Climate Change Effects on River Flow in Eastern Europe: Arctic Rivers vs. Southern Rivers
Abstract
:1. Introduction
2. Data and Methods
2.1. Study River Basins
2.2. Runoff Generation Models
2.3. Hydrological Modeling Based on GCMs Data
3. Results and Discussion
3.1. Validation of Runoff Generation Models
3.2. Meteorological Projections
3.3. Hydrological Projections
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Frolova, N.; Agafonova, S.; Kireeva, M.; Povalishnikova, E.; Pakhomova, O. Recent Changes of Annual Flow Distribution of the Volga Basin Rivers. Geogr. Environ. Sustain. 2017, 10, 28–39. [Google Scholar] [CrossRef]
- Kireeva, M.; Frolova, N.; Rets, E.; Samsonov, T.; Entin, A.; Kharlamov, M.; Telegina, E.; Povalishnikova, E. Evaluating Climate and Water Regime Transformation in the European Part of Russia Using Observation and Reanalysis Data for the 1945-2015 Period. Int. J. River Basin Manag. 2020, 18, 491–502. [Google Scholar] [CrossRef]
- Bolgov, M.; Korobkina, E.; Trubetskova, M.; Filimonova, M.; Filippova, I. Present-Dey Variations of the Minimum Runoff of the Volga Basin Rivers. Russ. Meteorol. Hydrol. 2014, 39, 187–194. [Google Scholar] [CrossRef]
- Dzhamalov, R.; Frolova, N.; Telegina, E. Winter Runoff Variations in European Russia. Water Resour. 2015, 42, 758–765. [Google Scholar] [CrossRef]
- Geordiadi, A.G.; Milyukova, I.P.; Kashutina, E.A. Contemporary and Scenario Changes in River Runoff in the Don Basin. Water Resour. 2020, 47, 913–923. [Google Scholar] [CrossRef]
- Georgievskii, V.; Grek, E.; Grek, E.; Lobanova, A.; Molchanova, T. Spatiotemporal Changes in Extreme Runoff Characteristics for the Volga Basin Rivers. Russ. Meteorol. Hydrol. 2018, 43, 633–638. [Google Scholar] [CrossRef]
- Kalyuzhnyi, I.; Lavrov, S. Variability of Frost Depth in the Volga River Basin and Its Impact on Runoff Formation in Winter and Spring under Climate Change. Russ. Meteorol. Hydrol. 2016, 41, 487–496. [Google Scholar] [CrossRef]
- Frolova, N.L.; Magritskii, D.V.; Kireeva, M.B.; Grigor’ev, V.Y.; Gelfan, A.N.; Sazonov, A.A.; Shevchenko, A.I. Streamflow of Russian Rivers under Current and Forecasted Climate Changes: A Review of Publications. 1. Assessment of Changes in the Water Regime of Russian Rivers by Observation Data. Water Resour. 2022, 49, 333–350. [Google Scholar] [CrossRef]
- Kireeva, M.; Frolova, N.; Winde, F.; Dzhamalov, R.; Rets, E.; Povalishnikova, E.; Pakhomova, O. Low Flow on the Rivers of the European Part of Russia and Its Hazards. Geogr. Environ. Sustain. 2016, 9, 33–47. [Google Scholar] [CrossRef]
- Rets, E.P.; Durmanov, I.N.; Kireeva, M.B.; Smirnov, A.M.; Popovnin, V.V. Past ‘Peak Water’ in the North Caucasus: Deglaciation Drives a Reduction in Glacial Runoff Impacting Summer River Runoff and Peak Discharges. Clim. Chang. 2020, 163, 2135–2151. [Google Scholar] [CrossRef]
- Lobanova, A.; Liersch, S.; Nunes, J.P.; Didovets, I.; Stagl, J.; Huang, S.; Koch, H.; Rivas López, M.D.R.; Maule, C.F.; Hattermann, F.; et al. Hydrological Impacts of Moderate and High-End Climate Change across European River Basins. J. Hydrol. Region. Stud. 2018, 18, 15–30. [Google Scholar] [CrossRef]
- Nasonova, O.N.; Gusev, Y.M.; Kovalev, E.E.; Ayzel, G.V.; Panysheva, K.M. Projecting Changes in Russian Northern River Runoff Due to Possible Climate Change during the 21st Century: A Case Study of the Northern Dvina, Taz and Indigirka Rivers. Water Resour. 2019, 46, S145–S154. [Google Scholar] [CrossRef]
- Krylenko, I.; Motovilov, Y.; Antokhina, E.; Zhuk, V.; Surkova, G. Physically-Based Distributed Modelling of River Runoff under Changing Climate Conditions. Proc. IAHS 2015, 368, 156–161. [Google Scholar] [CrossRef]
- Gelfan, A.; Kalugin, A.; Krylenko, I.; Nasonova, O.; Gusev, Y.; Kovalev, E. Does a Successful Comprehensive Evaluation Increase Confidence in a Hydrological Model Intended for Climate Impact Assessment? Clim. Chang. 2020, 163, 1165–1185. [Google Scholar] [CrossRef]
- Gelfan, A.N.; Gusev, E.M.; Kalugin, A.S.; Krylenko, I.N.; Motovilov, Y.G.; Nasonova, O.N.; Millionshchikova, T.D.; Frolova, N.L. Runoff of Russian Rivers under Current and Projected Climate Change: A Review 2. Climate Change Impact on the Water Regime of Russian Rivers in the XXI Century. Water Resour. 2022, 49, 351–365. [Google Scholar] [CrossRef]
- Krysanova, V.; Hattermann, F. Intercomparison of Climate Change Impacts in 12 Large River Basins: Overview of Methods and Summary of Results. Clim. Chang. 2017, 141, 363–379. [Google Scholar] [CrossRef]
- Masson-Delmotte, V.; Zhai, P.; Pörtner, H.; Roberts, D.; Skea, J.; Shukla, P.; Pirani, A.; Moufouma-Okia, W.; Péan, C.; Pidcock, R.; et al. Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5°C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; Cambridge University Press: Cambridge, UK, 2018; p. 616. [Google Scholar]
- Motovilov, Y.; Gottschalk, L.; Engeland, K.; Rodhe, A. Validation of a Distributed Hydrological Model against Spatial Observations. Agricult. For. Meteorol. 1999, 98, 257–277. [Google Scholar] [CrossRef]
- Gel’fan, A.; Kalugin, A.; Krylenko, I.; Nasonova, O.; Gusev, E.; Kovalev, E. Testing a Hydrological Model to Evaluate Climate Change Impact on River Runoff. Russ. Meteorol. Hydrol. 2020, 45, 353–359. [Google Scholar] [CrossRef]
- Kalugin, A. Climate Change Attribution in the Lena and Selenga River Runoff: An Evaluation Based on the Earth System and Regional Hydrological Models. Water 2022, 14, 118. [Google Scholar] [CrossRef]
- Kalugin, A. Future Climate-Driven Runoff Change in the Large River Basins in Eastern Siberia and the Far East Using Process-Based Hydrological Models. Water 2022, 14, 609. [Google Scholar] [CrossRef]
- Kalugin, A. The Impact of Climate Change on Surface, Subsurface and Groundwater Flow: A Case Study of the Oka River (European Russia). Water Resour. 2019, 46, S31–S39. [Google Scholar] [CrossRef]
- Kalugin, A.; Motovilov, Y. Runoff Formation Model for the Amur River Basin. Water Resour. 2018, 45, 149–159. [Google Scholar] [CrossRef]
- Bugaets, A.; Gartsman, B.; Gelfan, A.; Motovilov, Y.; Sokolov, O.; Gonchukov, L.; Kalugin, A.; Moreido, V.; Suchilina, Z.; Fingert, E. The Integrated System of Hydrological Forecasting in the Ussuri River Basin Based on the ECOMAG Model. Geosciences 2018, 8, 5. [Google Scholar] [CrossRef]
- Kalugin, A. Process-Based Modeling of the High Flow of a Semi-Mountain River under Current and Future Climatic Conditions: A Case Study of the Iya River (Eastern Siberia). Water 2021, 13, 1042. [Google Scholar] [CrossRef]
- Kornilova, E.; Krylenko, I.; Rets, E.; Motovilov, Y.; Bogachenko, E.; Krylenko, I.; Petrakov, D. Modeling of Extreme Hydrological Events in the Baksan River Basin, the Central Caucasus, Russia. Hydrology 2021, 8, 24. [Google Scholar] [CrossRef]
- Motovilov, Y. Hydrological Simulation of River Basins at Different Spatial Scales: 1. Generalization and Averaging Algorithms. Water Resour. 2016, 43, 429–437. [Google Scholar] [CrossRef]
- Kuchment, L.S.; Gel’fan, A.N.; Demidov, V.N.; Romanov, P.Y. The Use of Satellite Information for Precomputing the Snowmelt Runoff Hydrograph. Russ. Meteorol. Hydrol. 2011, 36, 630–637. [Google Scholar] [CrossRef]
- Kuchment, L.S.; Gelfan, A.N.; Demidov, V.N. A Spatial Model of Snowmelt-Rainfall Runoff Formation of the Mountain River (by the Example of the Upper Kuban River). Russ. Meteorol. Hydrol. 2010, 35, 842–850. [Google Scholar] [CrossRef]
- Lange, S. Trend-Preserving Bias Adjustment and Statistical Downscaling with ISIMIP3BASD (v1.0). Geosci. Model Dev. 2019, 12, 3055–3070. [Google Scholar] [CrossRef]
- Frieler, K.; Lange, S.; Piontek, F.; Reyer, C.; Schewe, J.; Warszawski, L.; Zhao, F.; Chini, L.; Denvil, S.; Emanuel, K.; et al. Assessing the Impacts of 1.5 °C Global Warming—Simulation Protocol of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP2b). Geosci. Model Dev. 2017, 10, 4321–4345. [Google Scholar] [CrossRef]
- Kalugin, A. Hydrological and Meteorological Variability in the Volga River Basin under Global Warming by 1.5 and 2 Degrees. Climate 2022, 10, 107. [Google Scholar] [CrossRef]
- Kalugin, A. Modelling of Future Changes in the Water Regime of the Upper Kama River. IOP Conf. Ser. Earth Environ. Sci. 2021, 834, 012007. [Google Scholar] [CrossRef]
- Georgievsky, M.; Golovanov, O.; Balonishnikova, Z.; Timofeeva, L. Changes in River Water Resources of the Russian Federation’s Economic Regions Forecasted Based on the CMIP5 Runoff Data. Ecohydrol. Hydrobiol. 2021, 21, 669–682. [Google Scholar] [CrossRef]
- Shkolnik, I.; Pavlova, T.; Efimov, S.; Zhuravlev, S. Future Changes in Peak River Flows across Northern Eurasia as Inferred from an Ensemble of Regional Climate Projections under the IPCC RCP8.5 Scenario. Clim. Dyn. 2018, 50, 215–230. [Google Scholar] [CrossRef]
River—Gauge | Catchment Area, km2 | High/Mean/Low Altitude, m a.s.l | Annual Runoff, km3 | High Water Month | Annual Precipitation, mm | Mean Annual Air Temperature, °C |
---|---|---|---|---|---|---|
Northern Dvina—Ust-Pinega | 348,000 | 423/143/2 | 102 | May | 590 | 1.0 |
Pechora—Oksino | 312,000 | 1605/162/3 | 142 | June | 545 | −3.0 |
Don—Belyaevsky | 204,000 | 372/158/19 | 17.7 | April | 510 | 6.2 |
Kuban—above the Krasnodar reservoir | 34,000 | 5642/798/30 | 9 | June | 825 | 8.0 |
Catchment Area, km2 | Calibration | Validation | |||||
---|---|---|---|---|---|---|---|
River–Gauge | NSE | KGE | BIAS, % | NSE | KGE | BIAS, % | |
Northern Dvina–Ust-Pinega | 348,000 | 0.91 | 0.94 | −3 | 0.89 | 0.94 | 1 |
Pechora–Oksino | 312,000 | 0.84 | 0.87 | −6 | 0.88 | 0.92 | −3 |
Don–Belyaevsky | 204,000 | 0.66 | 0.75 | 2 | 0.62 | 0.68 | −12 |
Kuban above the Krasnodar reservoir | 34,000 | 0.73 | 0.83 | −3 | 0.70 | 0.81 | −7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalugin, A. Climate Change Effects on River Flow in Eastern Europe: Arctic Rivers vs. Southern Rivers. Climate 2023, 11, 103. https://doi.org/10.3390/cli11050103
Kalugin A. Climate Change Effects on River Flow in Eastern Europe: Arctic Rivers vs. Southern Rivers. Climate. 2023; 11(5):103. https://doi.org/10.3390/cli11050103
Chicago/Turabian StyleKalugin, Andrey. 2023. "Climate Change Effects on River Flow in Eastern Europe: Arctic Rivers vs. Southern Rivers" Climate 11, no. 5: 103. https://doi.org/10.3390/cli11050103
APA StyleKalugin, A. (2023). Climate Change Effects on River Flow in Eastern Europe: Arctic Rivers vs. Southern Rivers. Climate, 11(5), 103. https://doi.org/10.3390/cli11050103