Nanofertilizer Use for Adaptation and Mitigation of the Agriculture/Climate Change Dichotomy Effects
Abstract
:1. Introduction
2. Agriculture as a Driver of Climate Change
2.1. Nitrous Oxide (N2O) Emissions
2.2. Carbon Dioxide (CO2) Emissions
2.3. Methane (CH4) Emissions
2.4. Nitrogen and Phosphorus Flows to Terrestrial Biosphere and Water Bodies
3. Climate Change Effects on Agriculture
3.1. Temperature and Rainfall Patterns
3.2. Extreme Climatic Events
3.3. GHG
4. Agriculture Potential for Reduction
5. Reducing the Impact of Climate Change on Agriculture
6. Nanofertilizers as Mitigation and Adaptation Strategy
- The materials to be used in nanofertilizers must be studied for their safety. A good example is to use the ones that have already been proven to have high biodegradability, high biocompatibility, and decreased cytotoxicity, such as the ones studied for medical devices or resulting from green synthesis;
- Nanofertilizers should be studied and applied to specific crops in order to eliminate the nano-phytotoxicity effect in a fit-to-purpose, precision application;
- When available, commercial nanofertilizer formulations should be chosen over traditional ones, increasing yields, improving soil conditions, and reducing emissions;
- The commercially available nanofertilizer options must be increased to become a viable and consistent alternative for producers;
- The inclusion of biostimulant substances in the formulations should be considered in order to increase crop resistance and resilience.
7. Conclusions and Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- EEA—European Environment Agency. Agriculture and Climate Change. Available online: https://www.eea.europa.eu/signals/signals-2015/articles/agriculture-and-climate-change (accessed on 19 February 2023).
- EPA. Sources of Greenhouse Gas Emissions. Available online: https://www.epa.gov/ghgemissions/sources-greenhouse-gas-emissions#agriculture (accessed on 19 February 2023).
- FAO. Emissions Due to Agriculture. Global, Regional and Country Trends 2000–2018. FAOSTAT Analytical Brief Series. 2020. Available online: https://www.fao.org/3/cb3808en/cb3808en.pdf (accessed on 22 February 2023).
- EPA. Basics of Climate Change. Available online: https://www.epa.gov/climatechange-science/basics-climate-change (accessed on 17 February 2023).
- UN—United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development. 2015. Available online: https://sdgs.un.org/topics/climate-change (accessed on 17 February 2023).
- EU. Regulation (EU) 2021/1119 of the European Parliament and of the Council of 30 June 2021 establishing the framework for achieving climate neutrality and amending Regulations (EC) No 401/2009 and (EU) 2018/1999 (‘European Climate Law’). Off. J. Eur. Union 2021, 243, 1–17. [Google Scholar]
- EC—European Comission. A European Green Deal: Striving to Be the First Climate-Neutral Continent; European Commission: Brussels, Belgium, 2021. Available online: https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_en (accessed on 11 November 2022).
- FAO. Agriculture: Towards 2015/30. Prospects for the Environment, Agriculture and the Environment. Rome. 2002. Available online: https://www.fao.org/3/y3557e/y3557e11.htm (accessed on 19 February 2023).
- IPCC—Intergovernmental Panel on Climate Change. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M.M.B., Miller, H.L., Jr., Eds.; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- IPCC—Intergovernmental Panel on Climate Change. Fifth Assessment Report. Climate Change Synthesis Report. 2014. Available online: https://www.ipcc.ch/report/ar5/syr/ (accessed on 17 February 2023).
- IPCC—Intergovernmental Panel on Climate Change. TechnicalSummary. 2022. Available online: https://www.ipcc.ch/report/ar6/wg2/downloads/report/IPCC_AR6_WGII_TechnicalSummary.pdf (accessed on 17 February 2023).
- Perner, K.; Moros, M.; Otterå, O.H.; Blanz, T.; Schneider, R.R.; Jansen, E. An Oceanic Perspective on Greenland’s Recent Freshwater Discharge since 1850. Sci. Rep. 2019, 9, 17680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rocklöv, J.; Dubrow, R. Climate Change: An Enduring Challenge for Vector-Borne Disease Prevention and Control. Nat. Immunol. 2020, 21, 479–483. [Google Scholar] [CrossRef] [PubMed]
- Bannan, D.; Ólafsdóttir, R.; Hennig, B.D. Local Perspectives on Climate Change, Its Impact and Adaptation: A Case Study from the Westfjords Region of Iceland. Climate 2022, 10, 169. [Google Scholar] [CrossRef]
- Glick, P.; Stein, B.; Edelson, N.A. Scanning the Conservation Horizon: A Guide to Climate Change Vulnerability Assessment; National Wildlife Federation: Washington, DC, USA, 2010. [Google Scholar]
- Bradford, J.B.; Schlaepfer, D.R.; Lauenroth, W.K.; Palmquist, K.A.; Chambers, J.C.; Maestas, J.D.; Campbell, S.B. Climate-Driven Shifts in Soil Temperature and Moisture Regimes Suggest Opportunities to Enhance Assessments of Dryland Resilience and Resistance. Front. Ecol. Evol. 2019, 7, 358. [Google Scholar] [CrossRef] [Green Version]
- Stein, B.A.; Glick, P.; Edelson, N.; Staudt, A. Climate-Smart Conservation: Putting Adaption Principles Into Practice; National Wildlife Federation: Washington, DC, USA, 2014. [Google Scholar]
- EPA. Climate Change Impacts on Agriculture and Food Supply. Available online: https://www.epa.gov/climateimpacts/climate-change-impacts-agriculture-and-food-supply#topc (accessed on 17 February 2023).
- Mikkelsen, R. Nanofertilizer and Nanotechnology: A quick look. Better Crops Plant Food 2018, 102, 18–19. [Google Scholar] [CrossRef]
- Manjunatha, S.B.; Biradar, D.P.; Aladakatti, Y.R. Nanotechnology and its applications in agriculture: A review. J. Farm Sci. 2016, 29, 1–13. [Google Scholar]
- Timilsena, Y.P.; Adhikari, R.; Casey, P.; Muster, T.; Gill, H.; Adhikari, B. Enhanced efficiency fertilizers: A review of formulation and nutrient release patterns. J. Sci. Food Agric. 2015, 95, 1131–1142. [Google Scholar] [CrossRef]
- Zheng, W.; Zhang, M.; Liu, Z.; Zhou, H.; Lu, H.; Zhang, W.; Yang, Y.; Li, C.; Chen, B. Combining controlled-release urea and normal urea to improve the nitrogen use efficiency and yield under wheat-maize double cropping system. Field Crops Res. 2016, 197, 52–62. [Google Scholar] [CrossRef]
- Wang, C.; Lv, J.; Coulter, J.A.; Xie, J.; Yu, J.; Li, J.; Zhang, J.; Tang, C.; Niu, T.; Gan, Y. Slow-Release Fertilizer Improves the Growth, Quality, and Nutrient Utilization of Wintering Chinese Chives (Allium tuberosum Rottler ex Spreng.). Agronomy 2020, 10, 381. [Google Scholar] [CrossRef] [Green Version]
- ISO 8157:2022(en); Fertilizers, Soil Conditioners and Beneficial Substances—Vocabulary, 3rd ed. Technical Committee ISO/TC 134: Geneva, Switzerland, 2022.
- Myhre, G.; Shindell, D.; Breon, F.-M.; Collins, W.; Fuglestvedt, J.; Huang, D.; Koch, D.; Lamarque, J.-F.; Lee, D.; Mendoza, B.; et al. Anthropogenic and Natural Radiative Forcing. In Climate Change 2013: The Physical Science Basis Contribution of Working Group 1 to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; pp. 659–740. [Google Scholar]
- Lynch, J.; Cain, M.; Frame, D.; Pierrehumbert, R. Agriculture’s Contribution to Climate Change and Role in Mitigation Is Distinct From Predominantly Fossil CO2-Emitting Sectors. Front. Sustain. Food Syst. 2021, 4, 518039. [Google Scholar] [CrossRef]
- Rivera, J.E.; Chará, J. CH4 and N2O Emissions From Cattle Excreta: A Review of Main Drivers and Mitigation Strategies in Grazing Systems. Front. Sustain. Food Syst. 2021, 5, 657936. [Google Scholar] [CrossRef]
- Panchasara, H.; Samrat, N.H.; Islam, N. Greenhouse Gas Emissions Trends and Mitigation Measures in Australian Agriculture Sector—A Review. Agriculture 2021, 11, 85. [Google Scholar] [CrossRef]
- Northrup, D.L.; Basso, B.; Wang, M.Q.; Morgan, C.L.S.; Benfey, P.N. Novel technologies for emission reduction complement conservation agriculture to achieve negative emissions from row-crop production. Proc. Natl. Acad. Sci. USA. 2021, 118, e2022666118. [Google Scholar] [CrossRef]
- Maharajan, T.; Ceasar, S.A.; Krishna, A.T.P.; Ignacimuthu, J.S. Management of phosphorus nutrient amid climate change for sustainable agriculture. Environ. Qual. 2021, 50, 1303–1324. [Google Scholar] [CrossRef]
- Bellarby, J.; Foereid, B.; Hastings, A.; Smith, P. Cool Farming: Climate Impacts of Agriculture and Mitigation Potential; Greenpeace International: Amsterdam, The Netherlands, 2008. [Google Scholar]
- IPCC—Intergovernmental Panel on Climate Change. Climate Change 2021: The Physical Science Basis; Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021. [Google Scholar]
- FAO. World Agriculture: Towards 2015/2030: An FAO Perspective; FAO: London, UK, 2003. [Google Scholar]
- Fowler, D.; Steadman, C.E.; Stevenson, D.; Coyle, M.; Rees, R.M.; Skiba, U.M.; Sutton, M.A.; Cape, J.N.; Dore, A.J.; Vieno, M.; et al. Effects of global change during the 21st century on the nitrogen cycle. Atmos. Chem. Phys. 2015, 15, 13849–13893. [Google Scholar] [CrossRef] [Green Version]
- EPA. Global Non-CO2 Greenhouse Gas Emission Projections & Mitigation: 2015–2050 United States Environmental Protection Agency Office of Atmospheric Programs (6207A) Washington, DC 20005 EPA-430-R-19-010 October 2019. Available online: https://www.epa.gov/sites/default/files/2019-09/documents/epa_non-co2_greenhouse_gases_rpt-epa430r19010.pdf (accessed on 19 February 2023).
- Tian, H.; Xu, R.; Canadell, J.G.; Thompson, R.L.; Winiwarter, W.; Suntharalingam, P.; Davidson, E.A.; Ciais, P.; Jackson, R.B.; Janssens-Maenhout, G.; et al. A comprehensive quantification of global nitrous oxide sources and sinks. Nature 2020, 586, 248–256. [Google Scholar] [CrossRef] [PubMed]
- Winkhart, F.; Mösl, T.; Schmid, H.; Hülsbergen, K.-J. Effects of Organic Maize Cropping Systems on Nitrogen Balances and Nitrous Oxide Emissions. Agriculture 2022, 12, 907. [Google Scholar] [CrossRef]
- Reay, D.S.; Davidson, E.A.; Smith, K.A.; Smith, P.; Melillo, J.M.; Dentener, F.; Crutzen, P.J. Global agriculture and nitrous oxide emissions. Nat. Clim. Chang. 2012, 2, 410–416. [Google Scholar] [CrossRef]
- Shcherbak, I.; Millar, N.; Robertson, G.P. Global metaanalysis of the nonlinear response of soil nitrous oxide (N2O) emissions to fertilizer nitrogen. Proc. Natl. Acad. Sci. USA 2014, 111, 9199–9204. [Google Scholar] [CrossRef] [Green Version]
- Koffi, B.; Cerutti, A.; Janssens-Maenhout, G. Projection to 2030 for Setting Emission Reduction Targets in the Southern Mediterranean Partner Countries: An Approach with a Business-as-Usual Scenario. EUR 28528 EN. European Commission. JRC102551. 2017. Available online: https://publications.jrc.ec.europa.eu/repository/bitstream/JRC102551/jrc102551_com-south_bau_report_final.pdf (accessed on 22 February 2023).
- Tortosa, G.; Delgado, M.J.; Mesa, S.; Bedmar, E.J. Nitrous Oxide (N2O) Gas Emissions in Agriculture: Sources and Sinks, Environmental Factors and Regulatory Mechanisms Involved, and Mitigation Strategies, Special Issue Information. 2021. Available online: https://www.mdpi.com/journal/agronomy/special_issues/N2O_Gas_Agriculture (accessed on 24 February 2023).
- Bouwman, A.F.; Boumans, L.J.M.; Batjes, N.H. Emissions of N2O and NO from fertilized fields: Summary of available measurement data. Glob. Biogeochem. Cy. 2002, 16, 6-1–6-13. [Google Scholar] [CrossRef]
- Leip, A.; Busto, M.; Winiwarter, W. Developing spatially stratified N2O emission factors for Europe. Environ. Pollut. 2011, 159, 3223–3232. [Google Scholar] [CrossRef] [PubMed]
- Lesschen, J.P.; Velthof, G.L.; de Vries, W.; Kros, J. Differentiation of nitrous oxide emission factors for agricultural soils. Environ. Pollut. 2011, 159, 3215–3222. [Google Scholar] [CrossRef] [PubMed]
- Aguilera, E.; Lassaletta, L.; Sanz-Cobena, A.; Garnier, J.; Vallejo, A. The potential of organic fertilizers and water management to reduce N2O emissions in Mediterranean climate cropping systems. A review. Agr. Ecosyst. Environ. 2013, 164, 32–52. [Google Scholar] [CrossRef] [Green Version]
- Shelton, R.E.; Jacobsen, K.L.; McCulley, R.L. Cover Crops and Fertilization Alter Nitrogen Loss in Organic and Conventional Conservation Agriculture Systems. Front. Plant Sci. 2018, 8, 2260. [Google Scholar] [CrossRef] [Green Version]
- Behnke, G.D.; Zuber, S.M.; Pittelkow, C.M.; Nafziger, E.D.; Villamil, M.B. Long-term crop rotation and tillage effects on soil greenhouse gas emissions and crop production in Illinois, USA. Agric. Ecosyst. Environ. 2018, 261, 62–70. [Google Scholar] [CrossRef]
- Feng, J.; Li, F.; Zhou, X.; Xu, C.; Ji, L.; Chen, Z.; Fang, F. Impact of agronomy practices on the effects of reduced tillage systems on CH4 and N2O emissions from agricultural fields: A global meta-analysis. PLoS ONE 2018, 13, e0196703. [Google Scholar] [CrossRef] [Green Version]
- Tenuta, M.; Amiro, B.D.; Gao, X.; Wagner-Riddle, C.; Gervais, M. Agricultural management practices and environmental drivers of nitrous oxide emissions over a decade for an annual and an annual-perennial crop rotation. Agric. For. Meteorol. 2019, 276–277, 107636. [Google Scholar] [CrossRef]
- Wagner-Riddle, C.; Baggs, E.M.; Clough, T.J.; Fuchs, K.; Petersen, S.O. Mitigation of nitrous oxide emissions in the context of nitrogen loss reduction from agroecosystems: Managing hot spots and hot moments. Curr. Opin. Environ. Sustain. 2020, 47, 46–53. [Google Scholar] [CrossRef]
- Chattha, M.S.; Ali, Q.; Haroon, M.; Afzal, M.J.; Javed, T.; Hussain, S.; Mahmood, T.; Solanki, M.K.; Umar, A.; Abbas, W.; et al. Enhancement of nitrogen use efficiency through agronomic and molecular based approaches in cotton. Front. Plant Sci. 2022, 13, 994306. [Google Scholar] [CrossRef]
- Vermeulen, S.J.; Campbell, B.M.; Ingram, J.S.I. Climate change and food systems. Annu. Rev. Environ. Resour. 2012, 37, 195–222. [Google Scholar] [CrossRef] [Green Version]
- Gong, H.; Guo, Y.; Wu, J.; Wu, H.; Nkebiwe, P.M.; Pu, Z.; Feng, G.; Jiao, X. Synergies in sustainable phosphorus use and greenhouse gas emissions mitigation in China: Perspectives from the entire supply chain from fertilizer production to agricultural use. Sci. Total Environ. 2022, 838 Pt 2, 155997. [Google Scholar] [CrossRef] [PubMed]
- Menegat, S.; Ledo, A.; Tirado, R. Greenhouse gas emissions from global production and use of nitrogen synthetic fertilizers in agriculture. Sci. Rep. 2022, 12, 14490. [Google Scholar] [CrossRef]
- Edixhoven, J.; Gupta, J.; Savenije, H. Recent revisions of phosphate rock reserves and resources: A critique. Earth Syst. Dyn. 2014, 5, 491–507. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, F.P. Mining industry and sustainable development: Time for change. Food Energy Secur. 2017, 6, 61–77. [Google Scholar] [CrossRef]
- Golroudbary, S.R.; El, W.M.; Kraslawski, A. Environmental sustainability of phosphorus recycling from wastewater, manure and solid wastes. Sci. Total Environ. 2019, 672, 515–524. [Google Scholar] [CrossRef]
- IIP—Institute for Industrial Productivity. Industrial Efficiency Technology Database. Ammonia. 2011. Available online: https://c2e2.unepccc.org/kms_object/industrial-efficiency-technology-database-ietd/ (accessed on 28 February 2023).
- Stockholm Resilience Center. The Nine Planetary Boundaries. 2023. Available online: https://www.stockholmresilience.org/research/planetary-boundaries/the-nine-planetary-boundaries.html (accessed on 22 March 2023).
- IFA. Reducing Emissions from Fertilizer Use—Executive Summary, 15 September 2022. Available online: https://www.fertilizer.org/member/Download.aspx?PUBKEY=E205C2E0-8E5C-477D-8604-6CC16A9D3B98 (accessed on 17 February 2023).
- IFA. Fertilizers, Climate Change and Enhancing Agricultural Productivity Sustainably. 2009. Available online: https://www.fertilizer.org/images/Library_Downloads/2009_climate_change_brief.pdf. (accessed on 11 March 2022).
- Wang, Y.; Liu, D.; Xiao, W.; Zhou, P.; Tian, C.; Zhang, C.; Du, J.; Guo, H.; Wang, B. Coastal eutrophication in China: Trend, sources, and ecological effects. Harmful Algae 2021, 7, 102058. [Google Scholar] [CrossRef]
- Martín-Hernández, E.; Taifouris, M.; Martín, M. Addressing the contribution of agricultural systems to the phosphorus pollution challenge: A multi-dimensional perspective. Front. Chem. Eng. 2022, 4, 970707. [Google Scholar] [CrossRef]
- Henryson, K.; Kätterer, T.; Tidåker, P.; Sundberg, C. Soil N2O emissions, N leaching and marine eutrophication in life cycle assessment—A comparison of modelling approaches. Sci. Total Environ. 2020, 725, 138332. [Google Scholar] [CrossRef]
- Baligar, V.; Fageria, N.; He, Z. Nutrient use efficiency in plants. Commun. Soil Sci. Plant Anal. 2001, 32, 921–950. [Google Scholar] [CrossRef]
- Cordell, D. The Story of Phosphorus: Sustainability Implications of Global Phosphorus Scarcity for Food Security. Ph.D. Thesis, Linköping University, Linköping, Sweden, 2010. [Google Scholar]
- Mogollón, J.M.; Beusen, A.H.W.; van Grinsven, H.J.M.; Westhoek, H.; Bouwman, A.F. Future agricultural phosphorus demand according to the shared socioeconomic pathways Glob. Environ. Chang. 2018, 50, 149–163. [Google Scholar] [CrossRef]
- Bouwman, A.F.; Beusen, A.H.; Billen, G. Human alteration of the global nitrogen and phosphorus soil balances for the period 1970–2050. Glob. Biogeochem. Cycles 2009, 23. [Google Scholar] [CrossRef]
- Benlamlih, F.Z.; Lamhamedi, M.S.; Pepin, S.; Benomar, L.; Messaddeq, Y. Evaluation of a New Generation of Coated Fertilizers to Reduce the Leaching of Mineral Nutrients and Greenhouse Gas (N2O) Emissions. Agronomy 2021, 11, 1129. [Google Scholar] [CrossRef]
- FAO. Pollutants from Agriculture a Serious Threat to World’s Water. 2018. Available online: https://www.fao.org/news/story/en/item/1141534/icode/ (accessed on 6 March 2023).
- Vigouroux, G.; Kari, E.; Beltrán-Abaunza, J.M.; Uotila, P.; Yuan, D.; Destouni, G. Trend correlations for coastal eutrophication and its main local and whole-sea drivers—Application to the Baltic Sea. Sci. Total Environ. 2021, 779, 146367. [Google Scholar] [CrossRef] [PubMed]
- CAC—Conseil des Académies Canadiennes. L’eau et l’Agriculture au Canada: Vers une Gestion Durable des Ressources en eau; Le Comité d’Experts sur la Gestion Durable de l’eau des Terres Agricoles du Canada, Conseil des Académies Canadiennes: Ottawa, ON, Canada, 2013; pp. 11–82. [Google Scholar]
- Huang, J.; Xu, C.-C.; Ridoutt, B.G.; Wang, X.-C.; Ren, P.-A. Nitrogen and phosphorus losses and eutrophication potential associated with fertilizer application to cropland in China. J. Clean. Prod. 2017, 159, 171–179. [Google Scholar] [CrossRef]
- Hoagland, P.; Scatasta, S. The Economic Effects of Harmful Algal Blooms in Ecology of Harmful Algae; Springer: Berlin, Germany, 2006; pp. 391–402. [Google Scholar]
- Li, Y.; Shang, J.; Zhang, C.; Zhang, W.; Niu, L.; Wang, L.; Zhang, H. The role of freshwater eutrophication in greenhouse gas emissions: A review. Sci. Total Environ. 2021, 768, 144582. [Google Scholar] [CrossRef]
- Roberts, T.L.; Johnston, A.E. Phosphorus use efficiency and management in agriculture. Resour. Conserv. Recycl. 2015, 105 Pt B, 275–281. [Google Scholar] [CrossRef]
- Gowda, P.; Steiner, J.L.; Farrigan, T.; Grusak, M.A.; Boggess, M. Agriculture and Rural Communities. In Impacts, Risks, and Adaptation in the United States: Fourth National Climate Assessment; U.S. Global Change Research Program: Washington, DC, USA, 2018; Volume II, p. 401. [Google Scholar]
- Zhang, H.; Liu, B.; Zhou, D.; Wu, Z.; Wang, T. Asymmetric Soil Warming under Global Climate Change. Int. J. Environ. Res. Public Health 2019, 16, 1504. [Google Scholar] [CrossRef] [Green Version]
- Ziska, L.; Crimmins, A.; Auclair, A.; Degrasse, S.; Garofalo, J.; Khan, A.; Loladze, I.; Perez De Leon, A.; Showler, A.; Thurston, J.; et al. Ch. 7: Food Safety, Nutrition, and Distribution. In The Impacts of Climate Change on Human Health in the United States: A Scientific Assessment; U.S. Global Change Research Program: Washington, DC, USA, 2016; p. 197. [Google Scholar]
- Walsh, M.K.; Backlund, P.; Buja, L.; DeGaetano, A.; Melnick, R.; Prokopy, L.; Takle, E.; Todey, D.; Ziska, L. Climate Indicators for Agriculture; USDA Technical Bulletin 1953; Department of Agriculture, Climate Change Program Office: Washington, DC, USA, 2020; p. 20.
- NASA. How Does Climate Change Affect Precipitation? 2023. Available online: https://gpm.nasa.gov/resources/faq/how-does-climate-change-affect-precipitation (accessed on 14 April 2023).
- Bliss, A.; Hock, R.; Radic, V. Global response of glacier run-off to twenty-first century climate change. J. Geophys. Res. Earth Surf. 2014, 119, 717–730. [Google Scholar] [CrossRef]
- Hugonnet, R.; McNabb, R.; Berthier, E.; Menounos, B.; Nuth, C.; Girod, L.; Farinotti, D.; Huss, M.; Dussaillant, I.; Brun, F.; et al. Accelerated global glacier mass loss in the early twenty-first century. Nature 2021, 592, 726–731. [Google Scholar] [CrossRef]
- Li, X.; Long, D.; Scanlon, B.R.; Mann, M.E.; Li, X.; Tian, F.; Sun, Z.; Wang, G. Climate change threatens terrestrial water storage over the Tibetan Plateau. Nat. Clim. Chang. 2022, 12, 801–807. [Google Scholar] [CrossRef]
- Barnabás, B.; Jäger, K.; Fehér, A. The effect of drought and heat stress on reproductive processes in cereals. Plant Cell Environ. 2008, 31, 11–38. [Google Scholar] [CrossRef] [PubMed]
- Bita, C.E.; Gerats, T. Plant tolerance to high temperature in a changing environment: Scientific fundamentals and production of heat stress-tolerant crops. Front. Plant Sci. 2013, 4, 273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gabaldón-Leal, C.; Webber, H.; Otegui, M.E.; Slafer, G.A.; Ordóñez, R.A.; Gaiser, T.; Lorite, I.J.; Ruiz-Ramos, M.; Ewert, F. Modelling the impact of heat stress on maize yield formation. Field Crops Res. 2016, 198, 226–237. [Google Scholar] [CrossRef]
- Yang, C.; Fraga, H.; Van Ieperen, W.; Santos, J.A. Assessment of irrigated maize yield response to climate change scenarios in Portugal. Agric. Water Manag. 2017, 184, 178–190. [Google Scholar] [CrossRef]
- Hussain, A.; Bangash, R. Impact of climate change on crops’ productivity across selected agro-ecological zones in Pakistan. Pak. Dev. Rev. 2017, 56, 163–187. [Google Scholar] [CrossRef] [Green Version]
- Soares, D.; Paço, T.A.; Rolim, J. Assessing Climate Change Impacts on Irrigation Water Requirements under Mediterranean Conditions—A Review of the Methodological Approaches Focusing on Maize Crop. Agronomy 2023, 13, 117. [Google Scholar] [CrossRef]
- Cheng, M.; McCarl, B.; Fei, C. Climate Change and Livestock Production: A Literature Review. Atmosphere 2022, 13, 140. [Google Scholar] [CrossRef]
- Fraga, H.; Moriondo, M.; Leolini, L.; Santos, J.A. Mediterranean olive orchards under climate change: A review of future impacts and adaptation strategies. Agronomy 2020, 11, 56. [Google Scholar] [CrossRef]
- USDA. Pollinators. Available online: https://www.fs.usda.gov/managing-land/wildflowers/pollinators (accessed on 18 March 2022).
- Bastas, K.K. Impact of Climate Change on Food Security and Plant Disease. In Microbial Biocontrol: Food Security and Post Harvest; Springer: Cham, Switzerland, 2022. [Google Scholar]
- IPCC—Intergovernmental Panel on Climate Change. Working Group I Contribution to the IPCC Fifth Assessment Report. In Climate Change 2013: The Physical Sciences Basis Summary for Policymakers; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Hartmann, D.L.; Klein, T.A.M.G.; Rusticucci, M.; Alexander, L.V.; Brönnimann, S. Observations: Atmosphere and Surface. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Hu, Q.; Feng, S.A. Daily soil temperature dataset and soil temperature climatology of the contiguous United States. J. Appl. Meteorol. 2003, 42, 1139–1156. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, E.L.; Zhou, D.W.; Luo, Z.K.; Zhang, Z.X. Rising soil temperature in China and its potential ecological impact. Sci. Rep. 2016, 6, 35530. [Google Scholar] [CrossRef] [PubMed]
- Dorau, K.; Bamminger, C.; Koch, D. Evidences of soil warming from long-term trends (1951–2018) in North Rhine-Westphalia, Germany. Clim. Chang. 2022, 170, 9. [Google Scholar] [CrossRef]
- Soong, J.L.; Phillips, C.L.; Ledna, C.; Koven, C.D.; Torn, M.S. CMIP5 models predict rapid and deepsoil warming over the 21st century. J. Geophys. Res. Biogeosci. 2020, 125, e2019JG005266. [Google Scholar] [CrossRef] [Green Version]
- Shen, X.J.; Liu, B.H.; Henderson, M.; Wang, L.; Wu, Z.F.; Jiang, M.; Lu, X.G. Asymmetric effects of daytime and nighttime warming on spring phenology in the temperate grasslands of China. Agr. Forest. Meteorol. 2018, 259, 240–259. [Google Scholar] [CrossRef]
- Onwuka, B.M.; Mang, B. Effects of soil temperature on some soil properties and plant growth. Adv. Plants Agric. Res. 2018, 8, 34–37. [Google Scholar] [CrossRef]
- FAO. The State of the World’s Land and Water Resources for Food and Agriculture—Systems at Breaking Point. Main Report; FAO: Rome, Italy, 2022. [Google Scholar] [CrossRef]
- Certini, G. Effects of fire in properties of forest soils: A review. Oecologia 2005, 143, 1–10. [Google Scholar] [CrossRef]
- Zihms, S.G.; Switzer, C.; Karstunen, M.; Tarantino, A. Understanding the effects of high temperature processes on the engineering properties of soils. In Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering, Paris, France, 2–6 September 2013; pp. 3427–3430. [Google Scholar]
- Nishar, A.; Bader, M.K.-F.; O’Gorman, E.J.; Deng, J.; Breen, B.; Leuzinger, S. Temperature Effects on Biomass and Regeneration of Vegetation in a Geothermal Area. Front. Plant Sci. 2017, 8, 249. [Google Scholar] [CrossRef] [Green Version]
- Jiao, F.; Shi, X.R.; Han, F.P.; Yuan, Z.Y. Increasing aridity, temperature and soil pH induce soil C-N-P imbalance in grasslands. Sci Rep. 2016, 6, 19601. [Google Scholar] [CrossRef] [Green Version]
- Gander, M.J.; Singh, G. Climate change is increasing global salt pollution. Water Int. 2023. ahead-of-print. [Google Scholar] [CrossRef]
- Land Trust Alliance. Extreme Temperature Change: Water Temperatures. Available online: https://climatechange.lta.org/climate-impacts/water-temperatures/ (accessed on 17 February 2023).
- Cox, D.; Clifton, N.; Bartok, J.W.; LaScol, T. Water Quality for Crop Production. In UMass Extension Greenhouse Crops and Floriculture Program; University of Massachusetts Amherst: Amherst, MA, USA, 2010. [Google Scholar]
- Muñoz-Rojas, M.; Jordán, A.; Zavala, L.M.; de la Rosa, D.; González-Peñaloza, F.A.; Abd-Elmabod, S.K.; Anaya-Romero, M. Climate change impacts on carbon stocks of Mediterranean soils: A CarboSOIL model application. Geophys. Res. Abstr. 2013, 15, EGU2013–1676–2. [Google Scholar]
- Dahal, P.; Shrestha, N.S.; Shrestha, M.L.; Krakauer, N.Y.; Panthi, J.; Pradhanang, S.M.; Jha, A.; Lakhankar, T. Drought Risk Assessment in Central Nepal: Temporal and Spatial Analysis. Nat. Hazards 2016, 80, 1913–1932. [Google Scholar] [CrossRef] [Green Version]
- Vicente-Serrano, S.M.; Quiring, S.M.; Pena-Gallardo, M.; Yuan, S.; Dominguez-Castro, F. A Review of Environmental Droughts: Increased Risk under Global Warming? Earth-Sci. Rev. 2020, 201, 102953. [Google Scholar] [CrossRef]
- Sardans, J.; Peñuelas, J. Drought changes phosphorus and potassium accumulation patterns in an evergreen Mediterranean forest. Funct. Ecol. 2007, 21, 191–201. [Google Scholar] [CrossRef]
- He, M.; and Dijkstra, F.A. Drought effect on plant nitrogen and phosphorus: A meta-analysis. New Phytol. 2014, 204, 924–931. [Google Scholar] [CrossRef]
- Raclot, D.; Bissonnais, Y.; Annabi, M.; Sabir, M. Challenges for Mitigating Mediterranean Soil Erosion under Global Change. In The Mediterranean Region under Climate Change; Moatti, J.-P., Thiébault, S., Eds.; IRD Éditions: Marseille, France, 2018; pp. 311–318. [Google Scholar] [CrossRef]
- Jamil, A.; Riaz, S.; Ashraf, M.; Foolad, M.R. Gene expression profiling of plants under salt stress. Crit. Rev. Plant Sci. 2011, 30, 435–458. [Google Scholar] [CrossRef]
- Ullah, A.; Bano, A.; Khan, N. Climate Change and Salinity Effects on Crops and Chemical Communication Between Plants and Plant Growth-Promoting Microorganisms Under Stress. Front. Sustain. Food Syst. 2021, 5, 618092. [Google Scholar] [CrossRef]
- Abbasi, H.; Jamil, M.; Haq, A.; Ali, S.; Ahmad, R.; MaliK, Z. Salt stress manifestation on plants, mechanism of salt tolerance and potassium role in alleviating it: A review. Zemdirb.-Agricul. 2016, 103, 229–238. [Google Scholar] [CrossRef] [Green Version]
- Abbas, H.; Khan, M.Z.; Begum, F.; Raut, N.; Gurung, S. Physicochemical properties of irrigation water in western Himalayas, Pakistan. Water Supply 2020, 20, 3368–3379. [Google Scholar] [CrossRef]
- Wang, J.; Peng, J.; Li, H.; Yin, C.; Liu, W.; Wang, T.; Zhang, H. Soil salinity mapping using machine learning algorithms with the Sentinel-2 MSI in arid areas, China. Remote Sens. 2021, 13, 305. [Google Scholar] [CrossRef]
- Hafez, E.M.; Omara, A.E.D.; Alhumaydhi, F.A.; El-Esawi, M.A. Minimizing hazard impacts of soil salinity and water stress on wheat plants by soil application of vermicompost and biochar. Physiol. Plant. 2021, 172, 587–602. [Google Scholar] [CrossRef]
- Khamidov, M.; Ishchanov, J.; Hamidov, A.; Donmez, C.; Djumaboev, K. Assessment of Soil Salinity Changes under the Climate Change in the Khorezm Region, Uzbekistan. Int. J. Environ. Res. Public Health 2022, 19, 8794. [Google Scholar] [CrossRef]
- Rengel, Z. Soil pH, Soil Health and Climate Change. In Soil Health and Climate Change; Singh, B., Cowie, A., Chan, K., Eds.; Soil Biology; Springer: Berlin/Heidelberg, Germany, 2011; Volume 29. [Google Scholar] [CrossRef]
- Hinsinger, P.; Plassard, C.; Tang, C.; Jaillard, B. Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: A review. Plant Soil 2003, 248, 43–59. [Google Scholar] [CrossRef]
- Nolte, C.G.; Dolwick, P.D.; Fann, N.; Horowitz, L.W.; Naik, V.; Pinder, R.W.; Spero, T.L.; Winner, D.A.; Ziska, L.H. Air Quality. In Impacts, Risks, and Adaptation in the United States: Fourth National Climate Assessment; U.S. Global Change Research Program: Washington, DC, USA, 2018; Volume II, p. 513. [Google Scholar]
- Nouchi, I. Responses of Whole Plants to Air Pollutants. In Air Pollution and Plant Biotechnology–Prospects for Phytomonitoring and Phytoremediation; Omasa, K., Saji, H., Youssefian, S., Kondo, N., Eds.; Springer: Tokyo, Japan, 2002; pp. 3–39. [Google Scholar]
- Paoletti, E.; Grulke, N.E. Ozone exposure and stomatal sluggishness in different plant physiognomic classes. Environ. Pollut. 2010, 158, 2664–2671. [Google Scholar] [CrossRef] [PubMed]
- Onandia, G.; Olsson, A.; Barth, S.; King, J.S.; Uddling, J. Exposure to moderate concentration of tropospheric ozone impairs tree stomatal response to carbon dioxide. Environ. Pollut. 2011, 159, 2350–2354. [Google Scholar] [CrossRef] [PubMed]
- Tao, F.; Feng, Z.; Tang, H.; Chen, Y.; Kobayashi, K. Effects of climate change, CO2 and O3 on wheat productivity in Eastern China, singly and in combination. Atmos. Environ. 2017, 157, 182–193. [Google Scholar] [CrossRef] [Green Version]
- Tai, A.P.K.; Sadiq, M.; Pang, J.Y.S.; Yung, D.H.Y.; Feng, Z. Impacts of Surface Ozone Pollution on Global Crop Yields: Comparing Different Ozone Exposure Metrics and Incorporating Co-effects of CO2. Front. Sustain. Food Syst. 2021, 5, 534616. [Google Scholar] [CrossRef]
- Skendžić, S.; Zovko, M.; Živković, I.P.; Lešić, V.; Lemić, D. The impact of climate change on agricultural insect pests. Insects 2021, 12, 440. [Google Scholar] [CrossRef]
- Wang, F.; Gao, J.; Yong, J.W.H.; Wang, Q.; Ma, J.; He, X. Higher Atmospheric CO2 Levels Favor C3 Plants Over C4 Plants in Utilizing Ammonium as a Nitrogen Source. Front. Plant Sci. 2020, 11, 537443. [Google Scholar] [CrossRef]
- Tubiello, F.; Rosenzweig, C.; Goldberg, R.; Jagtap, S.; Jones, J. Effects of climate change on US crop production: Simulation results using two different GCM scenarios. Part I: Wheat, potato, maize, and citrus. Clim. Res. 2002, 20, 259–270. [Google Scholar] [CrossRef] [Green Version]
- del Pozo, A.; Brunel-Saldias, N.; Engler, A.; Ortega-Farias, S.; Acevedo-Opazo, C.; Lobos, G.A.; Jara-Rojas, R.; Molina-Montenegro, M.A. Climate Change Impacts and Adaptation Strategies of Agriculture in Mediterranean-Climate Regions (MCRs). Sustainability 2019, 11, 2769. [Google Scholar] [CrossRef] [Green Version]
- Peigné, J.; Ball, B.C.; Roger-Estrade, J.; David, C. Is conservation tillage suitable for organic farming? A review. Soil Use Manag. 2007, 23, 129–144. [Google Scholar] [CrossRef]
- Chilundo, M.; Joel, A.; Wesstrom, I.; Brito, R.; Messing, I. Influence of irrigation and fertilisation management on the seasonal distribution of water and nitrogen in a semi-arid loamy sandy soil. Agr. Water Manag. 2018, 199, 120–137. [Google Scholar] [CrossRef]
- Kettering, J.; Ruidisch, M.; Gaviria, C.; Ok, Y.S.; Kuzyakov, Y. Fate of fertilizer 15N in intensive ridge cultivation with plastic mulching under a monsoon climate. Nutr. Cycl. Agroecosyst. 2013, 95, 57–72. [Google Scholar] [CrossRef]
- Li, K. Effects of controlled release fertilizer on loss of nitrogen and phosphorus from farmland. J. Anhui Agr. Sci. 2012, 40, 12466–12470. [Google Scholar]
- Bulc, T.G.; Klemencic, A.K.; Razinger, J. Vegetated ditches for treatment of surface water with highly fluctuating water regime. Water Sci. Technol. 2011, 63, 2353. [Google Scholar] [CrossRef]
- Wu, M.; Tang, X.; Li, Q.; Yang, W.; Feng, J.; Tang, M.; Scholz, M. Review of ecological engineering solutions for rural non-point source water pollution control in hubei province, china. Water Air Soil Poll. 2013, 224, 1561. [Google Scholar] [CrossRef]
- Moeder, M.; Carranzadiaz, O.; Lópezangulo, G.; Vegaaviña, R.; Chávezdurán, F.A.; Jomaa, S.; Winkler, U.; Schrader, S.; Reemtsma, T.; Delgadovargas, F. Potential of vegetated ditches to manage organic pollutants derived from agricultural run-off and domestic sewage: A case study in Sinaloa (Mexico). Sci. Total Environ. 2017, 598, 1106–1115. [Google Scholar] [CrossRef]
- Díaz, F.J.; Geen, A.T.; Dahlgren, R.A. Agricultural pollutant removal by constructed wetlands: Implications for water management and design. Agr. Water Manag. 2012, 104, 171–183. [Google Scholar] [CrossRef]
- Xia, Y.; Zhang, M.; Tsang, D.C.W.; Geng, N.; Lu, D.; Zhu, L.; Igalavithana, A.D.; Dissanayake, P.D.; Rinklebe, J.; Yang, X.; et al. Recent advances in control technologies for non-point source pollution with nitrogen and phosphorous from agricultural run-off: Current practices and future prospects. Appl. Biol. Chem. 2020, 63, 8. [Google Scholar] [CrossRef]
- Oenema, O.; Kros, H.; de Vries, W. Approaches and Uncertainties in Nutrient Budgets: Implications for Nutrient Management and Environmental Policies. Eur. J. Agron. 2003, 20, 3–16. [Google Scholar] [CrossRef]
- Stevens, C.J.; Quinton, J.N. Diffuse Pollution Swapping in Arable Agricultural Systems. Crit. Rev. Environ. Sci. Technol. 2009, 39, 478–520. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, A.; Mack, G.; Mann, S.; Six, J. Reduction of nitrogen pollution in agriculture through nitrogen surplus quotas: An analysis of individual marginal abatement cost and different quota allocation schemes using an agent-based model. J. Environ. Plan. Manag. 2021, 64, 1375–1391. [Google Scholar] [CrossRef]
- World Bank. Climate-Smart Agriculture: Increased Productivity and Food Security, Enhanced Resilience and Reduced Carbon Emissions for Sustainable Development-Opportunities and Challenges for a Converging Agenda: Country Examples; World Bank: Washington, DC, USA, 2011. [Google Scholar]
- OCDE. Enhancing Climate Change Mitigation through Agriculture. In Potential for Mitigation Policies in Agriculture: Summary Insights; OECD Publishing: Paris, France, 2019. [Google Scholar] [CrossRef]
- Saraiva, R.; Ferreira, Q.; Rodrigues, G.C.; Oliveira, M. Phosphorous Nanofertilizers for Precise Application in Rice Cultivation as an Adaptation to Climate Change. Climate 2022, 10, 183. [Google Scholar] [CrossRef]
- Ahmed, J.; Almeida, E.; Aminetzah, D.; Denis, N.; Henderson, K.; Katz, J.; Kitchel, H.; Mannion, P. Agriculture and Climate Change, Reducing Emissions through Improved Farming Practices; McKinsey & Company: New York, NY, USA, 2020. [Google Scholar]
- EPA. Ecosystem Effects of Ozone Pollution. Available online: https://www.epa.gov/ground-level-ozone-pollution/ecosystem-effects-ozone-pollution (accessed on 18 March 2022).
- IPPC Secretariat. Scientific Review of the Impact of Climate Change on Plant Pests—A Global Challenge to Prevent and Mitigate Plant Pest Risks in Agriculture, Forestry and Ecosystems. Rome. FAO on Behalf of the IPPC Secretariat. 2021. Available online: https://www.fao.org/3/cb4769en/online/src/html/recent-technological-developments.html (accessed on 23 February 2023).
- Das, C.K.; Srivastava, G.; Dubey, A.; Roy, M.; Jain, S.; Sethy, N.K.; Saxena, M.; Harke, S.; Sarkar, S.; Misra, K.; et al. Nano-iron pyrite seed dressing: A sustainable intervention to reduce fertilizer consumption in vegetable (beetroot, carrot), spice (fenugreek), fodder (alfalfa), and oilseed (mustard, sesamum) crops. Nanotechnol. Environ. Eng. 2016, 1, 2. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Aziz, H.M.M.; Hasaneen, M.N.A.; Omer, A.M. Nano chitosan-NPK fertilizer enhances the growth and productivity of wheat plants grown in sandy soil. Span. J. Agric. Res. 2016, 14, e0902. [Google Scholar] [CrossRef]
- Heinisch, M.; Jácome, J.; Miricescu, D. Current Experience with Application of Metal based Nanofertilizers. MATEC Web Conf. 2019, 290, 3006. [Google Scholar] [CrossRef]
- Wahid, I.; Kumari, S.; Ahmad, R.; Hussain, S.J.; Alamri, S.; Siddiqui, M.H.; Khan, M.I.R. Silver Nanoparticle Regulates Salt Tolerance in Wheat Through Changes in ABA Concentration, Ion Homeostasis, and Defense Systems. Biomolecules 2020, 10, 1506. [Google Scholar] [CrossRef]
- Yang, M.; Dong, C.; Shi, Y. Nano fertilizer synergist effects on nitrogen utilization and related gene expression in wheat. BMC Plant Biol. 2023, 23, 26. [Google Scholar] [CrossRef]
- Yusefi-Tanha, E.; Fallah, S.; Pokhrel, L.R.; Rostamnejadi, A. Addressing global food insecurity: Soil-applied zinc oxide nanoparticles promote yield attributes and seed nutrient quality in Glycine max L. Sci. Total Environ. 2023, 876, 162762, Epub ahead of print. [Google Scholar] [CrossRef]
- Liu, M.; Liang, R.; Zhan, F.; Liu, Z.; Niu, A. Synthesis of a slow-release and superabsorbent nitrogen fertilizer and its properties. Polym. Adv. Technol. 2006, 17, 430–438. [Google Scholar] [CrossRef]
- He, X.; Deng, H.; Hwang, H.-m. The current application of nanotechnology in food and agriculture. J. Food Drug Anal. 2019, 27, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Lin, D.; Xing, B. Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth. Environ. Pollut. 2007, 150, 243–250. [Google Scholar] [CrossRef]
- Hossain, K.-Z.; Monreal, C.M.; Sayari, A. Adsorption of urease on PE-MCM-41 and its catalytic effect on hydrolysis of urea. Colloids Surf. B 2008, 62, 42–50. [Google Scholar] [CrossRef]
- Hussein, M.Z.; Mohamad Jaafar, A.; Yahaya, A.H.; Zainal, Z. Inorganic-based phytohormone delivery vector of 2-chloroethylphosphonate nanohybrid: A new stimulating compound with controlled release property to increase latex production. J. Exp. Nanosci. 2010, 5, 310–318. [Google Scholar] [CrossRef]
- Sastry, R.K.; Rashmi, H.B.; Rao, N.H.; Ilyas, S.M. Integrating nanotechnology into agri-food systems research in India: A conceptual framework. Technol. Forecast. Soc. Chang. 2010, 77, 639–648. [Google Scholar] [CrossRef]
- Monreal, C.M.; Derosa, M.; Mallubhotla, S.C.; Bindraban, P.S.; Dimkpa, C. Nanotechnologies for increasing the crop use efficiency of fertilizer-micronutrients. Biol. Fertil. Soils 2016, 52, 423–437. [Google Scholar] [CrossRef]
- Bindraban, P.S.; Dimkpa, C.O.; Pandey, R. Exploring phosphorus fertilizers and fertilization strategies for improved human and environmental health. Biol. Fertil. Soils 2020, 56, 299–317. [Google Scholar] [CrossRef] [Green Version]
- Siddiqui, M.H.; Al-Whaibi, M.H. Role of nano-SiO2 in germination of tomato (Lycopersicum esculentum seeds Mill.). Saudi J. Biol. Sci. 2014, 21, 13–17. [Google Scholar] [CrossRef] [Green Version]
- Tarafder, C.; Daizy, M.; Alam, M.; Ali, R.; Islam, J.; Islam, R.; Ahommed, S.; Aly, M.; Khan, Z.H. Formulation of a Hybrid Nanofertilizer for Slow and Sustainable Release of Micronutrients. ACS Omega 2020, 5, 23960–23966. [Google Scholar] [CrossRef]
- Salama, D.M.; Abd El-Aziz, M.E.; Shaaban, E.A.; Osman, S.A.; El-Wahed, M.S.A. The impact of nanofertilizer on agro-morphological criteria, yield, and genomic stability of common bean (Phaseolus vulgaris L.). Sci. Rep. 2022, 12, 18552. [Google Scholar] [CrossRef]
- Ashour, H.A.; Mahmoud, A.W.M. Response of Jatropha integerrima plants irrigated with different levels of saline water to nano silicon and gypsum. J. Agric. Stud. 2017, 5, 136–160. [Google Scholar]
- Djanaguiraman, M.; Belliraj, N.; Bossmann, S.H.; Prasad, P.V.V. High-Temperature Stress Alleviation by Selenium Nanoparticle Treatment in Grain Sorghum. ACS Omega 2018, 3, 2479–2491. [Google Scholar] [CrossRef] [Green Version]
- Khodakovskaya, M.V.; de Silva, K.; Biris, A.S.; Dervishi, E.; Villagarcia, H. Carbon nanotubes induce growth enhancement of tobacco cells. ACS Nano 2012, 27, 2128–2135. [Google Scholar] [CrossRef]
- Siddiqui, M.H.; Al-Whaibi, M.H.; Firoz, M.; Al-Khaishany, M.Y. Role of Nanoparticles in Plants. In Nanotechnology and Plant Sciences; Siddiqui, M.H., Al-Whaibi, M.H., Firoz, M., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 19–35. [Google Scholar]
- Solanki, P.; Bhargava, A.; Chhipa, H.; Jain, N.; Panwar, J. Nano-Fertilizers and Their Smart Delivery System. In Nanotechnologies in Food and Agriculture; Rai, M., Ribeiro, C., Mattoso, L., Duran, N., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 81–101. [Google Scholar]
- Abobatta, W.F. Nanotechnology application in agriculture. Acta Scient. Agric. 2018, 2, 99–102. [Google Scholar]
- Mohanraj, J.; Lakshmanan, A.; Subramanian, K.S. Nano-Zeolite Amendment to Minimize Greenhouse Gas Emission in Rice Soil. J. Environ. Nanotechnol. 2017, 6, 73–76. [Google Scholar] [CrossRef]
- Babu, S.; Singh, R.; Yadav, D.; Rathore, S.S.; Raj, R.; Avasthe, R.; Yadav, S.K.; Das, A.; Yadav, V.; Yadav, B.; et al. Nanofertilizers for agricultural and environmental sustainability. Chemosphere 2022, 292, 133451. [Google Scholar] [CrossRef]
- Zulfiqar, F.; Navarro, M.; Ashraf, M.; Akram, N.A.; Munné-Bosch, S. Nanofertilizer use for sustainable agriculture: Advantages and limitations. Plant Sci. 2019, 289, 110270. [Google Scholar] [CrossRef]
- Bleeker, E.A.J.; Swart, E.; Braakhuis, H.; Cruz, M.L.F.; Friedrichs, S.; Gosens, I.; Herzberg, F.; Jensen, K.A.; von der Kammer, F.; Kettelarij, J.A.B.; et al. Towards harmonisation of testing of nanomaterials for EU regulatory requirements on chemical safety—A proposal for further actions. Regul. Toxicol. Pharmacol. 2023, 139, 105360. [Google Scholar] [CrossRef]
Problem | Cause | Effect | References |
---|---|---|---|
N2O | Agricultural practices: fertilizer use | Increase GHG emission—global warming and imbalances in N cycle | [28,29,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50] |
CO2 | Agricultural practices: fertilizer use; energy required (direct and indirect); land use alterations | Increase GHG emission—global warming | [26,32,52,53,54,55,56,57,59,60] |
CH4 | Agricultural practices: fertilizer use and manure management | Increase GHG emission—global warming and higher O3 surface concentration | [1,28,32,35,40,61] |
Run-off (N; P; others) | Agricultural practices: fertilizer | Eutrophication, reduction in water quality, and imbalance of N and P cycles | [54,59,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76] |
Problem | Cause | Effect | References |
---|---|---|---|
Temperature and rainfall patterns | GHG—Global warming | Disruption of natural cycles such as crop phenological phases; nutrient imbalances; pests and diseases; and reduction in crop yield and quality | [1,11,77,78,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110] |
Extreme climatic events | GHG—Global warming | Increased water requirements; soil erosion; nutrient imbalances; alteration in soil properties and loss of farmland; and reduction in crop yield and quality | [11,77,107,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125] |
Excess GHG | GHG | Nutrient imbalances; N cycle imbalance; soil acidification; O3/CO2 imbalances in plants affecting photosynthesis; and reduction in crop yield | [4,11,54,64,90,91,125,126,127,128,129,130,131,132,134,135] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saraiva, R.; Ferreira, Q.; Rodrigues, G.C.; Oliveira, M. Nanofertilizer Use for Adaptation and Mitigation of the Agriculture/Climate Change Dichotomy Effects. Climate 2023, 11, 129. https://doi.org/10.3390/cli11060129
Saraiva R, Ferreira Q, Rodrigues GC, Oliveira M. Nanofertilizer Use for Adaptation and Mitigation of the Agriculture/Climate Change Dichotomy Effects. Climate. 2023; 11(6):129. https://doi.org/10.3390/cli11060129
Chicago/Turabian StyleSaraiva, Raquel, Quirina Ferreira, Gonçalo C. Rodrigues, and Margarida Oliveira. 2023. "Nanofertilizer Use for Adaptation and Mitigation of the Agriculture/Climate Change Dichotomy Effects" Climate 11, no. 6: 129. https://doi.org/10.3390/cli11060129
APA StyleSaraiva, R., Ferreira, Q., Rodrigues, G. C., & Oliveira, M. (2023). Nanofertilizer Use for Adaptation and Mitigation of the Agriculture/Climate Change Dichotomy Effects. Climate, 11(6), 129. https://doi.org/10.3390/cli11060129