Meteorological Drought Characterization in the Calabria Region (Southern Italy)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data
2.2. Standardized Precipitation Index (SPI)
- (i)
- The simplicity of evaluating the SPI due to its reliance solely on rainfall data;
- (ii)
- The standardized nature of the SPI as an index, which ensures consistency in the frequency of extreme events across different locations and timescales;
- (iii)
- The SPI allows for variable timescales, facilitating the analysis of drought dynamics.
- (i)
- The assumption that an appropriate theoretical probability distribution can be identified to model the raw precipitation data, as different distributions can yield different outcomes;
- (ii)
- The length of the precipitation record significantly impacts SPI values. Varying record lengths may yield different results;
- (iii)
- Misleadingly large positive or negative SPI values may arise when running the index at short timescales (1, 2, or 3 months) in regions with low seasonal precipitation.
#ID | Name | Elevation | Percentage | #ID | Name | Elevation | Percentage |
---|---|---|---|---|---|---|---|
900 | Albidona | 810 | 85.4 | 2040 | Monasterace–Punta Stilo | 70 | 93.4 |
930 | Villapiana Scalo | 5 | 96.0 | 2090 | Fabrizia | 948 | 90.8 |
970 | Cassano allo Ionio | 251 | 98.6 | 2150 | Fabrizia—Cassari | 970 | 98.6 |
1000 | Domanico | 736 | 94.9 | 2160 | Gioiosa Ionica | 125 | 99.3 |
1010 | Cosenza | 242 | 97.0 | 2200 | Antonimina | 310 | 83.2 |
1030 | San Pietro in Guarano | 660 | 99.0 | 2210 | Ardore Superiore | 250 | 93.6 |
1060 | Montalto Uffugo | 468 | 86.5 | 2230 | Plati’ | 300 | 96.9 |
1100 | Cecita | 1180 | 94.3 | 2260 | San Luca | 250 | 95.1 |
1120 | Acri | 790 | 95.1 | 2270 | Sant’Agata del Bianco | 380 | 97.3 |
1130 | Torano Scalo | 97 | 97.1 | 2290 | Staiti | 550 | 97.0 |
1140 | Tarsia | 203 | 87.3 | 2310 | Capo Spartivento | 48 | 96.0 |
1180 | Castrovillari | 353 | 96.3 | 2380 | Montebello Ionico | 470 | 96.8 |
1230 | San Sosti | 404 | 98.1 | 2450 | Reggio Calabria | 15 | 91.6 |
1360 | Longobucco | 770 | 95.8 | 2510 | Scilla | 73 | 98.5 |
1380 | Cropalati | 367 | 96.9 | 2560 | Sinopoli | 502 | 97.4 |
1410 | Cariati Marina | 10 | 97.7 | 2600 | Cittanova | 407 | 97.5 |
1500 | Nocelle–Arvo | 1315 | 96.5 | 2610 | Rizziconi | 114 | 94.3 |
1570 | Savelli | 964 | 83.2 | 2670 | Arena | 450 | 99.4 |
1580 | Cerenzia | 663 | 91.0 | 2690 | Feroleto della Chiesa | 160 | 95.5 |
1680 | Crotone | 5 | 96.2 | 2730 | Mileto | 368 | 95.0 |
1700 | Isola di Capo Rizzuto–Campolongo | 90 | 89.0 | 2740 | Rosarno | 61 | 96.1 |
1740 | San Mauro Marchesato | 288 | 73.5 | 2760 | Joppolo | 185 | 99.0 |
1760 | Botricello | 18 | 96.7 | 2800 | Vibo Valentia | 498 | 92.1 |
1780 | Cropani | 347 | 99.2 | 2830 | Filadelfia | 550 | 98.9 |
1820 | Soveria Simeri | 366 | 80.0 | 2890 | Tiriolo | 690 | 98.7 |
1830 | Albi | 710 | 95.2 | 2990 | Parenti | 830 | 90.1 |
1850 | Catanzaro | 334 | 99.2 | 3000 | Rogliano | 650 | 97.0 |
1940 | Palermiti | 480 | 98.4 | 3040 | Amantea | 54 | 93.7 |
1960 | Chiaravalle Centrale | 714 | 96.2 | 3060 | Paola | 160 | 97.3 |
1970 | Soverato Marina | 29 | 88.1 | 3100 | Belvedere Marittimo | 10 | 79.1 |
1980 | Serra San Bruno | 790 | 96.1 | 3160 | Campotenese | 965 | 98.2 |
900 | Albidona | 810 | 85.4 | 2040 | Monasterace–Punta Stilo | 70 | 93.4 |
2.3. Trend Analysis
2.4. Correlation between the SPI and NAO
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dracup, J.A.; Lee, K.S.; Paulson, E.G., Jr. On the definition of droughts. Water Resour. Res. 1980, 16, 297–302. [Google Scholar] [CrossRef]
- Wilhite, D.A. Drought as a Natural Hazard: Concepts and Definitions. In Drought: A Global Assessment; Routledge: London, UK, 2000. [Google Scholar]
- Van Loon, A.F. Hydrological drought explained. WIREs Water 2015, 2, 359–392. [Google Scholar] [CrossRef]
- Wilhite, D.A.; Glantz, M.H. Understanding: The drought phenomenon: The role of definitions. Water Int. 1985, 10, 111–120. [Google Scholar] [CrossRef]
- Mishra, A.K.; Singh, V.P. A review of drought concepts. J. Hydrol. 2010, 391, 202–216. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, W.; Singh, V.P.; Liu, Y. Combined use of meteorological drought indices at multi-time scales for improving hydrological drought detection. Sci. Total Environ. 2016, 571, 1058–1068. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Huang, S.; Huang, Q.; Wang, H.; Leng, G.; Xie, Y. Assessing socio-economic drought evolution characteristics and their possible meteorological driving force Assessing socio-economic drought evolution characteristics and their possible meteorological driving force. Geomat. Nat. Hazards Risk 2019, 10, 1084–1101. [Google Scholar] [CrossRef]
- Zseleczky, L.; Yosef, S. Are Shocks Really Increasing? A Selective Review of the Global Frequency, Severity, Scope, and Impact of Five Types of Shocks. In Proceedings of the 2020 Conference Papers 5; International Food Policy Research Institute (IFPRI): Washington, DC, USA, 2014. [Google Scholar]
- Wilhite, D.A. Drought and Water Crises: Science, Technology, and Management Issues; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Wilhite, D.; Pulwarty, R.S. Drought and Water Crises: Integrating Science, Management, and Policy; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- World Meteorological Organization (WMO); Global Water Partnership (GWP). Handbook of Drought Indicators and Indices; Svoboda, M., Fuchs, B.A., Eds.; Integrated Drought Management Programme (IDMP): Geneva, Switzerland, 2016. [Google Scholar]
- Gibbs, W.J.; Maher, J.V. Rainfall Deciles as Drought Indicators; Bureau of Meteorology Bulletin No. 48; Bureau of Meteorology: Melbourne, Australia, 1967.
- Byun, H.R.; Wilhite, D.A. Objective Quantification of Drought Severity and Duration. J. Clim. 1999, 12, 2747–2756. [Google Scholar] [CrossRef]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The Relationship of Drought Frequency and Duration to Time Scales. In Proceedings of the Eighth Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; pp. 179–184. [Google Scholar]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef]
- Achite, M.; Simsek, O.; Adarsh, S.; Hartani, T.; Caloiero, T. Assessment and monitoring of meteorological and hydrological drought in semiarid regions: The Wadi Ouahrane basin case study (Algeria). Phys. Chem. Earth 2023, 130, 103386. [Google Scholar] [CrossRef]
- Balacco, G.; Alfio, M.R.; Fidelibus, M.D. Groundwater Drought Analysis under Data Scarcity: The Case of the Salento Aquifer (Italy). Sustainability 2022, 14, 707. [Google Scholar] [CrossRef]
- Caloiero, T.; Veltri, S.; Caloiero, P.; Frustaci, F. Drought Analysis in Europe and in the Mediterranean Basin Using the Standardized Precipitation Index. Water 2018, 10, 1043. [Google Scholar] [CrossRef]
- Spinoni, J.; Naumann, G.; Vogt, J.V.; Barbosa, P. The biggest drought events in Europe from 1950 to 2012. J. Hydrol. Reg. Stud. 2015, 3, 509–524. [Google Scholar] [CrossRef]
- Magno, R.; Pasqui, M.; Di Giuseppe, E. Analysis of changes in drought occurrence over the Mediterranean Basin using multiple time scales SPI index. In Proceedings of the 16th EMS Annual Meeting & 11th European Conference on Applied Climatology (ECAC), Trieste, Italy, 12–16 September 2016. [Google Scholar]
- Caloiero, T.; Caroletti, G.N.; Coscarelli, R. IMERG-Based Meteorological Drought Analysis over Italy. Climate 2021, 9, 65. [Google Scholar] [CrossRef]
- Buttafuoco, G.; Caloiero, T. Drought events at different timescales in southern Italy (Calabria). J. Maps 2014, 10, 529–537. [Google Scholar] [CrossRef]
- Köppen, W. Das Geographische System der Klimate; Handbuch der, Klimatologie; Köppen, W., Geiger, R., Eds.; Verlag von Gebrüder Borntraeger: Berlin, Germany, 1936; Volume 1, pp. 1–44. [Google Scholar]
- Buttafuoco, G.; Caloiero, T.; Ricca, N.; Guagliardi, I. Assessment of drought and its uncertainty in a southern Italy area (Calabria region). Measurement 2018, 113, 205–210. [Google Scholar] [CrossRef]
- Hayes, M.J.; Svoboda, M.D.; Wilhite, D.A.; Vanyarkho, O.V. Monitoring the 1996 drought using the standardized precipitation index. Bull. Am. Meteorol. Soc. 1999, 80, 429–438. [Google Scholar] [CrossRef]
- Thom, H.C.S. A note on the gamma distribution. Mon. Weather Rev. 1958, 86, 117–122. [Google Scholar] [CrossRef]
- Totaro, V.; Gioia, A.; Iacobellis, V. Numerical investigation on the power of parametric and nonparametric tests for trend detection in annual maximum series. Hydrol. Earth Syst. Sci. 2020, 24, 473–488. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric Tests Against Trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G.; Stuart, A. The Advanced Theory of Statistics; Macmillan: New York, NY, USA, 1977. [Google Scholar]
- Caroletti, G.N.; Coscarelli, R.; Caloiero, T. A sub-regional approach to the influence analysis of teleconnection patterns on precipitation in Calabria (Southern Italy). Int. J. Clim. 2021, 41, 4574–4586. [Google Scholar] [CrossRef]
- Caloiero, T. Drought analysis in New Zealand using the standardized precipitation index. Environ. Earth Sci. 2017, 76, 569. [Google Scholar] [CrossRef]
- Hoerling, M.; Eischeid, J.; Perlwitz, J.; Quan, X.; Zhang, T.; Pegion, P. On the increased frequency of Mediterranean drought. J. Clim. 2012, 25, 2146–2161. [Google Scholar] [CrossRef]
- Mathbout, S.; Lopez-Bustins, J.A.; Royé, D.; Martin-Vide, J. Mediterranean-Scale Drought: Regional Datasets for Exceptional Meteorological Drought Events during 1975–2019. Atmosphere 2021, 12, 941. [Google Scholar] [CrossRef]
- Buttafuoco, G.; Caloiero, T.; Coscarelli, R. Analyses of drought events in Calabria (Southern Italy) using standardized precipitation index. Water Resour. Manag. 2015, 29, 557–573. [Google Scholar] [CrossRef]
- Caloiero, T.; Veltri, S. Drought Assessment in the Sardinia Region (Italy) During 1922–2011 Using the Standardized Precipitation Index. Pure Appl. Geophys. 2019, 176, 925–935. [Google Scholar] [CrossRef]
- Lloyd-Huhes, B.; Saunders, M.A. A drought climatology for Europe. Int. J. Climatol. 2002, 22, 1571–1592. [Google Scholar] [CrossRef]
- Caloiero, T.; Coscarelli, R.; Ferrari, E.; Mancini, M. Precipitation change in Southern Italy linked to global scale oscillation indexes. Nat. Hazards Earth Syst. Sci. 2011, 11, 1683–1694. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; López-Moreno, J.I.; Lorenzo-Lacruz, J.; El Kenawy, A.; Azorin-Molina, C.; Morán-Tejeda, E.; Pasho, E.; Zabalza, J.; Begueria, S.; Angulo-Martinez, M. The NAO impact on droughts in the Mediterranean region. In HydroLogical, Socioeconomic and Ecological Impacts of the North Atlantic Oscillation in the Mediterranean Region Advances in Global Change Research; Springer: Dordrecht, The Netherlands, 2011. [Google Scholar]
- Kelley, C.; Ting, M.; Seager, R.; Kushnir, Y. Mediterranean precipitation climatology, seasonal cycle, and trend as simulated by CMIP5. Geophys. Res. Lett. 2012, 39, L21703. [Google Scholar] [CrossRef]
- Abdelkader, M.; Yerdelen, C. Hydrological Drought Variability and Its Teleconnections with Climate Indices. J. Hydrol. 2022, 605, 127290. [Google Scholar] [CrossRef]
- Yang, R.; Xing, B. Teleconnections of Large-Scale Climate Patterns to Regional Drought in Mid-Latitudes: A Case Study in Xinjiang, China. Atmosphere 2022, 13, 230. [Google Scholar] [CrossRef]
- Zhao, C.; Huang, Y.; Li, Z.; Chen, M. Drought monitoring of Southwestern China using insufficient GRACE data for the long-term mean reference frame under global change. J. Clim. 2018, 31, 6897–6911. [Google Scholar] [CrossRef]
- Sattari, M.T.; Falsafian, K.; Irvem, A.; Qasem, S.N. Potential of kernel and tree-based machine-learning models for estimating missing data of rainfall. Eng. Appl. Comput. Fluid Mech. 2020, 14, 1078–1094. [Google Scholar] [CrossRef]
- Wang, G.C.; Zhang, Q.; Band, S.S.; Dehghani, M.; Chau, K.W.; Tho, Q.T.; Zhu, S.; Samadianfard, S.; Mosavi, A. Monthly and Seasonal Hydrological Drought Forecasting Using Multiple Extreme Learning Machine Models. Eng. Appl. Comput. Fluid Mech. 2022, 16, 1364–1381. [Google Scholar] [CrossRef]
SPI Value | Class | Probability (%) |
---|---|---|
SPI ≥ 2.00 | Extremely wet | 2.3 |
1.50 ≤ SPI < 2.00 | Severely wet | 4.4 |
1.00 ≤ SPI < 1.50 | Moderately wet | 9.2 |
0.00 ≤ SPI < 1.00 | Mildly wet | 34.1 |
−1.00 ≤ SPI < 0.00 | Mild drought | 34.1 |
−1.50 ≤ SPI < −1.00 | Moderate drought | 9.2 |
−2.00 ≤ SPI < −1.50 | Severe drought | 4.4 |
SPI < −2.00 | Extreme drought | 2.3 |
Winter | Spring | Summer | Autumn | Dry Period | Wet Period | 12-Month | 24-Month | |
---|---|---|---|---|---|---|---|---|
Negative Correlation | 56.5 | 0.0 | 0.0 | 12.9 | 30.6 | 50.0 | 3.2 | 0.0 |
Positive Correlation | 1.6 | 16.1 | 17.7 | 0.0 | 0.0 | 0.0 | 1.6 | 6.5 |
No Correlation | 41.9 | 83.9 | 82.3 | 87.1 | 69.4 | 50.0 | 95.2 | 93.5 |
Winter | Spring | Summer | Autumn | Dry Period | Wet Period | 12-Month | 24-Month | |
---|---|---|---|---|---|---|---|---|
Negative Correlation | 4.8 | 0.0 | 30.2 | 3.2 | 0.0 | 1.6 | 1.6 | 1.6 |
Positive Correlation | 0.0 | 4.8 | 0.0 | 1.6 | 20.6 | 0.0 | 0.0 | 11.1 |
No Correlation | 95.2 | 95.2 | 69.8 | 95.2 | 79.4 | 98.4 | 98.4 | 87.3 |
Winter | Spring | Summer | Autumn | Dry Period | Wet Period | 12-Month | 24-Month | |
---|---|---|---|---|---|---|---|---|
Negative Correlation | 73.0 | 0.0 | 27.0 | 1.6 | 1.6 | 57.1 | 36.5 | 1.6 |
Positive Correlation | 0.0 | 1.6 | 0.0 | 0.0 | 6.3 | 0.0 | 0.0 | 0.0 |
No Correlation | 27.0 | 98.4 | 73.0 | 98.4 | 92.1 | 42.9 | 63.5 | 98.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coscarelli, R.; Caloiero, T.; Filice, E.; Marsico, L.; Rotundo, R. Meteorological Drought Characterization in the Calabria Region (Southern Italy). Climate 2023, 11, 160. https://doi.org/10.3390/cli11080160
Coscarelli R, Caloiero T, Filice E, Marsico L, Rotundo R. Meteorological Drought Characterization in the Calabria Region (Southern Italy). Climate. 2023; 11(8):160. https://doi.org/10.3390/cli11080160
Chicago/Turabian StyleCoscarelli, Roberto, Tommaso Caloiero, Eugenio Filice, Loredana Marsico, and Roberta Rotundo. 2023. "Meteorological Drought Characterization in the Calabria Region (Southern Italy)" Climate 11, no. 8: 160. https://doi.org/10.3390/cli11080160
APA StyleCoscarelli, R., Caloiero, T., Filice, E., Marsico, L., & Rotundo, R. (2023). Meteorological Drought Characterization in the Calabria Region (Southern Italy). Climate, 11(8), 160. https://doi.org/10.3390/cli11080160