.E.; Boucher, O.; Schulz, M.; et al. The Hydrological Impact of Geoengineering in the Geoengineering Model Intercomparison Project (GeoMIP). J. Geophys. Res. Atmos. 2013, 118, 11036–11058. [Google Scholar] [CrossRef] [Green Version]
- Irvine, P.; Emanuel, K.; He, J.; Horowitz, L.W.; Vecchi, G.; Keith, D. Halving Warming with Idealized Solar Geoengineering Moderates Key Climate Hazards. Nat. Clim. Chang. 2019, 9, 295–299. [Google Scholar] [CrossRef]
- Da-Allada, C.Y.; Baloïtcha, E.; Alamou, E.A.; Awo, F.M.; Bonou, F.; Pomalegni, Y.; Biao, E.I.; Obada, E.; Zandagba, J.E.; Tilmes, S.; et al. Changes in West African Summer Monsoon Precipitation Under Stratospheric Aerosol Geoengineering. Earth’s Future 2020, 8, e2020EF001595. [Google Scholar] [CrossRef]
- Pomalegni, Y.W.; Da-Allada, C.Y.; Sohou, Z.; Baloïtcha, E.; Alamou, E.A.; Awo, F.M.; Bonou, F.; Biao, I.; Obada, E.; Zandagba, J.E.; et al. Response of the Equatorial Atlantic Cold Tongue to Stratospheric Aerosol Geoengineering. Aerosol Sci. Eng. 2022, 6, 99–110. [Google Scholar] [CrossRef]
- Wiafe, G.; Nyadjro, E.S. Satellite Observations of Upwelling in the Gulf of Guinea. IEEE Geosci. Remote Sens. Lett. 2015, 12, 1066–1070. [Google Scholar] [CrossRef]
- Cury, P.; Roy, C. 18 Environmental Forcing and Fisheries Resources in Côte d’Ivoire and Ghana: Did Something Happen. In Large Marine Ecosystems; McGlade, J.M., Cury, P., Koranteng, K.A., Hardman-Mountford, N.J., Eds.; Elsevier: Amsterdam, The Netherlands, 2002; Volume 11, pp. 241–260. [Google Scholar] [CrossRef]
- Gu, G.; Adler, R.F. Seasonal Evolution and Variability Associated with the West African Monsoon System. J. Clim. 2004, 17, 3364–3377. [Google Scholar] [CrossRef]
- Ali, K.E.; Kouadio, K.Y.; Zahiri, E.P.; Aman, A.; Assamoi, A.P.; Bourles, B. Influence of the Gulf of Guinea Coastal and Equatorial Upwellings on the Precipitations along Its Northern Coasts during the Boreal Summer Period. Asian J. Appl. Sci. 2011, 4, 271–285. [Google Scholar] [CrossRef]
- Morlière, A. Les Saisons Marines Devant Abidjan. 1970. Available online: https://horizon.documentation.ird.fr/exl-doc/pleins_textes/divers11-11/20642.pdf (accessed on 18 February 2023).
- Lemasson, L.; Rebert, J.P. Les Courants Marins dans le Golfe Ivoirien. 1973. Available online: https://horizon.documentation.ird.fr/exl-doc/pleins_textes/cahiers/oceanographie/19646.pdf (accessed on 18 February 2023).
- Hardman-Mountford, N.J.; McGlade, J.M. Seasonal and Interannual Variability of Oceanographic Processes in the Gulf of Guinea: An Investigation Using AVHRR Sea Surface Temperature Data. Int. J. Remote Sens. 2003, 24, 3247–3268. [Google Scholar] [CrossRef]
- Bah, A. Upwelling in the Gulf of Guinea Results of A Mathematical Model. In Elsevier Oceanography Series; Nihoul, J.C.J., Ed.; Elsevier: Amsterdam, The Netherlands, 1981; Volume 32, pp. 99–140. [Google Scholar] [CrossRef]
- Koranteng, K.A.; Mcglade, J.M. Climatic Trends in Continental Shelf Waters off Ghana and in the Gulf of Guinea, 1963–1992. Oceanol. Acta 2001, 24, 187–198. [Google Scholar] [CrossRef] [Green Version]
- Alory, G.; Da-Allada, C.Y.; Djakouré, S.; Dadou, I.; Jouanno, J.; Loemba, D.P. Coastal Upwelling Limitation by Onshore Geostrophic Flow in the Gulf of Guinea Around the Niger River Plume. Front. Mar. Sci. 2021, 7, 1116. [Google Scholar] [CrossRef]
- Sohou, Z.; Koné, V.; Da-Allada, Y.C.; Djakouré, S.; Bourlès, B.; Racape, V.; Degbe, G.; Adje, C. Seasonal and Inter-Annual ONSET Sea Surface Temperature Variability along the Northern Coast of the Gulf of Guinea. Reg. Stud. Mar. Sci. 2020, 35, 101129. [Google Scholar] [CrossRef]
- Da-Allada, C.Y.; Agada, J.; Baloïtcha, E.; Hounkonnou, M.N.; Jouanno, J.; Alory, G. Causes of the Northern Gulf of Guinea Cold Event in 2012. J. Geophys. Res. Oceans 2021, 126, e2021JC017627. [Google Scholar] [CrossRef]
- Pople, W.; Mensah, M.A. Evaporation as the Upwelling Mechanism in Ghanaian Coastal Waters. Nat. Phys. Sci. 1971, 234, 18–20. [Google Scholar] [CrossRef]
- Wade, M.; Caniaux, G.; du Penhoat, Y. Variability of the Mixed Layer Heat Budget in the Eastern Equatorial Atlantic during 2005–2007 as Inferred Using Argo Floats. J. Geophys. Res. Oceans 2011, 116, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Jouanno, J.; Marin, F.; du Penhoat, Y.; Sheinbaum, J.; Molines, J.M. Seasonal Heat Balance in the Upper 100 m of the Equatorial Atlantic Ocean. J. Geophys. Res. Oceans 2011, 116. [Google Scholar] [CrossRef] [Green Version]
- Djakouré, S.; Penven, P.; Bourlès, B.; Koné, V.; Veitch, J. Respective Roles of the Guinea Current and Local Winds on the Coastal Upwelling in the Northern Gulf of Guinea. J. Phys. Oceanogr. 2017, 47, 1367–1387. [Google Scholar] [CrossRef]
- Jouanno, J.; Hernandez, O.; Sanchez-Gomez, E. Equatorial Atlantic Interannual Variability and Its Relation to Dynamic and Thermodynamic Processes. Earth Syst. Dyn. 2017, 8, 1061–1069. [Google Scholar] [CrossRef] [Green Version]
- Djakouré, S.; Penven, P.; Bourlès, B.; Veitch, J.; Koné, V. Coastally Trapped Eddies in the North of the Gulf of Guinea. J. Geophys. Res. Oceans 2014, 119, 6805–6819. [Google Scholar] [CrossRef]
- Ekman, V.W. On the Influence of the Earth’s Rotation on Ocean-Currents. Arch. Math. Astron. Phys. 1905, 2, 1–53. [Google Scholar]
- Longhurst, A.R. A Review of the Oceanography of the Gulf of Guinea; Technical report; ORSTOM, Pointe-Noire; ORSTOM: Paris, France, 1962. [Google Scholar]
- Bakun, A. Guinea Current Upwelling. Nature 1978, 271, 147–150. [Google Scholar] [CrossRef]
- Colin, C. Coastal Upwelling Events in Front of the Ivory Coast during the FOCAL Program. Oceanol. Acta Spec. Issue 1988, 14, 223–240. [Google Scholar]
- Colin, C. Sur les upwellings équatorial et côtier (5° N) dans le Golfe de Guinée. Oceanol. Acta 1991, 14, 223–240. [Google Scholar]
- Verstraete, J.M. The Seasonal Upwellings in the Gulf of Guinea. Prog. Oceanogr. 1992, 29, 1–60. [Google Scholar] [CrossRef]
- Colin, C.; Gallardo, Y.; Chuchla, R.; Cissoko, S. Environnements climatique et océanographique sur le plateau continental de Côte d’Ivoire. In Environnement et Ressources Aquatiques de Côte d’Ivoire: 1. Le Milieu Marin; ORSTOM: Paris, France, 1993; pp. 75–110. [Google Scholar]
- Moore, D.; Hisard, P.; McCreary, J.; Merle, J.; O’Brien, J.; Picaut, J.; Verstraete, J.M.; Wunsch, C. Equatorial Adjustment in the Eastern Atlantic. Geophys. Res. Lett. 1978, 5, 637–640. [Google Scholar] [CrossRef]
- Clarke, A.J. On the Generation of the Seasonal Coastal Upwelling in the Gulf of Guinea. J. Geophys. Res. Oceans 1979, 84, 3743–3751. [Google Scholar] [CrossRef]
- Servain, J.; Picaut, J.; Merle, J. Evidence of Remote Forcing in the Equatorial Atlantic Ocean. J. Phys. Oceanogr. 1982, 12, 457–463. [Google Scholar] [CrossRef]
- Picaut, J. Propagation of the Seasonal Upwelling in the Eastern Equatorial Atlantic. J. Phys. Oceanogr. 1983, 13, 18–37. [Google Scholar] [CrossRef]
- Lamb, P.J. Large-Scale Tropical Atlantic Surface Circulation Patterns Associated with Subsaharan Weather Anomalies. Tellus 1978, 30, 240–251. [Google Scholar] [CrossRef] [Green Version]
- Eltahir, E.A.B.; Gong, C. Dynamics of Wet and Dry Years in West Africa. J. Clim. 1996, 9, 1030–1042. [Google Scholar] [CrossRef]
- Marsh, D.R.; Janches, D.; Feng, W.; Plane, J.M.C. A Global Model of Meteoric Sodium. J. Geophys. Res. Atmos. 2013, 118, 11442–11452. [Google Scholar] [CrossRef] [Green Version]
- Mills, M.J.; Richter, J.H.; Tilmes, S.; Kravitz, B.; MacMartin, D.G.; Glanville, A.A.; Tribbia, J.J.; Lamarque, J.F.; Vitt, F.; Schmidt, A.; et al. Radiative and Chemical Response to Interactive Stratospheric Sulfate Aerosols in Fully Coupled CESM1(WACCM). J. Geophys. Res. Atmos. 2017, 122, 13061–13078. [Google Scholar] [CrossRef]
- Danabasoglu, G.; Bates, S.C.; Briegleb, B.P.; Jayne, S.R.; Jochum, M.; Large, W.G.; Peacock, S.; Yeager, S.G. The CCSM4 Ocean Component. J. Clim. 2012, 25, 1361–1389. [Google Scholar] [CrossRef] [Green Version]
- Hong, Y.; Moore, J.; Jevrejeva, S.; Ji, D.; Phipps, S.; Lenton, A.; Tilmes, S.; Watanabe, S.; Zhao, L. Impact of the GeoMIP G1 Sunshade Geoengineering Experiment on the Atlantic Meridional Overturning Circulation. Environ. Res. Lett. 2017, 12, 034009. [Google Scholar] [CrossRef] [Green Version]
- Kravitz, B.; MacMartin, D.G.; Mills, M.J.; Richter, J.H.; Tilmes, S.; Lamarque, J.F.; Tribbia, J.J.; Vitt, F. First Simulations of Designing Stratospheric Sulfate Aerosol Geoengineering to Meet Multiple Simultaneous Climate Objectives. J. Geophys. Res. Atmos. 2017, 122, 12616–12634. [Google Scholar] [CrossRef]
- Pinto, I.; Jack, C.; Lennard, C.; Tilmes, S.; Odoulami, R.C. Africa’s Climate Response to Solar Radiation Management with Stratospheric Aerosol. Geophys. Res. Lett. 2020, 47, e2019GL086047. [Google Scholar] [CrossRef] [Green Version]
- Huang, B.; Liu, C.; Banzon, V.; Freeman, E.; Graham, G.; Hankins, B.; Smith, T.; Zhang, H.M. Improvements of the Daily Optimum Interpolation Sea Surface Temperature (DOISST) Version 2.1. J. Clim. 2021, 34, 2923–2939. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim Reanalysis: Configuration and Performance of the Data Assimilation System. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Da-Allada, C.Y.; Gaillard, F.; Kolodziejczyk, N. Mixed-Layer Salinity Budget in the Tropical Indian Ocean: Seasonal Cycle Based Only on Observations. Ocean Dyn. 2015, 65, 845–857. [Google Scholar] [CrossRef] [Green Version]
- Gaillard, F.; Reynaud, T.; Thierry, V.; Kolodziejczyk, N.; von Schuckmann, K. In Situ–Based Reanalysis of the Global Ocean Temperature and Salinity with ISAS: Variability of the Heat Content and Steric Height. J. Clim. 2016, 29, 1305–1323. [Google Scholar] [CrossRef]
- Mohan, S.; Mishra, S.K.; Sahany, S.; Behera, S. Long-Term Variability of Sea Surface Temperature in the Tropical Indian Ocean in Relation to Climate Change and Variability. Glob. Planet. Chang. 2021, 199, 103436. [Google Scholar] [CrossRef]
- Planton, Y.; Voldoire, A.; Giordani, H.; Caniaux, G. Main Processes of the Atlantic Cold Tongue Interannual Variability. Clim. Dyn. 2018, 50, 1495–1512. [Google Scholar] [CrossRef] [Green Version]
- Da-Allada, C.Y.; Jouanno, J.; Gaillard, F.; Kolodziejczyk, N.; Maes, C.; Reul, N.; Bourlès, B. Importance of the Equatorial Undercurrent on the Sea Surface Salinity in the Eastern Equatorial Atlantic in Boreal Spring. J. Geophys. Res. Oceans 2017, 122, 521–538. [Google Scholar] [CrossRef] [Green Version]
- Maes, C.; O’Kane, T.J. Seasonal Variations of the Upper Ocean Salinity Stratification in the Tropics. J. Geophys. Res. Oceans 2014, 119, 1706–1722. [Google Scholar] [CrossRef] [Green Version]
- Roy, C. The Cote d’Ivoire and Ghana Coastal Upwellings: Dynamics and Changes; ORSTOM Editions; ORSTOM: Paris, France, 1995; pp. 346–361. [Google Scholar]
- Marchal, E.; Picaut, J. Répartition et Abondonce Évaluées par Échointégration des Poissons du Plateau Continental Ivoiro-Ghanéen en Relation Avec les Upwellings Locaux. J. Rech. Océanograph. 1977, 2, 39–57. [Google Scholar]
- Foltz, G.R.; Brandt, P.; Richter, I.; Rodríguez-Fonseca, B.; Hernandez, F.; Dengler, M.; Rodrigues, R.R.; Schmidt, J.O.; Yu, L.; Lefevre, N.; et al. The Tropical Atlantic Observing System. Front. Mar. Sci. 2019, 6, 1–36. [Google Scholar] [CrossRef] [Green Version]
- Richter, I.; Xie, S.P.; Wittenberg, A.T.; Masumoto, Y. Tropical Atlantic Biases and Their Relation to Surface Wind Stress and Terrestrial Precipitation. Clim. Dyn. 2012, 38, 985–1001. [Google Scholar] [CrossRef] [Green Version]
- Smith, A.P. Proof of the Atmospheric Greenhouse Effect. arXiv 2008, arXiv:0802.4324. [Google Scholar]
- Pierrehumbert, R. Infrared Radiation and Planetary Temperature. Phys. Today 2011, 64, 33. [Google Scholar] [CrossRef] [Green Version]
- Cheng, W.; MacMartin, D.G.; Dagon, K.; Kravitz, B.; Tilmes, S.; Richter, J.H.; Mills, M.J.; Simpson, I.R. Soil Moisture and Other Hydrological Changes in a Stratospheric Aerosol Geoengineering Large Ensemble. J. Geophys. Res. Atmos. 2019, 124, 12773–12793. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ayissi, F.F.B.K.; Da Allada, C.Y.; Baloïtcha, E.; Tilmes, S.; Irvine, P.J. Impact of Stratospheric Geoengineering on Sea Surface Temperature in the Northern Gulf of Guinea. Climate 2023, 11, 87. https://doi.org/10.3390/cli11040087
Ayissi FFBK, Da Allada CY, Baloïtcha E, Tilmes S, Irvine PJ. Impact of Stratospheric Geoengineering on Sea Surface Temperature in the Northern Gulf of Guinea. Climate. 2023; 11(4):87. https://doi.org/10.3390/cli11040087
Chicago/Turabian StyleAyissi, Francis F. B. K., Casimir Y. Da Allada, Ezinvi Baloïtcha, Simone Tilmes, and Peter J. Irvine. 2023. "Impact of Stratospheric Geoengineering on Sea Surface Temperature in the Northern Gulf of Guinea" Climate 11, no. 4: 87. https://doi.org/10.3390/cli11040087
APA StyleAyissi, F. F. B. K., Da Allada, C. Y., Baloïtcha, E., Tilmes, S., & Irvine, P. J. (2023). Impact of Stratospheric Geoengineering on Sea Surface Temperature in the Northern Gulf of Guinea. Climate, 11(4), 87. https://doi.org/10.3390/cli11040087