The Impact of Marine Heatwaves on Isotherm Displacement and Tuna Distribution in Vanuatu
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. Observational Sea Surface Temperature Data
2.2.2. Fish Stock Assessment Data
2.3. Data Analysis
2.3.1. MHW Data Analysis
- Duration: number of days of an event.
- Mean intensity: average temperature above the climatological mean during an event.
- Maximum intensity: maximum temperature above the climatological mean during an event.
- Cumulative intensity: sum of the daily intensities above the climatological mean for the duration of an event.
2.3.2. Isotherm Location and Analysis
2.4. Distribution of Tuna in Relation to Isotherm Positioning
2.5. Accounting for Seasonality
3. Results
3.1. Regional Analysis
3.1.1. MHW Analysis
3.1.2. Monthly Tuna Catch During MHWs (1995–2018)
3.2. Case Study Periods
3.2.1. 2008–2009 MHW
3.2.2. 2016 MHW
3.2.3. 2021–2022 MHW Period
3.3. Correlation Analysis
3.3.1. Relationship Between MHW Variables and Isotherm Displacement
3.3.2. Relationship Between Monthly Tuna Catch and SSTAs
4. Discussion
4.1. Influence of MHWs on Isotherm Displacement
4.2. Isotherm Displacement and Tuna Distribution
4.3. Potential for Monitoring and Prediction
4.4. Limitations and Future Directions for Research
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Month | Average Latitude | Average Longitude |
---|---|---|
1 | −17.98968887 | 167.2585297 |
2 | −19.3083744 | 166.9907379 |
3 | −19.32823563 | 167.0649261 |
4 | −17.79503632 | 167.3501892 |
5 | −15.32565689 | 167.0957947 |
6 | −13.09683228 | 167.7729645 |
7 | −11.34056187 | 167.780899 |
8 | −10.49682426 | 167.6532593 |
9 | −10.51208782 | 167.1141815 |
10 | −11.52615929 | 167.3263855 |
11 | −13.26357841 | 167.2934113 |
12 | −15.77668095 | 167.0741119 |
Appendix B
Start Date | End Date | Duration, Days | Maximum Intensity, °C | Mean Intensity, °C | Cumulative Intensity, °C |
---|---|---|---|---|---|
12 December 1984 | 26 December 1984 | 15 | 1.22 | 1.00 | 15.02 |
14 December 1995 | 23 December 1995 | 10 | 1.30 | 1.08 | 10.82 |
10 February 1996 | 14 February 1996 | 5 | 0.98 | 0.89 | 4.43 |
23 February 1996 | 29 February 1996 | 7 | 0.95 | 0.84 | 5.86 |
30 November 1996 | 14 December 1996 | 15 | 1.07 | 0.91 | 13.62 |
17 December 1997 | 29 December 1997 | 13 | 1.07 | 0.96 | 12.51 |
11 October 1998 | 25 October 1998 | 15 | 1.15 | 0.98 | 14.74 |
28 October 1998 | 5 November 1998 | 9 | 0.96 | 0.87 | 7.84 |
20 November 1998 | 25 November 1998 | 6 | 0.95 | 0.91 | 5.44 |
28 November 1998 | 11 December 1998 | 14 | 0.95 | 0.84 | 11.74 |
22 December 1998 | 28 December 1998 | 7 | 1.15 | 0.99 | 6.94 |
1 November 1999 | 12 November 1999 | 12 | 1.25 | 0.99 | 11.93 |
1 November 2000 | 6 November 2000 | 6 | 1.03 | 0.98 | 5.90 |
22 November 2000 | 26 November 2000 | 5 | 0.89 | 0.85 | 4.25 |
13 March 2001 | 22 March 2001 | 10 | 1.09 | 0.91 | 9.14 |
31 October 2001 | 5 November 2001 | 6 | 0.98 | 0.94 | 5.63 |
19 November 2001 | 12 December 2001 | 24 | 1.40 | 1.04 | 25.03 |
25 December 2001 | 3 January 2002 | 10 | 1.21 | 1.06 | 10.57 |
9 January 2002 | 17 January 2002 | 9 | 1.20 | 1.03 | 9.25 |
8 December 2003 | 14 December 2003 | 7 | 0.96 | 0.87 | 6.06 |
2 February 2004 | 17 February 2004 | 16 | 0.99 | 0.89 | 14.20 |
5 February 2005 | 18 February 2005 | 14 | 1.00 | 0.89 | 12.42 |
17 October 2005 | 24 October 2005 | 8 | 1.18 | 1.00 | 8.04 |
16 November 2005 | 1 December 2005 | 16 | 1.04 | 0.92 | 14.69 |
4 December 2005 | 20 December 2005 | 17 | 1.27 | 0.96 | 16.37 |
6 September 2007 | 27 October 2007 | 52 | 1.43 | 1.02 | 53.07 |
3 November 2007 | 18 November 2007 | 16 | 1.27 | 1.04 | 16.61 |
12 December 2007 | 19 December 2007 | 8 | 1.06 | 0.98 | 7.86 |
31 October 2008 | 11 January 2009 | 73 | 1.79 | 1.21 | 88.57 |
22 August 2010 | 2 September 2010 | 12 | 0.93 | 0.81 | 9.71 |
7 September 2010 | 9 November 2010 | 64 | 1.42 | 1.09 | 69.87 |
16 December 2010 | 21 December 2010 | 6 | 0.84 | 0.83 | 4.98 |
26 December 2010 | 30 December 2010 | 5 | 0.95 | 0.89 | 4.47 |
30 October 2011 | 5 November 2011 | 7 | 1.03 | 0.95 | 6.63 |
2 December 2011 | 16 December 2011 | 15 | 1.15 | 0.99 | 14.87 |
22 September 2012 | 27 September 2012 | 6 | 1.08 | 0.94 | 5.62 |
9 October 2012 | 13 October 2012 | 5 | 0.99 | 0.94 | 4.71 |
25 October 2012 | 3 November 2012 | 10 | 0.95 | 0.88 | 8.78 |
15 November 2013 | 20 December 2013 | 36 | 1.43 | 1.17 | 42.20 |
29 October 2014 | 7 November 2014 | 10 | 0.99 | 0.92 | 9.22 |
7 December 2014 | 31 December 2014 | 25 | 1.33 | 1.04 | 25.92 |
16 January 2015 | 12 March 2015 | 56 | 1.36 | 0.97 | 54.53 |
24 January 2016 | 19 February 2016 | 27 | 1.32 | 1.07 | 28.99 |
6 March 2016 | 18 March 2016 | 13 | 0.91 | 0.80 | 10.44 |
21 March 2016 | 25 March 2016 | 5 | 0.79 | 0.77 | 3.85 |
28 March 2016 | 3 April 2016 | 7 | 0.78 | 0.76 | 5.32 |
22 September 2016 | 8 December 2016 | 78 | 1.29 | 0.99 | 77.55 |
11 January 2017 | 15 January 2017 | 5 | 1.13 | 1.03 | 5.16 |
1 April 2017 | 5 April 2017 | 5 | 0.86 | 0.83 | 4.14 |
26 September 2017 | 4 October 2017 | 9 | 0.89 | 0.81 | 7.27 |
8 October 2017 | 18 October 2017 | 11 | 1.04 | 0.96 | 10.52 |
22 October 2017 | 18 November 2017 | 28 | 1.38 | 1.13 | 31.64 |
30 November 2017 | 18 December 2017 | 19 | 1.16 | 0.97 | 18.43 |
4 September 2018 | 9 September 2018 | 6 | 0.88 | 0.79 | 4.73 |
15 September 2018 | 20 September 2018 | 6 | 0.84 | 0.81 | 4.86 |
9 October 2018 | 13 October 2018 | 5 | 1.05 | 0.96 | 4.81 |
17 October 2018 | 1 November 2018 | 16 | 1.38 | 1.18 | 18.83 |
21 November 2018 | 6 December 2018 | 16 | 1.44 | 1.18 | 18.91 |
20 December 2018 | 24 December 2018 | 5 | 1.13 | 1.01 | 5.07 |
8 October 2019 | 14 October 2019 | 7 | 0.98 | 0.92 | 6.44 |
6 December 2019 | 20 December 2019 | 15 | 1.01 | 0.87 | 13.09 |
27 February 2020 | 13 March 2020 | 22 | 1.18 | 0.99 | 21.69 |
25 July 2020 | 1 August 2020 | 8 | 0.84 | 0.77 | 6.16 |
6 August 2020 | 2 September 2020 | 28 | 1.20 | 0.96 | 27.02 |
14 September 2020 | 30 November 2020 | 78 | 1.53 | 1.09 | 85.27 |
3 December 2020 | 16 December 2020 | 14 | 1.06 | 0.94 | 13.18 |
23 December 2020 | 30 December 2020 | 8 | 1.02 | 0.95 | 7.64 |
2 January 2021 | 10 January 2021 | 9 | 0.96 | 0.91 | 8.23 |
18 January 2021 | 26 January 2021 | 9 | 0.93 | 0.90 | 8.07 |
26 August 2021 | 9 September 2021 | 15 | 0.95 | 0.84 | 12.67 |
13 September 2021 | 17 September 2021 | 5 | 0.90 | 0.84 | 4.19 |
21 September 2021 | 7 October 2021 | 17 | 1.02 | 0.90 | 15.30 |
11 October 2021 | 8 January 2022 | 90 | 1.62 | 1.24 | 111.54 |
19 February 2022 | 23 February 2022 | 5 | 0.84 | 0.79 | 3.94 |
7 March 2022 | 3 April 2022 | 28 | 1.09 | 0.88 | 24.63 |
11 April 2022 | 21 April 2022 | 11 | 0.77 | 0.75 | 8.23 |
1 June 2022 | 3 July 2022 | 33 | 0.89 | 0.77 | 25.43 |
8 July 2022 | 8 August 2022 | 185 | 2.07 | 1.40 | 259.14 |
Appendix C
Appendix D
Appendix E
References
- IPCC. Global Warming of 1.5 °C: IPCC Special Report on Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels in Context of Strengthening Response to Climate Change, Sustainable Development, and Efforts to Eradicate Poverty, 1st ed.; Cambridge University Press: Cambridge, MA, USA, 2022; ISBN 978-1-00-915794-0. [Google Scholar]
- Dunstan, P.K.; Moore, B.R.; Bell, J.D.; Holbrook, N.J.; Oliver, E.C.J.; Risbey, J.; Foster, S.D.; Hanich, Q.; Hobday, A.J.; Bennett, N.J. How Can Climate Predictions Improve Sustainability of Coastal Fisheries in Pacific Small-Island Developing States? Mar. Policy 2018, 88, 295–302. [Google Scholar] [CrossRef]
- World Economic Forum. The Global Risks Report 2024 19th Edition: Insight Report; World Economic Forum: Geneva, Switzerland, 2024; ISBN 978-2-940631-64-3. [Google Scholar]
- United Nations, Economic and Social Commission for Asia and the Pacific (ESCAP). The Disaster Riskscape across the Pacific Small Island Developing States: Key Takeaways for Stakeholders; United Nations, Economic and Social Commission for Asia and the Pacific (ESCAP): Bangkok, Thailand, 2020. [Google Scholar]
- Andrew, N.L.; Bright, P.; de la Rua, L.; Teoh, S.J.; Vickers, M. Coastal Proximity of Populations in 22 Pacific Island Countries and Territories. PLoS ONE 2019, 14, e0223249. [Google Scholar] [CrossRef] [PubMed]
- Bell, J.; Kronen, M.; Vunisea, A.; Nash, W.J.; Keeble, G.; Demmke, A.; Pontifex, S.; Andrefouet, S. Planning the Use of Fish for Food Security in the Pacific. Marine Policy 2009, 33, 64–76. [Google Scholar] [CrossRef]
- Charlton, K.E.; Russell, J.; Gorman, E.; Hanich, Q.; Delisle, A.; Campbell, B.; Bell, J. Fish, Food Security and Health in Pacific Island Countries and Territories: A Systematic Literature Review. BMC Public Health 2016, 16, 285. [Google Scholar] [CrossRef] [PubMed]
- Republic of Vanuatu Maritime Zone Act No. 6 of 2010. Available online: https://www.un.org/depts/los/LEGISLTIONANDTREATIES/PDFFILES/vut_2010_Act06.pdf (accessed on 1 September 2024).
- Hobday, A.; Alexander, L.V.; Perkins, S.E.; Smale, D.A.; Straub, S.C.; Oliver, E.C.J.; Benthuysen, J.; Burrows, M.T.; Donat, M.G.; Feng, M.; et al. A Hierarchical Approach to Defining Marine Heatwaves. Prog. Oceanogr. 2016, 141, 227–238. [Google Scholar] [CrossRef]
- Calvin, K.; Dasgupta, D.; Krinner, G.; Mukherji, A.; Thorne, P.W.; Trisos, C.; Romero, J.; Aldunce, P.; Barrett, K.; Blanco, G.; et al. IPCC, 2023: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, 1st ed.; Core Writing Team, Lee, H., Romero, J., Eds.; Intergovernmental Panel on Climate Change (IPCC): Geneva, Switzerland, 2023. [Google Scholar]
- Von Schuckmann, K.; Moreira, L.; Grégoire, M.; Marcos, M.; Staneva, J.; Brasseur, P.; Garric, G.; Lionello, P.; Karstensen, J. The Copernicus Ocean State Report (OSR8); 0 ed.; Copernicus GmbH. 2024. Available online: https://sp.copernicus.org/articles/4-osr8/index.html (accessed on 1 September 2024).
- O’Neil, B.C.; Tebaldi, C.; Van Vuuren, D.P.; Eyring, V.; Friedlingstein, P.; Hurtt, G.; Knutti, R.; Kriegler, E.; Lamarque, J.F.; Lowe, J.; et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 2016, 9, 3461–3482. [Google Scholar] [CrossRef]
- Holbrook, N.J.; Hernaman, V.; Koshiba, S.; Lako, J.; Kajtar, J.B.; Amosa, P.; Singh, A. Impacts of Marine Heatwaves on Tropical Western and Central Pacific Island Nations and Their Communities. Glob. Planet. Change 2022, 208, 103680. [Google Scholar] [CrossRef]
- Oliver, E.C.J.; Burrows, M.T.; Donat, M.G.; Sen Gupta, A.; Alexander, L.V.; Perkins-Kirkpatrick, S.E.; Benthuysen, J.A.; Hobday, A.J.; Holbrook, N.J.; Moore, P.J.; et al. Projected Marine Heatwaves in the 21st Century and the Potential for Ecological Impact. Front. Mar. Sci. 2019, 6, 734. [Google Scholar] [CrossRef]
- McGree, S.; Smith, G.; Chandler, E.; Herold, N.; Begg, Z.; Kuleshov, Y.; Masale, P.; Rittman, M. Climate Change in the Pacific 2022: Historical and Recent Variability, Extremes and Change; Pacific Community (SPC): Suva, Fiji, 2022. [Google Scholar]
- Chen, H.; Shi, J.; Jin, Y.; Geng, T.; Li, C.; Zhang, X. Warm and Cold Episodes in Western Pacific Warm Pool and Their Linkage With ENSO Asymmetry and Diversity. JGR Oceans 2021, 126, e2021JC017287. [Google Scholar] [CrossRef]
- Benthuysen, J.A.; Oliver, E.C.J.; Chen, K.; Wernberg, T. Editorial: Advances in Understanding Marine Heatwaves and Their Impacts. Front. Mar. Sci. 2020, 7, 147. [Google Scholar] [CrossRef]
- Cheung, W.W.L.; Frölicher, T.L. Marine Heatwaves Exacerbate Climate Change Impacts for Fisheries in the Northeast Pacific. Sci. Rep. 2020, 10, 6678. [Google Scholar] [CrossRef] [PubMed]
- Fraser, M.W.; Kendrick, G.A.; Statton, J.; Hovey, R.K.; Zavala-Perez, A.; Walker, D.I. Extreme Climate Events Lower Resilience of Foundation Seagrass at Edge of Biogeographical Range. J. Ecol. 2014, 102, 1528–1536. [Google Scholar] [CrossRef]
- Joyce, P.W.S.; Tong, C.B.; Yip, Y.L.; Falkenberg, L.J. Marine Heatwaves as Drivers of Biological and Ecological Change: Implications of Current Research Patterns and Future Opportunities. Mar. Biol. 2024, 171, 20. [Google Scholar] [CrossRef]
- Mills, K.; Pershing, A.; Brown, C.; Chen, Y.; Chiang, F.-S.; Holland, D.; Lehuta, S.; Nye, J.; Sun, J.; Thomas, A.; et al. Fisheries Management in a Changing Climate: Lessons From the 2012 Ocean Heat Wave in the Northwest Atlantic. Oceanografy 2013, 26, 191–195. [Google Scholar] [CrossRef]
- Pearce, A.F.; Feng, M. The Rise and Fall of the “Marine Heat Wave” off Western Australia during the Summer of 2010/2011. J. Mar. Syst. 2013, 111–112, 139–156. [Google Scholar] [CrossRef]
- Smale, D.A.; Wernberg, T.; Oliver, E.C.J.; Thomsen, M.; Harvey, B.P.; Straub, S.C.; Burrows, M.T.; Alexander, L.V.; Benthuysen, J.A.; Donat, M.G.; et al. Marine Heatwaves Threaten Global Biodiversity and the Provision of Ecosystem Services. Nat. Clim. Chang. 2019, 9, 306–312. [Google Scholar] [CrossRef]
- CSIRO. SPREP Current and Future Climate for Vanuatu: Enhanced “NextGen” Projections Technical Report. 2021. Available online: https://www.rccap.org/uploads/files/2c538622-72fe-4f3d-a927-7b3a7149e73f/Vanuatu%20Country%20Report%20Final.pdf (accessed on 1 September 2024).
- Caputi, N.; Kangas, M.; Denham, A.; Feng, M.; Pearce, A.; Hetzel, Y.; Chandrapavan, A. Management Adaptation of Invertebrate Fisheries to an Extreme Marine Heat Wave Event at a Global Warming Hot Spot. Ecol. Evol. 2016, 6, 3583–3593. [Google Scholar] [CrossRef]
- Yang, Q.; Cokelet, E.D.; Stabeno, P.J.; Li, L.; Hollowed, A.B.; Palsson, W.A.; Bond, N.A.; Barbeaux, S.J. How “The Blob” Affected Groundfish Distributions in the Gulf of Alaska. Fish. Oceanogr. 2019, 28, 434–453. [Google Scholar] [CrossRef]
- Wernberg, T.; Smale, D.A.; Tuya, F.; Thomsen, M.S.; Langlois, T.J.; de Bettignies, T.; Bennett, S.; Rousseaux, C.S. An Extreme Climatic Event Alters Marine Ecosystem Structure in a Global Biodiversity Hotspot. Nat. Clim. Change 2013, 3, 78–82. [Google Scholar] [CrossRef]
- La Sorte, F.A.; Jetz, W. Tracking of Climatic Niche Boundaries under Recent Climate Change. J. Anim. Ecol. 2012, 81, 914–925. [Google Scholar] [CrossRef]
- Nye, J.; Link, J.; Hare, J.; Overholtz, W. Changing Spatial Distribution of Fish Stocks in Relation to Climate and Population Size on the Northeast United States Continental Shelf. Mar. Ecol. Prog. Ser. 2009, 393, 111–129. [Google Scholar] [CrossRef]
- Donelson, J.M.; Sunday, J.M.; Figueira, W.F.; Gaitán-Espitia, J.D.; Hobday, A.J.; Johnson, C.R.; Leis, J.M.; Ling, S.D.; Marshall, D.; Pandolfi, J.M.; et al. Understanding Interactions between Plasticity, Adaptation and Range Shifts in Response to Marine Environmental Change. Phil. Trans. R. Soc. B 2019, 374, 20180186. [Google Scholar] [CrossRef] [PubMed]
- Welch, H.; Savoca, M.S.; Brodie, S.; Jacox, M.G.; Muhling, B.A.; Clay, T.A.; Cimino, M.A.; Benson, S.R.; Block, B.A.; Conners, M.G.; et al. Impacts of Marine Heatwaves on Top Predator Distributions Are Variable but Predictable. Nat. Commun. 2023, 14, 5188. [Google Scholar] [CrossRef]
- Lehodey, P.; Bertignac, M.; Hampton, J.; Lewis, A.; Picaut, J. El Niño Southern Oscillation and Tuna in the Western Pacific. Nature 1997, 389, 715–718. [Google Scholar] [CrossRef]
- Jacox, M.G.; Alexander, M.A.; Amaya, D.; Becker, E.; Bograd, S.J.; Brodie, S.; Hazen, E.L.; Buil, M.P.; Tommasi, D. Global Seasonal Forecasts of Marine Heatwaves. Nature 2022, 604, 486–490. [Google Scholar] [CrossRef]
- Yang, C.; Leonelli, F.E.; Marullo, S.; Artale, V.; Beggs, H.; Nardelli, B.B.; Chin, T.M.; De Toma, V.; Good, S.; Huang, B.; et al. Sea Surface Temperature Intercomparison in the Framework of the Copernicus Climate Change Service (C3S). J. Clim. 2021, 34, 5257–5283. [Google Scholar] [CrossRef]
- Pascal, N.; Leport, G.; Molisa, V. National Marine Ecosystem Service Valuation Summary Report: Vanuatu; Marine and Coastal Biodiversity Management in Pacific Island Countries. 2015. Available online: https://www.researchgate.net/publication/317342032_National_marine_ecosystem_service_valuation_summary_Vanuatu (accessed on 1 September 2024).
- Western and Central Pacific Fisheries Commission (WCPFC) Annual Report to the Commission Part 1: Information on Fisheries, Research and Statistics. Western and Central Pacific Fisheries Commission (WCPFC): Vanuatu, 2021. Available online: https://www.wcpfc.int/doc/sc-01/annual-report-commission-part-1-information-fisheries-research-and-statistics-revised (accessed on 1 September 2024).
- Western and Central Pacific Fisheries Commission (WCPFC) Longline Fishery Aggregated Data, Grouped by 5° × 5° Latitude/Longitude Grids, Year and Month (1950–2021). 2021. Available online: https://www.wcpfc.int/wcpfc-public-domain-aggregated-catcheffort-data-download-page (accessed on 1 September 2024).
- Fromentin, J.; Reygondeau, G.; Bonhommeau, S.; Beaugrand, G. Oceanographic Changes and Exploitation Drive the Spatio-temporal Dynamics of A Tlantic Bluefin Tuna (Thunnus Thynnus). Fish. Oceanogr. 2014, 23, 147–156. [Google Scholar] [CrossRef]
- Worm, B.; Tittensor, D.P. Range Contraction in Large Pelagic Predators. Proc. Natl. Acad. Sci. USA 2011, 108, 11942–11947. [Google Scholar] [CrossRef]
- Reygondeau, G.; Maury, O.; Beaugrand, G.; Fromentin, J.M.; Fonteneau, A.; Cury, P. Biogeography of Tuna and Billfish Communities. J. Biogeogr. 2012, 39, 114–129. [Google Scholar] [CrossRef]
- Faizal, E.M.; Salleh, N.A.; Asgnari, N.H. Length-Weight Relationship and Relative Condition Factor of Yellowfin Tuna (Thunnus Albacares: Bonnaterre, 1788) West Sabah Waters. Int. J. Fish. Aquat. Stud. 2024, 12, 93–98. [Google Scholar] [CrossRef]
- Hsu, C.-C. The Length–Weight Relationship of Albacore, Thunnus Alalunga, from the Indian Ocean. Fish. Res. 1999, 41, 87–92. [Google Scholar] [CrossRef]
- Moltó, V.; Palmer, M.; Ospina-Álvarez, A.; Pérez-Mayol, S.; Benseddik, A.B.; Gatt, M.; Morales-Nin, B.; Alemany, F.; Catalán, I.A. Projected Effects of Ocean Warming on an Iconic Pelagic Fish and Its Fishery. Sci. Rep. 2021, 11, 8803. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, J.; Kuleshov, Y. Monitoring and Predicting Marine Heatwaves in Vanuatu. Environ. Res. Lett. 2024. (ERC-102780, under review).IOP Publishing. [Google Scholar]
- Hobday, A.; Oliver, E.; Sen Gupta, A.; Benthuysen, J.; Burrows, M.; Donat, M.; Holbrook, N.; Moore, P.; Thomsen, M.; Wernberg, T.; et al. Categorizing and Naming Marine Heatwaves. Oceanography 2018, 31, 162–173. [Google Scholar] [CrossRef]
- Mediodia, H.J.P. Effects of Sea Surface Temperature on Tuna Catch: Evidence from Countries in the Eastern Pacific Ocean. Ocean Coast. Manag. 2021, 209, 105657. [Google Scholar] [CrossRef]
- Liu, S.; Li, Y.; Wang, R.; Miao, X.; Zhang, R.; Chen, S.; Song, P.; Lin, L. Effects of Vertical Water Column Temperature on Distribution of Juvenile Tuna Species in the South China Sea. Fishes 2023, 8, 135. [Google Scholar] [CrossRef]
- Evans, K.; Langley, A.; Clear, N.P.; Williams, P.; Patterson, T.; Sibert, J.; Hampton, J.; Gunn, J.S. Behaviour and Habitat Preferences of Bigeye Tuna (Thunnus Obesus) and Their Influence on Longline Fishery Catches in the Western Coral Sea. Can. J. Fish. Aquat. Sci. 2008, 65, 2427–2443. [Google Scholar] [CrossRef]
- Block, B.A.; Keen, J.E.; Castillo, B.; Dewar, H.; Freund, E.V.; Marcinek, D.J.; Brill, R.W.; Farwell, C. Environmental Preferences of Yellowfin Tuna (Thunnus Albacares) at the Northern Extent of Its Range. Mar. Biol. 1997, 130, 119–132. [Google Scholar] [CrossRef]
- Holland, K.N.; Brill, R.W.; Chang, R. Horizontal and Vertical Movements of Yellowfin and Bigeye Tuna Associated with Fish Aggregating Devices. Fish. Bullet 1990, 88, 493–507. [Google Scholar]
- Barkley, R.A.; Neill, W.H. Gooding Skipjack Tuna, Katsuwonus Pelamzs, Habitat Based on Temperature and Oxygen Requirements. Fish. Bull. 1978, 76, 653–662. [Google Scholar]
- Dizon, A.E.; Neill, W.H.; Magnuson, J.J. Rapid Temperature Compensation of Volitional Swimming Speeds and Lethal Temperatures in Tropical Tunas (Scombridae). Environ. Biol. Fish 1977, 2, 83–92. [Google Scholar] [CrossRef]
- Matsubara, N.; Aoki, Y.; Aoki, A.; Kiyofuji, H. Lower Thermal Tolerance Restricts Vertical Distributions for Juvenile Albacore Tuna (Thunnus Alalunga) in the Northern Limit of Their Habitats. Front. Mar. Sci. 2024, 11, 1353918. [Google Scholar] [CrossRef]
- Childers, J.; Snyder, S.; Kohin, S. Migration and Behavior of Juvenile North Pacific Albacore (Thunnus Alalunga): North Pacific Albacore Migration and Behavior. Fish. Oceanogr. 2011, 20, 157–173. [Google Scholar] [CrossRef]
- Filous, A.; Friedlander, A.M.; Toribiong, M.; Lennox, R.J.; Mereb, G.; Golbuu, Y. The Movements of Yellowfin Tuna, Blue Marlin, and Sailfish within the Palau National Marine Sanctuary and the Western Pacific Ocean. ICES J. Mar. Sci. 2022, 79, 445–456. [Google Scholar] [CrossRef]
- Dokumentov, A.; Hyndman, R.J. STR: Seasonal-Trend Decomposition Using Regression. Inf. J. Data Sci. 2022, 1, 50–62. [Google Scholar] [CrossRef]
- You, X. Oceans Break Heat Records Five Years in a Row. Nature 2024, 625, 434–435. [Google Scholar] [CrossRef] [PubMed]
- Bian, C.; Jing, Z.; Wang, H.; Wu, L. Scale-Dependent Drivers of Marine Heatwaves Globally. Geophys. Res. Lett. 2024, 51, e2023GL107306. [Google Scholar] [CrossRef]
- Blank, J.M.; Morrissette, J.M.; Farwell, C.J.; Price, M.; Schallert, R.J.; Block, B.A. Temperature Effects on Metabolic Rate of Juvenile Pacific Bluefin Tuna Thunnus Orientalis. J. Exp. Biol. 2007, 210, 4254–4261. [Google Scholar] [CrossRef]
- Caputi, N.; Feng, M.; Pearce, A.; Molony, B.; Joll, L. Management Implications of Climate Change Effects on Fisheries in WA: An Example of an Extreme Event. In The Marine Heat Wave off Western Australia During the Summer of 2010/11–2 Years on; Department of Fisheries: Western Australia, 2014; p. 3. Available online: https://www.fish.wa.gov.au/Documents/research_reports/frr250.pdf (accessed on 1 September 2024).
- Gomes, D.G.E.; Ruzicka, J.J.; Crozier, L.G.; Huff, D.D.; Brodeur, R.D.; Stewart, J.D. Marine Heatwaves Disrupt Ecosystem Structure and Function via Altered Food Webs and Energy Flux. Nat. Commun. 2024, 15, 1988. [Google Scholar] [CrossRef]
- Artana, C.; Capitani, L.; Santos Garcia, G.; Angelini, R.; Coll, M. Food Web Trophic Control Modulates Tropical Atlantic Reef Ecosystems Response to Marine Heat Wave Intensity and Duration. J. Anim. Ecol. 2024, 1365–2656, 14107. [Google Scholar] [CrossRef]
- Pacific Community (SPC) Concern over Dead Fish in Fiji and Vanuatu. Pac. Community SPC. 2016. Available online: https://www.spc.int/updates/news/2016/02/concern-over-dead-fish-in-fiji-and-vanuatu (accessed on 1 September 2024).
- Roberts, A. Low Oxygen in Water Kill Fish, Says Fisheries. Dly. Post Vanuatu. 2016. Available online: https://www.dailypost.vu/news/low-oxygen-in-water-kill-fish-says-fisheries/article_3e057e95-e37d-5d52-a47f-23e697a6e8ed.html (accessed on 1 September 2024).
- Erauskin-Extramiana, M.; Arrizabalaga, H.; Hobday, A.J.; Cabré, A.; Ibaibarriaga, L.; Arregui, I.; Murua, H.; Chust, G. Large-scale Distribution of Tuna Species in a Warming Ocean. Glob. Change Biol. 2019, 25, 2043–2060. [Google Scholar] [CrossRef]
- Sen Gupta, A.; Thomsen, M.; Benthuysen, J.A.; Hobday, A.J.; Oliver, E.; Alexander, L.V.; Burrows, M.T.; Donat, M.G.; Feng, M.; Holbrook, N.J.; et al. Drivers and Impacts of the Most Extreme Marine Heatwave Events. Sci. Rep. 2020, 10, 19359. [Google Scholar] [CrossRef] [PubMed]
- Shunk, N.P.; Mazzini, P.L.F.; Walter, R.K. Impacts of Marine Heatwaves on Subsurface Temperatures and Dissolved Oxygen in the Chesapeake Bay. J. Geophys. Res. Oceans 2024, 129, e2023JC020338. [Google Scholar] [CrossRef]
- Arrizabalaga, H.; Dufour, F.; Kell, L.; Merino, G.; Ibaibarriaga, L.; Chust, G.; Irigoien, X.; Santiago, J.; Murua, H.; Fraile, I.; et al. Global Habitat Preferences of Commercially Valuable Tuna. Deep Sea Res. Part II Top. Stud. Oceanogr. 2015, 113, 102–112. [Google Scholar] [CrossRef]
- Spillman, C.M.; Smith, G.A.; Hobday, A.J.; Hartog, J.R. Onset and Decline Rates of Marine Heatwaves: Global Trends, Seasonal Forecasts and Marine Management. Front. Clim. 2021, 3, 801217. [Google Scholar] [CrossRef]
- Spillman, C.M.; Hobday, A.J. Dynamical Seasonal Ocean Forecasts to Aid Salmon Farm Management in a Climate Hotspot. Clim. Risk Manag. 2014, 1, 25–38. [Google Scholar] [CrossRef]
- Georgeou, N.; Hawksley, C.; Wali, N.; Lountain, S.; Rowe, E.; West, C.; Barratt, L. Food Security and Small Holder Farming in Pacific Island Countries and Territories: A Scoping Review. PLOS Sustain. Transform. 2022, 1, e0000009. [Google Scholar] [CrossRef]
- Elzahaby, Y.; Schaeffer, A. Observational Insight into the Subsurface Anomalies of Marine Heatwaves. Front. Mar. Sci. 2019, 6, 745. [Google Scholar] [CrossRef]
- Li, C.; Huang, J.; Liu, X.; Ding, L.; He, Y.; Xie, Y. The Ocean Losing Its Breath under the Heatwaves. Nat. Commun. 2024, 15, 6840. [Google Scholar] [CrossRef]
Tuna | Species Name | Lower Limit (°C) | Upper Limit (°C) | Reference |
---|---|---|---|---|
Yellowfin | Katsuwonus pelamzs | 18 | 33 | [51] |
Albacore | Thunnus germo | 12–14 | 22 | [52] |
Bigeye | Thunnus obesus | 16 | 22 | [53] |
Start Date | End Date | Duration, Days | Latitude Value on Start Date, ° S | Latitude Value on End Date, ° S | Isotherm Displacement (End Date–Start Date), ° S |
---|---|---|---|---|---|
11 October 2022 | 8 January 2023 | 90 | 15.625 | 21.875 | 6.25 |
31 October 2008 | 11 January 2009 | 73 | 17.625 | 23.625 | 6.0 |
8 July 2022 | 8 January 2023 | 185 | 17.125 | −22.875 | 5.75 |
22 September 2016 | 8 December 2016 | 78 | 13.125 | 18.625 | 5.5 |
19 November 2001 | 12 December 2001 | 24 | 15.875 | 21.125 | 5.25 |
17 December 1997 | 29 December 1997 | 13 | 17.125 | 21.625 | 4.5 |
12 December 1984 | 26 December 1984 | 15 | 17.875 | 21.875 | 4.0 |
16 November 2005 | 1 December 2005 | 16 | 15.875 | 19.625 | 3.75 |
2 December 2011 | 16 December 2011 | 15 | 16.125 | 19.625 | 3.5 |
16 January 2015 | 12 March 2015 | 56 | 20.875 | 24.375 | 3.5 |
Isotherm Displacement | Mean Intensity | Maximum Intensity | Cumulative Intensity | Duration | |
---|---|---|---|---|---|
Isotherm displacement | 1.0 | 0.61 ** | 0.66 ** | 0.59 ** | 0.6 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weinberg, H.; Bhardwaj, J.; Watkins, A.B.; Kuleshov, Y. The Impact of Marine Heatwaves on Isotherm Displacement and Tuna Distribution in Vanuatu. Climate 2024, 12, 181. https://doi.org/10.3390/cli12110181
Weinberg H, Bhardwaj J, Watkins AB, Kuleshov Y. The Impact of Marine Heatwaves on Isotherm Displacement and Tuna Distribution in Vanuatu. Climate. 2024; 12(11):181. https://doi.org/10.3390/cli12110181
Chicago/Turabian StyleWeinberg, Hannah, Jessica Bhardwaj, Andrew B. Watkins, and Yuriy Kuleshov. 2024. "The Impact of Marine Heatwaves on Isotherm Displacement and Tuna Distribution in Vanuatu" Climate 12, no. 11: 181. https://doi.org/10.3390/cli12110181
APA StyleWeinberg, H., Bhardwaj, J., Watkins, A. B., & Kuleshov, Y. (2024). The Impact of Marine Heatwaves on Isotherm Displacement and Tuna Distribution in Vanuatu. Climate, 12(11), 181. https://doi.org/10.3390/cli12110181