Global and Regional Snow Cover Decline: 2000–2022
Abstract
:1. Introduction
2. Materials and Methods
2.1. MOD10C2 Data Set
2.2. Mann—Kendall Test
2.3. Univariate Differencing
3. Results
3.1. Results Overview
3.2. Global Analysis
3.3. Regional Analysis
3.3.1. Asia
3.3.2. North America
3.3.3. Europe
3.3.4. South America
3.3.5. Australia–New Zealand
3.3.6. Africa
4. Discussion
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Frei, A.; Tedesco, M.; Lee, S.; Foster, J.; Hall, D.K.; Kelly, R.; Robinson, D.A. A review of global satellite-derived snow products. Adv. Space Res. 2012, 50, 1007–1029. [Google Scholar] [CrossRef] [Green Version]
- Flanner, M.G.; Shell, K.M.; Barlage, M.; Perovich, D.K.; Tschudi, M.A. Radiative forcing and albedo feedback from the Northern Hemisphere cryosphere between 1979 and 2008. Nat. Geosci. 2011, 4, 151–155. [Google Scholar] [CrossRef]
- Serreze, M.C.; Francis, J.A. The Arctic amplification debate. Clim. Chang. 2006, 76, 241–264. [Google Scholar] [CrossRef] [Green Version]
- Peng, S.; Piao, S.; Ciais, P.; Friedlingstein, P.; Zhou, L.; Wang, T. Change in Snow Phenology and Its Potential Feedback to Temperature in the Northern Hemisphere over the Last Three Decades. Environ. Res. Lett. 2013, 8, 014008. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Peng, S.; Krinner, G.; Ryder, J.; Li, Y.; Dantec-Nédélec, S.; Ottlé, C. Impacts of Satellite-Based Snow Albedo Assimilation on Offline and Coupled Land Surface Model Simulations. PLoS ONE 2015, 10, e0137275. [Google Scholar] [CrossRef] [Green Version]
- Betts, R.A. Biogeophysical impacts of land use on present-day climate: Near-surface temperature change and radiative forcing. Atmos. Sci. Lett. 2001, 2, 39–51. [Google Scholar] [CrossRef]
- Myhre, G.; Kvalevåg, M.M.; Schaaf, C.B. Radiative forcing due to anthropogenic vegetation change based on MODIS surface albedo data. Geophys. Res. Lett. 2005, 32, L21410. [Google Scholar] [CrossRef] [Green Version]
- Thiebault, K.; Young, S. Snow cover change and its relationship with land surface temperature and vegetation in northeastern North America from 2000 to 2017. Int. J. Remote Sens. 2020, 41, 8453–8474. [Google Scholar] [CrossRef]
- Atlaskina, K.; Berninger, F.; De Leeuw, G. Satellite Observations of Changes in Snow-covered Land Surface Albedo during Spring in the Northern Hemisphere. Cryosphere Discuss. 2015, 9, 3. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Ma, M.; Wu, X.; Yang, H. Snow cover and vegetation-induced decrease in global albedo from 2002 to 2016. J. Geophys. Res. Atmos. 2018, 123, 124–138. [Google Scholar] [CrossRef] [Green Version]
- Musselman, K.N.; Addor, N.; Vano, J.A.; Molotch, N.P. Winter melt trends portend widespread declines in snow water resources. Nat. Clim. Chang. 2021, 11, 418–424. [Google Scholar] [CrossRef] [PubMed]
- Brown, R.; Derksen, C.; Wang, L. A multi-data set analysis of variability and change in Arctic spring snow cover extent, 1967–2008. J. Geophys. Res. Atmos. 2010, 115, D16. [Google Scholar] [CrossRef]
- Najafi, M.R.; Zwiers, F.W.; Gillett, N.P. Attribution of the spring snow cover extent decline in the Northern Hemisphere, Eurasia and North America to anthropogenic influence. Clim. Chang. 2016, 136, 571–586. [Google Scholar] [CrossRef] [Green Version]
- Brown, R.; Robinson, D. Northern Hemisphere spring snow cover variability and change over 1922–2010 including an assessment of uncertainty. Cryosphere 2011, 5, 219–229. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Liang, S.; Cao, Y. Satellite observed changes in the Northern Hemisphere snow cover phenology and the associated radiative forcing and feedback between 1982 and 2013. Environ. Res. Lett. 2016, 11, 084002. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, T.; Liu, Y.; Zhao, W.; Huang, X. Assessing snow phenology over the large part of eurasia using satellite observations from 2000 to 2016. Remote Sens. 2020, 12, 2060. [Google Scholar] [CrossRef]
- Young, S.S.; Young, J.S. Overall Warming with Reduced Seasonality: Temperature Change in New England, USA, 1900–2020. Climate 2021, 9, 176. [Google Scholar] [CrossRef]
- Wang, T.; Peng, S.; Ottlé, C.; Ciais, P. Spring snow cover deficit controlled by intraseasonal variability of the surface energy fluxes. Environ. Res. Lett. 2015, 10, 024018. [Google Scholar] [CrossRef] [Green Version]
- Kug, J.S.; Jeong, J.H.; Jang, Y.S.; Kim, B.M.; Folland, C.K.; Min, S.K.; Son, S.W. Two distinct influences of Arctic warming on cold winters over North America and East Asia. Nat. Geosci. 2015, 8, 759–762. [Google Scholar] [CrossRef]
- Roessler, S.; Dietz, A.J. Development of Global Snow Cover—Trends from 23 Years of Global SnowPack. Earth 2022, 4, 1–22. [Google Scholar] [CrossRef]
- Callaghan, T.V.; Johansson, M.; Brown, R.D.; Groisman, P.Y.; Labba, N.; Radionov, V.; Bradley, R.S.; Blangy, S.; Bulygina, O.N.; Christensen, T.R.; et al. Multiple Effects of Changes in Arctic Snow Cover. Ambio 2011, 40 (Suppl. S1), 32–45. [Google Scholar] [CrossRef] [Green Version]
- Shepherd, T.G. Effects of a warming Arctic. Science 2016, 353, 989–990. [Google Scholar] [CrossRef] [PubMed]
- Hall, D.K.; Riggs, G.A.; Salomonson, V.V.; DiGirolamo, N.E.; Bayr, K.J. MODIS Snow-cover Products. Remote Sens. Environ. 2002, 83, 181–194. [Google Scholar] [CrossRef] [Green Version]
- Hall, D.K.; Riggs, G.A. Accuracy Assessment of the MODIS Snow Products. Hydrol. Process. 2007, 21, 1534–1547. [Google Scholar] [CrossRef]
- Masson, T.; Dumont, M.; Mura, M.D.; Sirguey, P.; Gascoin, S.; Dedieu, J.P.; Chanussot, J. An assessment of existing methodologies to retrieve snow cover fraction from MODIS data. Remote Sens. 2018, 10, 619. [Google Scholar] [CrossRef] [Green Version]
- Riggs, G.A.; Hall, D.K.; Román, M.O. MODIS Snow Products User Guide for Collection; 2019. Available online: https://modis-snow-ice.gsfc.nasa.gov/?c=userguides (accessed on 28 July 2023).
- Simic, A.; Fernandes, R.; Brown, R.; Romanov, P.; Park, W. Validation of VEGETATION, MODIS, and GOES + SSM/I snow-cover products over Canada based on surface snow depth observations. Hydrol. Process. 2004, 18, 1089–1104. [Google Scholar] [CrossRef]
- Yang, J.; Jiang, L.; Ménard, C.B.; Luojus, K.; Lemmetyinen, J.; Pulliainen, J. Evaluation of snow products over the Tibetan Plateau. Hydrol. Process. 2015, 29, 3247–3260. [Google Scholar] [CrossRef]
- Gascoin, S.; Hagolle, O.; Huc, M.; Jarlan, L.; Dejoux, J.F.; Szczypta, C.; Marti, R.; Sánchez, R. A snow cover climatology for the Pyrenees from MODIS snow products. Hydrol. Earth Syst. Sci. 2015, 19, 2337–2351. [Google Scholar] [CrossRef] [Green Version]
- Hammond, J.C.; Saavedra, F.A.; Kampf, S.K. Global snow zone maps and trends in snow persistence 2001–2016. Int. J. Climatol. 2018, 38, 4369–4383. [Google Scholar] [CrossRef]
- Chen, X.; Yang, Y.; Ma, Y.; Li, H. Distribution and attribution of terrestrial snow cover phenology changes over the Northern Hemisphere during 2001–2020. Remote Sens. 2021, 13, 1843. [Google Scholar] [CrossRef]
- Bhardwaj, N.; Nikam, B.R.; Yadav, S.K.S.; Shukla, S.; Mohapatra, M.; Aggarwal, S.P.; Poddar, J. Snow Cover Mapping Over the Region of Hindu Kush Himalaya (HKH) for 2008–2018 Using Cloud Mitigated Moderate Resolution Spectroradiometer (MODIS) Snow Cover Data. In Sustainable Infrastructure Development: Select Proceedings of ICSIDIA 2020; Springer: Singapore, 2022; pp. 105–115. [Google Scholar]
- Aggarwal, S.P.; Thakur, P.K.; Nikam, B.R.; Garg, V. Integrated approach for snowmelt run-off estimation using temperature index model, remote sensing and GIS. Curr. Sci. 2014, 106, 397–407. [Google Scholar]
- Lei, X.; Song, K.S.; Wang, Z.M.; Zhong, G.X.; Liu, D.W.; Zhang, B. Accuracy Evaluation of MODIS and AMSR-E Snow Cover Products in the Heilongjiang Drainage Basin. J. Grad. Sch. Chin. Acad. Sci. 2011, 28, 43–50. [Google Scholar]
- Notarnicola, C. Hotspots of snow cover changes in global mountain regions over 2000–2018. Remote Sens. Environ. 2020, 243, 111781. [Google Scholar] [CrossRef]
- Notarnicola, C. Overall negative trends for snow cover extent and duration in global mountain regions over 1982–2020. Sci. Rep. 2022, 12, 13731. [Google Scholar] [CrossRef]
- Kunkel, K.E.; Robinson, D.A.; Champion, S.; Yin, X.; Estilow, T.; Frankson, R.M. Trends and extremes in Northern Hemisphere snow characteristics. Curr. Clim. Chang. Rep. 2016, 2, 65–73. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Huang, X.; Liang, H.; Sun, Y.; Feng, Q.; Liang, T. Tracking snow variations in the Northern Hemisphere using multi-source remote sensing data (2000–2015). Remote Sens. 2018, 10, 136. [Google Scholar] [CrossRef] [Green Version]
- Hori, M.; Sugiura, K.; Kobayashi, K.; Aoki, T.; Tanikawa, T.; Kuchiki, K.; Niwano, M.; Enomoto, H. A 38-year (1978–2015) Northern Hemisphere daily snow cover extent product derived using consistent objective criteria from satellite-borne optical sensors. Remote Sens. Environ. 2017, 191, 402–418. [Google Scholar] [CrossRef]
- Eythorsson, D.; Gardarsson, S.M.; Ahmad, S.K.; Hossain, F.; Nijssen, B. Arctic climate and snow cover trends–Comparing Global Circulation Models with remote sensing observations. Int. J. Appl. Earth Obs. Geoinf. 2019, 80, 71–81. [Google Scholar] [CrossRef]
- Hernández-Henríquez, M.A.; Déry, S.J.; Derksen, C. Polar amplification and elevation-dependence in trends of Northern Hemisphere snow cover extent, 1971–2014. Environ. Res. Lett. 2015, 10, 044010. [Google Scholar] [CrossRef]
- Brown, R.D.; Smith, C.; Derksen, C.; Mudryk, L. Canadian in situ snow cover trends for 1955–2017 including an assessment of the impact of automation. Atmos. Ocean 2021, 59, 77–92. [Google Scholar] [CrossRef]
- Wang, X.; Wu, C.; Wang, H.; Gonsamo, A.; Liu, Z. No evidence of widespread decline of snow cover on the Tibetan Plateau over 2000–2015. Sci. Rep. 2017, 7, 14645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, R.; Derksen, C.; Wang, L. Assessment of Spring Snow Cover Duration Variability over Northern Canada from Satellite Datasets. Remote Sens. Environ. 2007, 111, 367–381. [Google Scholar] [CrossRef]
- Shi, X.; Déry, S.J.; Groisman, P.Y.; Lettenmaier, D.P. Relationships between recent Pan-Arctic snow cover and hydroclimate trends. J. Clim. 2013, 26, 2048–2064. [Google Scholar] [CrossRef]
- Derksen, C.; Brown, R. Spring snow cover extent reductions in the 2008–2012 period exceeding climate model projections. Geophys Res Lett. 2012, 39, 19504. [Google Scholar] [CrossRef] [Green Version]
- Callaghan, T.V.; Johansson, M.; Brown, R.D.; Groisman, P.Y.; Labba, N.; Radionov, V.; Barry, R.G.; Bulygina, O.N.; Essery, R.L.; Frolov, D.M.; et al. The changing face of Arctic snow cover: A synthesis of observed and projected changes. Ambio 2011, 40, 17–31. [Google Scholar]
- Déry, S.J.; Brown, R.D. Recent Northern Hemisphere snow cover extent trends and implications for the snow-albedo feedback. Geophys. Res. Lett. 2007, 34, 22. [Google Scholar] [CrossRef]
- Jeyaseelan, A.T.; Roy, P.S.; Young, S.S. Persistent changes in NDVI between 1982 and 2003 over India using AVHRR GIMMS (Global Inventory Modeling and Mapping Studies) data. Int. J. Remote Sens. 2007, 28, 4927–4946. [Google Scholar] [CrossRef]
- Zhu, Z. Change detection using landsat time series: A review of frequencies, preprocessing, algorithms, and applications. ISPRS J. Photogramm. Remote Sens. 2017, 130, 370–384. [Google Scholar] [CrossRef]
- Arsenault, K.R.; Houser, P.R.; De Lannoy, G.J. Evaluation of the MODIS snow cover fraction product. Hydrol. Process. 2014, 28, 980–998. [Google Scholar] [CrossRef] [Green Version]
- Salminen, M.; Pulliainen, J.; Metsämäki, S.; Kontu, A.; Suokanerva, H. The behaviour of snow and snow-free surface reflectance in boreal forests: Implications to the performance of snow covered area monitoring. Remote Sens. Environ. 2009, 113, 907–918. [Google Scholar]
- Bormann, K.J.; Brown, R.D.; Derksen, C.; Painter, T.H. Estimating snow-cover trends from space. Nat. Clim. Chang. 2018, 8, 924–928. [Google Scholar] [CrossRef]
- Zarenistanak, M.; Dhorde, A.G.; Kripalani, R.H.; Dhorde, A.A. Trends and projections of temperature, precipitation, and snow cover during snow cover-observed period over southwestern Iran. Theor. Appl. Climatol. 2015, 122, 421–440. [Google Scholar] [CrossRef]
- Wang, T.; Peng, S.; Lin, X.; Chang, J. Declining snow cover may affect spring phenological trend on the Tibetan Plateau. Proc. Natl. Acad. Sci. USA 2013, 110, E2854–E2855. [Google Scholar] [CrossRef]
- Pu, Z.; Xu, L. MODIS/Terra observed snow cover over the Tibet Plateau: Distribution, variation and possible connection with the East Asian Summer Monsoon (EASM). Theor. Appl. Climatol. 2009, 97, 265–278. [Google Scholar] [CrossRef]
- Hall, D.K.; Vuyovich, C.; Riggs, G.; DiGirolamo, N.E. A Methodology to map Maximum Global Snow Cover during the MODIS Era. In AGU Fall Meeting Abstracts; AGU Fall Meeting: Chicago, IL, USA, 2022; Volume 2022, p. C42F-1081. [Google Scholar]
- Mann, H.B. Nonparametric tests against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods; Oxford University Press: New York, NY, USA, 1975. [Google Scholar]
- Gilbert, R.O. Statistical Methods for Environmental Pollution Monitoring; Van Nostrand Reinhold Company Inc.: New York, NY, USA, 1987. [Google Scholar]
- Helsel, D.R.; Hirsch, R.M. Statistical Methods in Water Resources; Elsevier: Amsterdam, The Netherlands, 1992; Volume 49. [Google Scholar]
- Subash, N.; Sikka, A.K.; Ram Mohan, H.S. An investigation into observational characteristics of rainfall and temperature in Central Northeast India—A historical perspective 1889–2008. Theor. Appl. Climatol. 2011, 103, 305–319. [Google Scholar] [CrossRef]
- Tabari, H.; Marofi, S.; Aeini, A.; Talaee, P.H.; Mohammadi, K. Trend analysis of reference evapotranspiration in the western half of Iran. Agric. For. Meteorol. 2011, 151, 128–136. [Google Scholar] [CrossRef]
- Da Silva, R.M.; Santos, C.A.; Moreira, M.; Corte-Real, J.; Silva, V.C.; Medeiros, I.C. Rainfall and river flow trends using Mann–Kendall and Sen’s slope estimator statistical tests in the Cobres River basin. Nat. Hazards 2015, 77, 1205–1221. [Google Scholar] [CrossRef]
- Szwed, M.; Pińskwar, I.; Kundzewicz, Z.W.; Graczyk, D.; Mezghani, A. Changes of snow cover in Poland. Acta Geophys. 2017, 65, 65–76. [Google Scholar] [CrossRef] [Green Version]
- World Bank. Surface Area—France Web Site. Available online: https://data.worldbank.org/indicator/AG.SRF.TOTL.K2?locations=FR (accessed on 30 May 2023).
- Singh, A. Review article digital change detection techniques using remotely-sensed data. Int. J. Remote Sens. 1989, 10, 989–1003. [Google Scholar] [CrossRef] [Green Version]
- Serafat, S. Land Surface Temperature Change between Coastal and Inlands Areas: A Case Study from the Persian Gulf. Northeast. Geogr. 2022, 13, 134. [Google Scholar]
- Connolly, J.; Holden, N.M.; Connolly, J.; Seaquist, J.W.; Ward, S.M. Detecting recent disturbance on Montane blanket bogs in the Wicklow Mountains, Ireland using the MODIS enhanced vegetation index. Int. J. Remote Sens. 2011, 32, 2377–2393. [Google Scholar] [CrossRef]
- Arguez, A.; Durre, I.; Applequist, S.; Vose, R.S.; Squires, M.F.; Yin, X.; Heim, R.R.; Owen, T.W. NOAA’s 1981–2010 U.S. Climate normals: An overview. Bull. Am. Meteorol. Soc. 2012, 93, 1687–1697. [Google Scholar] [CrossRef]
- Hawkins, E.; Sutton, R. Time of emergence of climate signals. Geophys. Res. Lett. 2012, 39, L01702. [Google Scholar] [CrossRef] [Green Version]
- Vaughan, D.G.; Comiso, J.C.; Allison, I.; Carrasco, J.; Kaser, G.; Kwok, R.; Mote, P.; Murray, T.; Paul, F.; Ren, J. Observations: Cryosphere. Climate Change: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, MA, USA, 2013. [Google Scholar]
- Dunn, R.J.H.; Aldred, F.; Gobron, N.; Miller, J.B.; Willett, K.M.; Ades, M.; Adler, R.; Allan, R.P.; Allan, R. Global climate. Bull. Am. Meteorol. Soc. 2021, 102, S11–S142. [Google Scholar] [CrossRef]
- Brown, R.D.; Mote, P.W. The response of Northern Hemisphere snow cover to a changing climate. J. Clim. 2009, 22, 2124–2145. [Google Scholar] [CrossRef]
- Wu, S.; Zhang, J.; Li, J.; Chen, Z.; Hang, Y.; Niu, M.; Kuang, Y.; Hu, R. The reduced Siberian spring snow cover modulation on southward northernmost margin of East Asia summer monsoon. Clim. Dyn. 2023, 61, 2949–2964. [Google Scholar] [CrossRef]
- Kawase, H.; Yamazaki, T.; Sugimoto, S.; Sasai, T.; Ito, R.; Hamada, T.; Kuribayashi, M.; Fujita, M.; Murata, A.; Nosaka, M.; et al. Changes in extremely heavy and light snow-cover winters due to global warming over high mountainous areas in central Japan. Prog. Earth Planet. Sci. 2020, 7, 10. [Google Scholar] [CrossRef] [Green Version]
- Tang, Z.; Wang, X.; Wang, J.; Wang, X.; Li, H.; Jiang, Z. Spatiotemporal variation of snow cover in Tianshan Mountains, Central Asia, based on cloud-free MODIS fractional snow cover product, 2001–2015. Remote Sens. 2017, 9, 1045. [Google Scholar] [CrossRef] [Green Version]
- Smith, T.; Bookhagen, B. Assessing multi-temporal snow volume trends in high mountain Asia from 1987 to 2016 using high-resolution passive microwave data. Front. Earth Sci. 2020, 8, 559175. [Google Scholar] [CrossRef]
- You, Q.; Wu, T.; Shen, L.; Pepin, N.; Zhang, L.; Jiang, Z.; Wu, Z.; Kang, S.; AghaKouchak, A. Review of snow cover variation over the Tibetan Plateau and its influence on the broad climate system. Earth-Sci. Rev. 2020, 201, 103043. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, W.; Liu, T. Monitoring recent changes in snow cover in Central Asia using improved MODIS snow-cover products. J. Arid Land 2017, 9, 763–777. [Google Scholar] [CrossRef]
- Markon, C.J.; Trainor, S.F.; Chapin III, F.S. The United States National Climate Assessment-Alaska Technical Regional Report; U.S. Geological Survey: Reston, VA, USA, 2012. [Google Scholar]
- Swanson, D.K. Trends in greenness and snow cover in Alaska’s Arctic National Parks, 2000–2016. Remote Sens. 2017, 9, 514. [Google Scholar] [CrossRef] [Green Version]
- GLISA. Snow in the Great Lakes: Past, Present and Future. Available online: https://glisa.umich.edu/resources-tools/climate-impacts/snow-in-the-great-lakes-past-present-and-the-future/ (accessed on 28 May 2023).
- Beaudin, L.; Huang, J.C. Weather Conditions and Outdoor Recreation: A Study of New England Ski Areas. Ecol. Econ. 2014, 106, 56–68. [Google Scholar] [CrossRef]
- Hamilton, L.C.; Rohall, D.E.; Brown, B.C.; Hayward, G.F.; Keim, B.D. Warming Winters and New Hampshire’s Lost Ski Areas: An Integrated Case Study. Int. J. Sociol. Soc. Policy 2003, 23, 52–73. [Google Scholar] [CrossRef] [Green Version]
- Ye, K.; Lau, N.C. Influences of surface air temperature and atmospheric circulation on winter snow cover variability over Europe. Int. J. Climatol. 2017, 37, 2606–2619. [Google Scholar] [CrossRef]
- Brown, I. Snow cover duration and extent for Great Britain in a changing climate: Altitudinal variations and synoptic-scale influences. Int. J. Climatol. 2019, 39, 4611–4626. [Google Scholar] [CrossRef] [Green Version]
- Tomczyk, A.M.; Bednorz, E.; Szyga-Pluta, K. Changes in air temperature and snow cover in winter in Poland. Atmosphere 2021, 12, 68. [Google Scholar] [CrossRef]
- European Environment Agency. Indicator Assessment: Snow Cover. 2021. Available online: https://www.eea.europa.eu/data-and-maps/indicators/snow-cover-3/assessment/#_edn3 (accessed on 29 May 2023).
- Matiu, M.; Crespi, A.; Bertoldi, G.; Carmagnola, C.M.; Marty, C.; Morin, S.; Schöner, W.; Cat Berro, D.; Chiogna, G.; De Gregorio, L.; et al. Observed snow depth trends in the European Alps 1971 to 2019. Cryosphere Discuss. 2021, 15, 1343–1382. [Google Scholar] [CrossRef]
- Bailey, H.; Hubbard, A.; Klein, E.S.; Mustonen, K.R.; Akers, P.D.; Marttila, H.; Welker, J.M. Arctic sea-ice loss fuels extreme European snowfall. Nat. Geosci. 2021, 14, 283–288. [Google Scholar] [CrossRef]
- Cordero, R.R.; Asencio, V.; Feron, S.; Damiani, A.; Llanillo, P.J.; Sepulveda, E.; Jorquera, J.; Carrasco, J.; Casassa, G. Dry-Season Snow Cover Losses in the Andes (18°–40° S) driven by Changes in Large-Scale Climate Modes. Sci. Rep. 2019, 9, 16945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malmros, J.K.; Mernild, S.H.; Wilson, R.; Tagesson, T.; Fensholt, R. Snow cover and snow albedo changes in the central Andes of Chile and Argentina from daily MODIS observations (2000–2016). Remote Sens. Environ. 2018, 209, 240–252. [Google Scholar] [CrossRef] [Green Version]
- Burger, F.; Brock, B.; Montecinos, A. Seasonal and elevation contrasts in temperature trends in Central Chile between 1979 and 2015. Glob. Planet. Chang. 2018, 162, 136–147. [Google Scholar] [CrossRef]
- Saavedra, F.A.; Kampf, S.K.; Fassnacht, S.R.; Sibold, J.S. A snow climatology of the Andes Mountains from MODIS snow cover data. Int. J. Climatol. 2017, 37, 1526–1539. [Google Scholar] [CrossRef]
- Boisier, J.P.; Alvarez-Garreton, C.; Cordero, R.R.; Damiani, A.; Gallardo, L.; Garreaud, R.D.; Lambert, F.; Ramallo, C.; Rojas, M.; Rondanelli, R. Anthropogenic drying in central-southern Chile evidenced by long-term observations and climate model simulations. Elem. Sci. Anthr. 2018, 6, 74. [Google Scholar] [CrossRef]
- Pérez, T.; Mattar, C.; Fuster, R. Decrease in snow cover over the Aysén river catchment in Patagonia, Chile. Water 2018, 10, 619. [Google Scholar] [CrossRef] [Green Version]
- Aguirre, F.; Carrasco, J.; Sauter, T.; Schneider, C.; Gaete, K.; Garín, E.; Adaros, R.; Butorovic, N.; Jaña, R.; Casassa, G. Snow cover change as a climate indicator in Brunswick Peninsula, Patagonia. Front. Earth Sci. 2018, 6, 130. [Google Scholar] [CrossRef]
- Marchane, A.; Jarlan, L.; Hanich, L.; Boudhar, A.; Gascoin, S.; Tavernier, A.; Filali, N.; Le Page, M.; Hagolle, O.; Berjamy, B. Assessment of daily MODIS snow cover products to monitor snow cover dynamics over the Moroccan Atlas mountain range. Remote Sens. Environ. 2015, 160, 72–86. [Google Scholar] [CrossRef]
- Park, S.; Lee, M.; Jung, H. Analysis on the snow cover variations at Mt. Kilimanjaro using Landsat satellite images, Korean J. Remote Sens. 2012, 28, 409–420. [Google Scholar]
- Redpath, T.A.; Sirguey, P.; Cullen, N.J. Characterising spatio-temporal variability in seasonal snow cover at a regional scale from MODIS data: The Clutha Catchment, New Zealand. Hydrol. Earth Syst. Sci. 2019, 23, 3189–3217. [Google Scholar] [CrossRef] [Green Version]
- Planet Ski Snow News, New Zealand 2022. Available online: https://planetski.eu/2022/06/15/now-its-the-turn-of-new-zealand-as-more-snow-falls/ (accessed on 31 May 2023).
- Kirkpatrick, J.B.; Nunez, M.; Bridle, K.L.; Parry, J.; Gibson, N. Causes and consequences of variation in snow incidence on the high mountains of Tasmania, 1983–2013. Aust. J. Bot. 2017, 65, 214–224. [Google Scholar] [CrossRef]
- NOAA Global Monitoring Laboratory. Trends in Atmospheric Carbon Dioxide, April 2023: 423.28 ppm. Available online: https://gml.noaa.gov/ccgg/trends/ (accessed on 1 June 2023).
Season | Change | Statistical Significance | |||||
---|---|---|---|---|---|---|---|
p < 0.05 | p < 0.01 | ||||||
Percent b | Area (km2) | Frances c | Percent b | Area (km2) | Frances c | ||
12-01-02 Decrease | 86.66 | 3,138,440 | 5.74 | 82.05 | 848,284 | 1.55 | |
Increase | 13.34 | 483,197 | 0.88 | 10.31 | 106,547 | 0.20 | |
Difference | 73.32 | 2,655,243 | −4.85 | 77.68 | 741,737 | −1.36 | |
03-04-05 Decrease | 80.58 | 1,498,757 | 2.74 | 82.11 | 271,963 | 0.50 | |
Increase | 19.42 | 361,150 | 0.66 | 17.89 | 59,241 | 0.11 | |
Difference | 61.16 | 1,137,607 | −2.08 | 64.23 | 212,722 | −0.39 | |
06-07-08 Decrease | 82.15 | 837,589 | 1.53 | 79.51 | 197,656 | 0.36 | |
Increase | 17.85 | 181,939 | 0.33 | 20.49 | 50,933 | 0.09 | |
Difference | 64.31 | 655,650 | −1.20 | 59.02 | 146,723 | −0.27 | |
09-10-11 Decrease | 73.24 | 1,348,283 | 2.46 | 77.70 | 281,294 | 0.51 | |
Increase | 26.76 | 492,528 | 0.90 | 22.30 | 80,755 | 0.15 | |
Difference | 46.49 | 855,755 | −1.56 | 55.39 | 200,539 | −0.30 | |
Annual d Decrease | 92.05 | 5,773,812 | 10.56 | 93.98 | 1,530,439 | 2.80 | |
Increase | 7.95 | 498,356 | 0.91 | 6.02 | 98,115 | 0.18 | |
Difference | 84.10 | 5,275,456 | −9.65 | 87.96 | 1,432,324 | −2.62 |
Raw Values b | Significant Values (p < 0.05) c | |||||
---|---|---|---|---|---|---|
Change in Days d | Percent e | Area (km2) f | Frances g | Percent | Area (km2) | Frances |
12-01-02 | ||||||
−20 | 14.28 | 2,424,386 | 4.43 | 45.15 | 1,382,073 | 2.53 |
−10 | 29.77 | 5,052,411 | 9.24 | 31.44 | 962,750 | 1.76 |
−5 | 29.25 | 4,965,115 | 9.08 | 12.98 | 397,420 | 0.73 |
+5 | 13.70 | 2,325,961 | 4.25 | 3.01 | 92,070 | 0.17 |
+10 | 10.76 | 1,826,024 | 3.34 | 4.74 | 145,204 | 0.27 |
+20 | 2.24 | 380,246 | 0.70 | 2.67 | 81,778 | 0.15 |
Decrease | 73.30 | 12,441,912 | 22.74 | 89.58 | 2,742,198 | 5.01 |
Increase | 26.70 | 5,432,231 | 8.29 | 10.42 | 319,052 | 0.58 |
03-04-05 | ||||||
−20 | 0.54 | 74,431 | 0.14 | 2.37 | 34,193 | 0.06 |
−10 | 13.80 | 1,886,412 | 3.45 | 32.59 | 470,704 | 0.89 |
−5 | 58.13 | 7,948,927 | 14.53 | 48.88 | 706,025 | 1.29 |
+5 | 21.75 | 2,974,264 | 5.44 | 10.75 | 155,310 | 0.28 |
+10 | 5.52 | 755,191 | 1.38 | 4.13 | 59,706 | 0.11 |
+20 | 0.25 | 34,317 | 0.06 | 1.27 | 18,352 | 0.03 |
Decrease | 72.47 | 9,909,770 | 18.12 | 83.84 | 1,210,922 | 2.21 |
Increase | 27.53 | 3,763,772 | 6.88 | 16.16 | 233,368 | 0.43 |
06-07-08 | ||||||
−20 | 1.62 | 80,600 | 0.15 | 6.78 | 62,434 | 0.11 |
−10 | 22.66 | 1,126,168 | 2.06 | 47.81 | 440,200 | 0.80 |
−5 | 50.11 | 2,490,106 | 4.55 | 28.19 | 259,563 | 0.47 |
+5 | 19.82 | 984,715 | 1.80 | 7.41 | 68,200 | 0.12 |
+10 | 5.52 | 274,350 | 0.50 | 8.99 | 82,739 | 0.15 |
+20 | 0.27 | 13,175 | 0.02 | 0.83 | 7595 | 0.01 |
Decrease | 74.40 | 3,696,874 | 6.76 | 82.78 | 762,197 | 1.39 |
Increase | 25.60 | 1,272,240 | 2.33 | 17.22 | 158,534 | 0.29 |
09-10-11 | ||||||
−20 | 0.56 | 77,934 | 0.14 | 3.98 | 60,140 | 0.11 |
−10 | 15.43 | 2,162,157 | 3.95 | 35.71 | 5,399,580 | 0.99 |
−5 | 47.66 | 6,678,857 | 12.21 | 32.91 | 497,519 | 0.91 |
+5 | 29.29 | 4,104,090 | 7.50 | 14.75 | 223,014 | 0.41 |
+10 | 6.81 | 954,986 | 1.75 | 11.77 | 177,878 | 0.33 |
+20 | 0.25 | 35,154 | 0.06 | 0.89 | 13,392 | 0.02 |
Decrease | 63.65 | 8,918,948 | 16.30 | 72.60 | 1,097,617 | 2.01 |
Increase | 36.35 | 5,094,230 | 9.31 | 27.40 | 414,284 | 0.76 |
Annual h | ||||||
−20 | 14.54 | 5,361,698 | 9.80 | 40.20 | 2,493,609 | 4.56 |
−10 | 32.25 | 11,895,971 | 21.75 | 38.98 | 2,417,721 | 4.42 |
−5 | 28.68 | 10,578,781 | 19.34 | 9.85 | 611,010 | 1.12 |
+5 | 12.31 | 4,540,415 | 8.30 | 2.31 | 143,375 | 0.26 |
+10 | 8.68 | 3,201,556 | 5.85 | 4.19 | 259,811 | 0.47 |
+20 | 3.54 | 1,304,387 | 2.38 | 4.46 | 276,737 | 0.51 |
Decrease | 75.47 | 27,836,450 | 50.89 | 89.04 | 5,522,340 | 10.10 |
Increase | 24.53 | 9,046,358 | 16.54 | 10.96 | 679,923 | 1.24 |
Season b Regions | % of Global | % Decrease | % Increase | % Decrease | % Increase | Difference | Area Change |
---|---|---|---|---|---|---|---|
Total Seasonal SC c | Global SC d | Global SC e | Regional SC f | Regional SC g | Regional SC h | Regional SC (km2) | |
12-01-02 Africa | 0.32 | 0.34 | 0.09 | 7.40 | 0.31 | −7.10 | −10,081 |
Asia | 58.45 | 66.46 | 51.07 | 8.09 | 0.96 | −7.13 | −1,836,823 |
Australia-NZ | 0.03 | 0.10 | 0.03 | 27.07 | 0.93 | −23.13 | −3069 |
Europe | 10.17 | 14.84 | 10.36 | 10.38 | 1.12 | −9.26 | −415,175 |
N. America | 30.63 | 16.95 | 38.23 | 3.94 | 1.37 | −2.57 | −346,897 |
S. America | 0.40 | 1.31 | 0.22 | 23.34 | 0.62 | −22.72 | −18,781 |
Total | −2,630,826 | ||||||
03-04-05 Africa | 0.05 | 0.04 | 0.05 | 2.83 | 0.89 | −1.94 | −404 |
Asia | 58.30 | 76.84 | 40.75 | 4.20 | 0.54 | −3.66 | −1,003,242 |
Australia-NZ | 0.16 | 0.21 | 0.15 | 4.55 | 0.80 | −3.75 | −2605 |
Europe | 7.98 | 8.38 | 30.41 | 3.44 | 2.92 | −0.52 | −19,547 |
N. America | 32.65 | 12.83 | 28.29 | 1.25 | 0.67 | −0.58 | −88,880 |
S. America | 0.86 | 1.70 | 0.34 | 6.67 | 0.32 | −6.35 | −24,331 |
Total | −1,139,009 | ||||||
06-07-08 Africa | 0.14 | 0.40 | 0.16 | 18.23 | 1.53 | −16.70 | −3039 |
Asia | 49.71 | 60.81 | 43.85 | 8.04 | 1.20 | −6.84 | −433,030 |
Australia-NZ | 1.49 | 0.16 | 11.74 | 0.69 | 10.71 | +10.02 | +18,991 |
Europe | 1.93 | 2.04 | 0.22 | 6.94 | 0.15 | −6.79 | −16,715 |
N. America | 37.81 | 24.75 | 30.17 | 4.30 | 1.08 | −3.22 | −155,056 |
S. America | 8.92 | 11.84 | 13.86 | 8.72 | 2.11 | −6.61 | −75,091 |
Total | −663,940 | ||||||
09-10-11 Africa | 0.07 | 0.05 | 0.02 | 2.17 | 0.31 | −1.86 | −2575 |
Asia | 59.36 | 57.41 | 61.23 | 3.23 | 1.26 | −1.97 | −472,278 |
Australia-NZ | 0.16 | 0.65 | 0.03 | 13.15 | 0.19 | −12.97 | −8629 |
Europe | 8.39 | 12.22 | 3.80 | 4.86 | 0.55 | −4.31 | −146,028 |
N. America | 30.89 | 21.19 | 34.76 | 2.29 | 1.37 | −0.92 | −114,733 |
S. America | 1.12 | 8.48 | 0.17 | 25.27 | 0.18 | −25.08 | −113,551 |
Total | −858,258 | ||||||
Annual i Africa | 0.27 | 0.28 | 0.12 | 10.10 | 0.39 | −9.71 | −15,531 |
Asia | 57.27 | 64.24 | 48.30 | 10.95 | 0.74 | −10.21 | −3,417,688 |
Australia-NZ | 0.34 | 0.19 | 3.55 | 5.64 | 9.26 | +3.61 | +7099 |
Europe | 9.04 | 16.86 | 5.08 | 18.20 | 0.49 | −17.71 | −935,859 |
N. America | 31.06 | 13.95 | 40.60 | 4.38 | 1.15 | −3.24 | −587,481 |
S. America | 2.02 | 4.48 | 2.34 | 21.62 | 1.02 | −20.60 | −243,505 |
Total | −5,198,018 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Young, S.S. Global and Regional Snow Cover Decline: 2000–2022. Climate 2023, 11, 162. https://doi.org/10.3390/cli11080162
Young SS. Global and Regional Snow Cover Decline: 2000–2022. Climate. 2023; 11(8):162. https://doi.org/10.3390/cli11080162
Chicago/Turabian StyleYoung, Stephen S. 2023. "Global and Regional Snow Cover Decline: 2000–2022" Climate 11, no. 8: 162. https://doi.org/10.3390/cli11080162
APA StyleYoung, S. S. (2023). Global and Regional Snow Cover Decline: 2000–2022. Climate, 11(8), 162. https://doi.org/10.3390/cli11080162