Analysis of Hydrometeorological Trends and Drought Severity in Water-Demanding Mediterranean Islands under Climate Change Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Timeseries Trends Analysis—Mann–Kendall Trend Test
2.3. Precipitation, Temperature, and Drought Analysis
2.4. Standard Precipitation Index (SPI)
3. Results
3.1. Precipitation
3.2. Air Temperature
3.3. Drought Analysis
3.3.1. Bagnouls and Gaussen Ombro-Thermal Diagrams
3.3.2. Standardized Precipitation Index (SPI)
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Anandharuban, P.; Elango, L. Spatio-Temporal Analysis of Rainfall, Meteorological Drought and Response from a Water Supply Reservoir in the Megacity of Chennai, India. J. Earth Syst. Sci. 2021, 130, 17. [Google Scholar] [CrossRef]
- Jellason, N.P.; Conway, J.S.; Baines, R.N.; Ogbaga, C.C. A Review of Farming Challenges and Resilience Management in the Sudano-Sahelian Drylands of Nigeria in an Era of Climate Change. J. Arid Environ. 2021, 186, 104398. [Google Scholar] [CrossRef]
- Beran, A.; Hanel, M.; Nesládková, M.; Vizina, A. Increasing Water Resources Availability under Climate Change. Procedia Eng. 2016, 162, 448–454. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2014: Synthesis Report; Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland.
- Intergovernmental Panel on Climate Change (IPCC). Summary for Policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V.P., Zhai, A., Pirani, S.L., Connors, C., Péan, S., Berger, N., Caud, Y., Chen, L., Goldfarb, M.I., Gomis, M., et al., Eds.; IPCC: Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; p. 2391. [Google Scholar]
- Karpouzos, D.K.; Kavalieratou, S.; Babajimopoulos, C. Trend Analysis of Precipitation Data in Pieria Region; Aristotle University of Thessaloniki: Thessaloniki, Greece, 2009. [Google Scholar]
- Mavromatis, T. Changes in Exceptional Hydrological and Meteorological Weekly Event Frequencies in Greece. Clim. Change 2012, 110, 249–267. [Google Scholar] [CrossRef]
- Myronidis, D.; Fotakis, D.; Ioannou, K.; Sgouropoulou, K. Comparison of Ten Notable Meteorological Drought Indices on Tracking the Effect of Drought on Streamflow. Hydrol. Sci. J. 2018, 63, 2005–2019. [Google Scholar] [CrossRef]
- Myronidis, D.; Ioannou, K.; Fotakis, D.; Dörflinger, G. Streamflow and Hydrological Drought Trend Analysis and Forecasting in Cyprus. Water Resour. Manag. 2018, 32, 1759–1776. [Google Scholar] [CrossRef]
- Myronidis, D.; Theofanous, N. Changes in Climatic Patterns and Tourism and Their Concomitant Effect on Drinking Water Transfers into the Region of South Aegean, Greece. Stoch. Environ. Res. Risk Assess. 2021, 35, 1725–1739. [Google Scholar] [CrossRef]
- Amer, R.A.-M.; Baahmed, D.; Cherif, E.-A.; Iddou, A. Trend Detection of Hydroclimatic Parameters in Central Coastal Basin of Oran in Algeria: Is There Any Impact on Water Resources? Arab. J. Geosci. 2021, 14, 1442. [Google Scholar] [CrossRef]
- UNESCO World Water Assessment Programme. The United Nations World Water Development Report 2020: Water and Climate Change; Paris, France. 2020. Available online: https://unesdoc.unesco.org/ark:/48223/pf0000372985 (accessed on 30 March 2023).
- Bahir, M.; Ouhamdouch, S.; Ouazar, D.; El Moçayd, N. Climate Change Effect on Groundwater Characteristics within Semi-Arid Zones from Western Morocco. Groundw. Sustain. Dev. 2020, 11, 100380. [Google Scholar] [CrossRef]
- Prosser, I.P.; Chiew, F.H.S.; Stafford Smith, M. Adapting Water Management to Climate Change in the Murray–Darling Basin, Australia. Water 2021, 13, 2504. [Google Scholar] [CrossRef]
- Kumar, V.; Jain, S.K.; Singh, Y. Analysis of Long-Term Rainfall Trends in India. Hydrol. Sci. J. 2010, 55, 484–496. [Google Scholar] [CrossRef]
- Pal, A.B.; Khare, D.; Mishra, P.K.; Singh, L. Trend Analysis of Rainfall, Temperature and Runoff Data: A Case Study of Rangoon Watershed in Nepal. Int. J. Stud. Res. Technol. Manag. 2017, 5, 21–38. [Google Scholar] [CrossRef]
- Margiorou, S.; Kastridis, A.; Sapountzis, M. Pre/Post-Fire Soil Erosion and Evaluation of Check-Dams Effectiveness in Mediterranean Suburban Catchments Based on Field Measurements and Modeling. Land 2022, 11, 1705. [Google Scholar] [CrossRef]
- Kastridis, A.; Stathis, D. The Effect of Rainfall Intensity on the Flood Generation of Mountainous Watersheds; Chalkidiki Prefecture, North Greece; Springer: Cham, Switzerland, 2017; pp. 341–347. [Google Scholar]
- Singh, O.; Arya, P.; Chaudhary, B.S. On Rising Temperature Trends at Dehradun in Doon Valley of Uttarakhand, India. J. Earth Syst. Sci. 2013, 122, 613–622. [Google Scholar] [CrossRef]
- Kumar, R.; Raj Gautam, H. Climate Change and Its Impact on Agricultural Productivity in India. J. Climatol. Weather. Forecast. 2014, 2, 1000109. [Google Scholar] [CrossRef]
- Anagnostopoulou, C. A Contribution to the Drought Analysis in Greece. Ph.D Thesis, Aristotle University of Thessaloniki, Thessaloniki, Greece, 2003. [Google Scholar]
- Kastridis, A.; Stathis, D.; Sapountzis, M.; Theodosiou, G. Insect Outbreak and Long-Term Post-Fire Effects on Soil Erosion in Mediterranean Suburban Forest. Land 2022, 11, 911. [Google Scholar] [CrossRef]
- Barmpoutis, P.; Stathaki, T.; Kamperidou, V. Monitoring of Trees’ Health Condition Using a UAV Equipped with Low-Cost Digital Camera. In Proceedings of the ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing, Brighton, UK, 12–17 May 2019; pp. 8291–8295. [Google Scholar]
- Tsakiris, G.; Vangelis, H. Towards a Drought Watch System Based on Spatial SPI. Water Resour. Manag. 2004, 18, 1–12. [Google Scholar] [CrossRef]
- Santos Pereira, L.; Cordery, I.; Iacovides, I. Coping with Water Scarcity; Springer: Dordrecht, The Netherlands, 2009; ISBN 978-1-4020-9578-8. [Google Scholar]
- Dalezios, N.R.; Angelakis, A.N.; Eslamian, S.S. Water Scarcity Management: Part 1: Methodological Framework. Int. J. Glob. Environ. Issues 2018, 17, 1. [Google Scholar] [CrossRef]
- Dalezios, N.R.; Dercas, N.; Eslamian, S.S. Water Scarcity Management: Part 2: Satellite-Based Composite Drought Analysis. Int. J. Glob. Environ. Issues 2018, 17, 262. [Google Scholar] [CrossRef]
- Pnevmatikos, J.D.; Katsoulis, B.D. The Changing Rainfall Regime in Greece and Its Impact on Climatological Means. Meteorol. Appl. 2006, 13, 331. [Google Scholar] [CrossRef]
- Varlas, G.; Stefanidis, K.; Papaioannou, G.; Panagopoulos, Y.; Pytharoulis, I.; Katsafados, P.; Papadopoulos, A.; Dimitriou, E. Unravelling Precipitation Trends in Greece since 1950s Using ERA5 Climate Reanalysis Data. Climate 2022, 10, 12. [Google Scholar] [CrossRef]
- Markonis, Y.; Batelis, S.C.; Dimakos, Y.; Moschou, E.; Koutsoyiannis, D. Temporal and Spatial Variability of Rainfall over Greece. Theor. Appl. Climatol. 2017, 130, 217–232. [Google Scholar] [CrossRef]
- Livada, I.; Charalambous, G.; Assimakopoulos, M.N. Spatial and Temporal Study of Precipitation Characteristics over Greece. Theor. Appl. Climatol. 2008, 93, 45–55. [Google Scholar] [CrossRef]
- Tolika, K.; Maheras, P. Spatial and Temporal Characteristics of Wet Spells in Greece. Theor. Appl. Climatol. 2005, 81, 71–85. [Google Scholar] [CrossRef]
- Amanatidis, G.T.; Paliatsos, A.G.; Repapis, C.C.; Bartzis, J.G. Decreasing Precipitation Trend in the Marathon Area, Greece. Int. J. Climatol. 1993, 13, 191–201. [Google Scholar] [CrossRef]
- Xoplaki, E.; González-Rouco, J.F.; Luterbacher, J.; Wanner, H. Wet Season Mediterranean Precipitation Variability: Influence of Large-Scale Dynamics and Trends. Clim. Dyn. 2004, 23, 63–78. [Google Scholar] [CrossRef]
- Feidas, H.; Makrogiannis, T.; Bora-Senta, E. Trend Analysis of Air Temperature Time Series in Greece and Their Relationship with Circulation Using Surface and Satellite Data: 1955–2001. Theor. Appl. Climatol. 2004, 79, 185–208. [Google Scholar] [CrossRef]
- Feidas, H.; Noulopoulou, C.; Makrogiannis, T.; Bora-Senta, E. Trend Analysis of Precipitation Time Series in Greece and Their Relationship with Circulation Using Surface and Satellite Data: 1955–2001. Theor. Appl. Climatol. 2007, 87, 155–177. [Google Scholar] [CrossRef]
- Nastos, P.T.; Zerefos, C.S. Decadal Changes in Extreme Daily Precipitation in Greece. Adv. Geosci. 2008, 16, 55–62. [Google Scholar] [CrossRef]
- Mavromatis, T.; Stathis, D. Response of the Water Balance in Greece to Temperature and Precipitation Trends. Theor. Appl. Climatol. 2011, 104, 13–24. [Google Scholar] [CrossRef]
- Kastridis, A.; Stathis, D. The Effect of Small Earth Dams and Reservoirs on Water Management in North Greece (Kerkini Municipality). Silva Balc. 2015, 16, 71–84. [Google Scholar]
- Zanis, P.; Katragkou, E.; Ntogras, C.; Marougianni, G.; Tsikerdekis, A.; Feidas, H.; Anadranistakis, E.; Melas, D. Transient High-Resolution Regional Climate Simulation for Greece over the Period 1960-2100: Evaluation and Future Projections. Clim. Res. 2015, 64, 123–140. [Google Scholar] [CrossRef]
- Kastridis, A.; Kamperidou, V.; Stathis, D. Dendroclimatological Analysis of Fir (A. Borisii-Regis) in Greece in the Frame of Climate Change Investigation. Forests 2022, 13, 879. [Google Scholar] [CrossRef]
- Sakalis, V.D. Trend Analysis of Annual and Seasonal Precipitation Data in Arcadia Region (Greece). Bull. Atmos. Sci. Technol. 2022, 3, 8. [Google Scholar] [CrossRef]
- Tzanis, C.G.; Koutsogiannis, I.; Philippopoulos, K.; Deligiorgi, D. Recent Climate Trends over Greece. Atmos. Res. 2019, 230, 104623. [Google Scholar] [CrossRef]
- Philandras, C.M.; Nastos, P.T.; Repapis, C.C. Air Temperature Variability and Trends over Greece. Glob. Nest J. 2008, 10, 273–285. [Google Scholar] [CrossRef]
- Tsiotas, G.; Mamara, A.; Argiriou, A.; Tsoukala, A. (Katerina) Testing Mean Air Temperature Trends in Southern Greece: A Bayesian Approach. Int. J. Climatol. 2022, 42, 4989–5015. [Google Scholar] [CrossRef]
- Stefanidis, K.; Varlas, G.; Papadopoulos, A.; Dimitriou, E. Four Decades of Surface Temperature, Precipitation, and Wind Speed Trends over Lakes of Greece. Sustainability 2021, 13, 9908. [Google Scholar] [CrossRef]
- Kaldellis, J.K.; Kondili, E.M. The Water Shortage Problem in the Aegean Archipelago Islands: Cost-Effective Desalination Prospects. Desalination 2007, 216, 123–138. [Google Scholar] [CrossRef]
- Nastos, P.T.; Evelpidou, N.; Vassilopoulos, A. Does Climatic Change in Precipitation Drive Erosion in Naxos Island, Greece? Nat. Hazards Earth Syst. Sci. 2010, 10, 379–382. [Google Scholar] [CrossRef]
- Baltas, E.A. Climatic Conditions and Availability of Water Resources in Greece. Int. J. Water Resour. Dev. 2008, 24, 635–649. [Google Scholar] [CrossRef]
- Baltas, E.; Mimikou, M.; Fragiskou, A. Hydrological Balance and Application of the MedWater Model on Naxos Island. Water Int. 2012, 37, 32–42. [Google Scholar] [CrossRef]
- Deyà Tortella, B.; Tirado, D. Hotel Water Consumption at a Seasonal Mass Tourist Destination. The Case of the Island of Mallorca. J. Environ. Manag. 2011, 92, 2568–2579. [Google Scholar] [CrossRef]
- EEA European Environment Agency. European Environment Agency; European Environment Agency: Copenhagen, Denmark, 2012. [Google Scholar]
- Myronidis, D. Hydrology and Hydraulics (in Greek); Tziolas Publications: Thessaloniki, Greek, 2011; ISBN 978-960-418-884-0. [Google Scholar]
- Lagouvardos, K.; Kotroni, V.; Bezes, A.; Koletsis, I.; Kopania, T.; Lykoudis, S.; Mazarakis, N.; Papagiannaki, K.; Vougioukas, S. The Automatic Weather Stations NOANN Network of the National Observatory of Athens: Operation and Database. Geosci. Data J. 2017, 4, 4–16. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric Tests against Trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods; Griffin: Oxford, UK, 1948. [Google Scholar]
- Sneyers, R. On the Statistical Analysis of Series of Observations; World Meteorological Organization: Geneva, Switzerland, 1991. [Google Scholar]
- Goossens, C.R.; Berger, A.L. Annual and Seasonal Climatic Variations over the Northern Hemisphere and Europe during the Last Century. Ann. Geophys. 1986, 4, 385–400. [Google Scholar]
- Abeysingha, N.S.; Singh, M.; Sehgal, V.K.; Khanna, M.; Pathak, H. Analysis of Trends in Streamflow and Its Linkages with Rainfall and Anthropogenic Factors in Gomti River Basin of North India. Theor. Appl. Climatol. 2016, 123, 785–799. [Google Scholar] [CrossRef]
- Akre, R.S.; Nagrale, G.S. A Study of Drought Situation in El-Niño Years over Central India Homogeneous Region. Mausam 2012, 63, 162–164. [Google Scholar] [CrossRef]
- Chatterjee, S.; Khan, A.; Akbari, H.; Wang, Y. Monotonic Trends in Spatio-Temporal Distribution and Concentration of Monsoon Precipitation (1901–2002), West Bengal, India. Atmos. Res. 2016, 182, 54–75. [Google Scholar] [CrossRef]
- Chandniha, S.K.; Meshram, S.G.; Adamowski, J.F.; Meshram, C. Trend Analysis of Precipitation in Jharkhand State, India. Theor. Appl. Climatol. 2017, 130, 261–274. [Google Scholar] [CrossRef]
- Livada, I.; Asimakopoulos, D. Individual Seasonality Index of Rainfall Regimes in Greece. Clim. Res. 2005, 28, 155–161. [Google Scholar] [CrossRef]
- Kundu, S.; Khare, D.; Mondal, A.; Mishra, P.K. Analysis of Spatial and Temporal Variation in Rainfall Trend of Madhya Pradesh, India (1901–2011). Environ. Earth Sci. 2015, 73, 8197–8216. [Google Scholar] [CrossRef]
- Mallya, G.; Mishra, V.; Niyogi, D.; Tripathi, S.; Govindaraju, R.S. Trends and Variability of Droughts over the Indian Monsoon Region. Weather. Clim. Extrem. 2016, 12, 43–68. [Google Scholar] [CrossRef]
- Myronidis, D.; Stathis, D.; Ioannou, K.; Fotakis, D. An Integration of Statistics Temporal Methods to Track the Effect of Drought in a Shallow Mediterranean Lake. Water Resour. Manag. 2012, 26, 4587–4605. [Google Scholar] [CrossRef]
- Caloiero, T.; Veltri, S.; Caloiero, P.; Frustaci, F. Drought Analysis in Europe and in the Mediterranean Basin Using the Standardized Precipitation Index. Water 2018, 10, 1043. [Google Scholar] [CrossRef]
- Hayes, M.J. Drought Indices. In Van Nostrand’s Scientific Encyclopedia; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2006. [Google Scholar]
- Hayes, M.J. Revising the SPI: Clarifying the Process. Drought Netw. News. Digit. Commons Univ. Neb. Linc. 2000, 12, 13–14. [Google Scholar]
- Maheras, P.; Patrikas, I.; Karacostas, T.; Anagnostopoulou, C. Automatic Classification of Circulation Types in Greece: Methodology, Description, Frequency, Variability and Trend Analysis. Theor. Appl. Climatol. 2000, 67, 205–223. [Google Scholar] [CrossRef]
- Tsakiris, G.; Pangalou, D. Drought Characterisation in the Mediterranean. In Coping with Drought Risk in Agriculture and Water Supply Systems; Springer: Dordrecht, The Netherlands, 2009; pp. 69–80. [Google Scholar]
- Vangelis, H.; Tigkas, D.; Tsakiris, G. The Effect of PET Method on Reconnaissance Drought Index (RDI) Calculation. J. Arid Environ. 2013, 88, 130–140. [Google Scholar] [CrossRef]
- McKee, T.B.; Doeskin, N.J.; Kleist, J. The Relationship of Drought Frequency and Duration to Time Scales. In Proceedings of the Eighth Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; American Meteorological Society: Anaheim, CA, USA, 1993; pp. 179–184. [Google Scholar]
- Aalijahan, M.; Karataş, A.; Lupo, A.R.; Efe, B.; Khosravichenar, A. Analyzing and Modeling the Spatial-Temporal Changes and the Impact of GLOTI Index on Precipitation in the Marmara Region of Türkiye. Atmosphere 2023, 14, 489. [Google Scholar] [CrossRef]
- Mersin, D.; Tayfur, G.; Vaheddoost, B.; Safari, M.J.S. Historical Trends Associated with Annual Temperature and Precipitation in Aegean Turkey, Where Are We Heading? Sustainability 2022, 14, 13380. [Google Scholar] [CrossRef]
- Todaro, V.; D’Oria, M.; Secci, D.; Zanini, A.; Tanda, M.G. Climate Change over the Mediterranean Region: Local Temperature and Precipitation Variations at Five Pilot Sites. Water 2022, 14, 2499. [Google Scholar] [CrossRef]
- Philandras, C.M.; Nastos, P.T.; Kapsomenakis, J.; Douvis, K.C.; Tselioudis, G.; Zerefos, C.S. Long Term Precipitation Trends and Variability within the Mediterranean Region. Nat. Hazards Earth Syst. Sci. 2011, 11, 3235–3250. [Google Scholar] [CrossRef]
- Feidas, H. Trend Analysis of Air Temperature Time Series in Greece and Their Relationship with Circulation Using Surface and Satellite Data: Recent Trends and an Update to 2013. Theor. Appl. Climatol. 2017, 129, 1383–1406. [Google Scholar] [CrossRef]
- Mamara, A.; Argiriou, A.A.; Anadranistakis, M. Recent Trend Analysis of Mean Air Temperature in Greece Based on Homogenized Data. Theor. Appl. Climatol. 2016, 126, 543–573. [Google Scholar] [CrossRef]
- Copernicus, European Drought Observatory (E.D.O.). Standardized Precipitation Index (SPI); EDO Indicator Factsheet; European Commission: Ispra, Italy, 2020. [Google Scholar]
- Tsiros, I.X.; Nastos, P.; Proutsos, N.D.; Tsaousidis, A. Variability of the Aridity Index and Related Drought Parameters in Greece Using Climatological Data over the Last Century (1900–1997). Atmos. Res. 2020, 240, 104914. [Google Scholar] [CrossRef]
- Topuz, M.; Feidas, H.; Karabulut, M. Trend Analysis of Precipitation Data in Turkey and Relations to Atmospheric Circulation: (1955–2013). Ital. J. Agrometeorol. 2020, 2, 91–107. [Google Scholar] [CrossRef]
- Kadiolu, M. Regional Variability of Seasonal Precipitation over Turkey. Int. J. Climatol. 2000, 20, 1743–1760. [Google Scholar] [CrossRef]
- Ben Abdelmalek, M.; Nouiri, I. Study of Trends and Mapping of Drought Events in Tunisia and Their Impacts on Agricultural Production. Sci. Total Environ. 2020, 734, 139311. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC) The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P., Eds.; IPCC: UK Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Driouech, F.; ElRhaz, K.; Moufouma-Okia, W.; Arjdal, K.; Balhane, S. Assessing Future Changes of Climate Extreme Events in the CORDEX-MENA Region Using Regional Climate Model ALADIN-Climate. Earth Syst. Environ. 2020, 4, 477–492. [Google Scholar] [CrossRef]
- Dubrovský, M.; Hayes, M.; Duce, P.; Trnka, M.; Svoboda, M.; Zara, P. Multi-GCM Projections of Future Drought and Climate Variability Indicators for the Mediterranean Region. Reg. Env. Chang. 2014, 14, 1907–1919. [Google Scholar] [CrossRef]
- Asadi Zarch, M.A.; Sivakumar, B.; Malekinezhad, H.; Sharma, A. Future Aridity under Conditions of Global Climate Change. J. Hydrol. 2017, 554, 451–469. [Google Scholar] [CrossRef]
- Waha, K.; Krummenauer, L.; Adams, S.; Aich, V.; Baarsch, F.; Coumou, D.; Fader, M.; Hoff, H.; Jobbins, G.; Marcus, R.; et al. Climate Change Impacts in the Middle East and Northern Africa (MENA) Region and Their Implications for Vulnerable Population Groups. Reg. Environ. Chang. 2017, 17, 1623–1638. [Google Scholar] [CrossRef]
- García-Ruiz, J.M.; López-Moreno, J.I.; Vicente-Serrano, S.M.; Lasanta–Martínez, T.; Beguería, S. Mediterranean Water Resources in a Global Change Scenario. Earth Sci. Rev. 2011, 105, 121–139. [Google Scholar] [CrossRef]
Meteorological Station | Coordinates | Operating Services | Altitude | Period | |
---|---|---|---|---|---|
X | Y | ||||
Mykonos | 25.3458° | 37.4359° | HNMS | 122 | 1989–2019 |
Naxos | 25.3728° | 37.1013° | HNMS | 11 | 1955–2019 |
Kos (airport) | 27.0913° | 36.8012° | HNMS | 126 | 1961–2019 |
Mykonos | 25.3260° | 37.4450° | NOA | 10 | 2012–2019 |
Naxos | 25.3738° | 37.1014° | NOA | 19 | 2011–2019 |
Kos | 27.3404° | 36.8772° | NOA | 37 | 2014–2019 |
Apiranthos | 25.5200° | 37.0712° | NOA | 600 | 2012–2019 |
Apollonas | 25.5549° | 37.1811° | NOA | 35 | 2012–2019 |
Damarion | 25.4780° | 37.0510° | NOA | 310 | 2012–2019 |
Koronas | 25.5355° | 37.1187° | NOA | 540 | 2012–2019 |
Kynidaros | 25.4770° | 37.0990° | NOA | 410 | 2012–2019 |
Melanes | 25.4379° | 37.0901° | NOA | 160 | 2012–2019 |
Small Vigla | 25.3730° | 37.0240° | NOA | 12 | 2012–2019 |
Values of SPI Index | Characterization of Episodes |
---|---|
>2.0 | Extremely wet period |
1.5–1.99 | Very wet period |
1.0–1.49 | Wet period |
−0.99–0.99 | Regular rainfall |
−1.0–(−1.49) | Drought |
−1.5–(−1.99) | Significant drought |
<−2.0 | Extreme drought |
Meteorological Stations | Altitude (m) | Trend Equation (R2) | Change in Annual Rainfall Height (mm/10 years) |
---|---|---|---|
Period 1961–2019 | |||
Naxos | 11 | Y = 383.42 − 0.513·X (0.007) | −5.1 |
Kos | 126 | Y = 819.28 − 5.886·X (0.2) | −58.8 |
Period 1989–2019 | |||
Mykonos | 122 | Y = 380.96 + 0.596·X (0.003) | +5.9 |
Naxos | 11 | y = 330.76 + 1.212·Χ (0.011) | +12.1 |
Kos | 126 | Y = 501.86 + 2.458·X (0.013) | +24.6 |
Meteorological Station | Altitude (m) | Trend Equation (R2) | Change in Annual Air Temperature (°C/10 years) |
---|---|---|---|
Period of 1961–2019 | |||
Naxos | 11 | Y = 17.792 + 0.021·X (0.42) | +0.21 |
Kos | 126 | Y = 18.132 + 0.0082·X (0.065) | +0.08 |
Period of 1989–2019 | |||
Mykonos | 122 | Y = 16.849 + 0.0622·X (0.63) | +0.62 |
Naxos | 11 | Y = 18.105 + 0.0372·X (0.47) | +0.37 |
Κως | 126 | Y = 17.923 + 0.0370·X (0.37) | +0.37 |
MYKONOS | NAXOS | KOS |
---|---|---|
March 90–May 90 (3 months) 2 months (March, April) | June 89–June 90 (13 months) 9 months (September–May) | June 89–June 90 (13 months) 2 months (April, May) |
April 99–March 01 (21 months) 1 month (March) | June 99–June 00 (8 months) | Sept 99–April 00 (8 months) |
June 06–March 07 (10 months) | April 07-May 07 (2 months) | Aug 05–April 07 (22 months) |
Aug 15–March 16 (10 months) | Aug 15–July 18 (36 months) | July 15–June 16 (12 months) |
Aug 17–May 18 (10 months) | Sept 17–June 18 (10 months) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stathi, E.; Kastridis, A.; Myronidis, D. Analysis of Hydrometeorological Trends and Drought Severity in Water-Demanding Mediterranean Islands under Climate Change Conditions. Climate 2023, 11, 106. https://doi.org/10.3390/cli11050106
Stathi E, Kastridis A, Myronidis D. Analysis of Hydrometeorological Trends and Drought Severity in Water-Demanding Mediterranean Islands under Climate Change Conditions. Climate. 2023; 11(5):106. https://doi.org/10.3390/cli11050106
Chicago/Turabian StyleStathi, Efthymia, Aristeidis Kastridis, and Dimitrios Myronidis. 2023. "Analysis of Hydrometeorological Trends and Drought Severity in Water-Demanding Mediterranean Islands under Climate Change Conditions" Climate 11, no. 5: 106. https://doi.org/10.3390/cli11050106
APA StyleStathi, E., Kastridis, A., & Myronidis, D. (2023). Analysis of Hydrometeorological Trends and Drought Severity in Water-Demanding Mediterranean Islands under Climate Change Conditions. Climate, 11(5), 106. https://doi.org/10.3390/cli11050106