Using Machine Learning for Climate Modelling: Application of Neural Networks to a Slow-Fast Chaotic Dynamical System as a Case Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Coupled Nonlinear Dynamical System with Two Time Scales
2.2. Building a Surrogate Model of a Nonlinear Dynamical System with Two Time Scales: Problem Statement
3. Results
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- IPCC. Climate Change 2013: The Physical Science Basis; Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; p. 1535. [Google Scholar]
- IPCC. Climate Change 2021: The Physical Science Basis; Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V.P., Zhai, A., Pirani, S.L., Connors, C., Péan, S., Berger, N., Caud, Y., Chen, L., Goldfarb, M.I., Gomis, M., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; p. 2391. [Google Scholar]
- Soldatenko, S.; Bogomolov, A.; Ronzhin, A. Mathematical Modelling of Climate Change and Variability in the Context of Outdoor Ergonomics. Mathematics 2021, 9, 2920. [Google Scholar] [CrossRef]
- Trenberth, K. Climate System Modeling; Cambridge University Press: Cambridge, UK, 2010; p. 820. [Google Scholar]
- Neelin, D. Climate Change and Climate Modeling; Cambridge University Press: Cambridge, UK, 2011; p. 304. [Google Scholar]
- Lloyd, E.A.; Winsverg, E. Philosophical and Conceptual Issues; Palgrave Macmillan: London, UK, 2019; p. 497. [Google Scholar]
- Palmer, T. Modelling: Build imprecise supercomputers. Nature 2015, 526, 32–33. [Google Scholar] [CrossRef]
- Lu, D.; Ricciuto, D. Efficient surrogate modeling methods for large-scale Earth system models based on machine-learning techniques. Geosci. Model Dev. 2019, 12, 1791–1807. [Google Scholar] [CrossRef]
- Bocquet, M. Surrogate modeling for the climate sciences dynamics with machine learning and data assimilation. Front. Appl. Math. Stat. 2023, 9, 1133226. [Google Scholar] [CrossRef]
- Weber, T.; Corotan, A.; Hutchinson, B.; Kravitz, B.; Link, R. Technical note: Deep learning for creating surrogate models of precipitation in Earth system models. Atmos. Chem. Phys. 2020, 20, 2303–2317. [Google Scholar] [CrossRef]
- Huntingford, C.; Jeffers, E.S.; Bonsall, M.B.; Christensen, H.M.; Lees, T.; Yang, H. Machine learning and artificial intelligence to aid climate change research and preparedness. Environ. Res. Lett. 2019, 14, 124007. [Google Scholar] [CrossRef]
- Boukabara, S.A.; Krasnopolsky, V.; Penny, S.G.; Stewart, J.Q.; McGovern, A.; Hall, D.; Hoeve, J.E.T.; Hickey, J.; Huang, H.-L.A.; Williams, J.K. Outlook for exploiting artificial intelligence in the earth and environmental sciences. Bull. Am. Meteorol. Soc. 2021, 102, E1016–E1032. [Google Scholar] [CrossRef]
- Dewitte, S.; Cornelis, J.P.; Müller, R.; Munteanu, A. Artificial intelligence revolutionises weather forecast, climate monitoring and decadal prediction. Remote Sens. 2021, 13, 3209. [Google Scholar] [CrossRef]
- Kashinath, K.; Mustafa, M.; Albert, A.; Wu, J.L.; Jiang, C.; Esmaeilzadeh, S.; Azizzadenesheli, K.; Wang, R.; Chattopadhyay, A.; Singh, A. Physics-informed machine learning: Case studies for weather and climate modelling. Phil. Trans. R. Soc. 2021, 379, 20200093. [Google Scholar] [CrossRef] [PubMed]
- Schultz, M.G.; Betancourt, C.; Gong, B.; Kleinert, F.; Langguth, M.; Leufen, L.H.; Mozaffari, A.; Stadtler, S. Can Deep Learning Neat Numerical Weather Prediction? Phil. Trans. R. Soc. A 2021, 379, 2020097. [Google Scholar]
- Bochenek, B.; Ustrnul, Z. Machine learning in weather prediction and climate analyses—Applications and perspectives. Atmosphere 2022, 13, 180. [Google Scholar] [CrossRef]
- Sun, Z.; Sandoval, L.; Crystal-Ornelas, R.; Mousavi, S.M.; Wang, J.; Lin, C.; Cristea, N.; Tong, D.; Carande, W.H.; Ma, X. A review of earth artificial intelligence. Comput. Geosci. 2022, 159, 105034. [Google Scholar] [CrossRef]
- Bi, K.; Xie, L.; Zhang, H.; Chen, X.; Gu, X.; Tian, Q. Accurate medium-range global weather forecasting with 3D neural networks. Nature 2023, 619, 533–538. [Google Scholar] [CrossRef] [PubMed]
- de Burgh-Day, C.O.; Leeuwenburg, T. Machine learning for numerical weather and climate modelling: A review. Geosci. Model Dev. 2023, 16, 6433–6477. [Google Scholar] [CrossRef]
- Schneider, T.; Behera, S.; Boccaletti, G.; Deser, C.; Emanuel, K.; Ferrari, R.; Leung, L.R.; Lin, N.; Müller, T.; Navarra, A. Harnessing AI and computing to advance climate modelling and prediction. Nat. Clim. Change 2023, 13, 887–889. [Google Scholar] [CrossRef]
- Krasnopolsky, V. Applying Machine Learning in Numerical Weather and Climate Modeling Systems. Climate 2024, 12, 78. [Google Scholar] [CrossRef]
- Soldatenko, S.A. Artificial Intelligence and Its Application in Numerical Weather Prediction. Meteorol. Hydrol. 2024, 49, 283–298. [Google Scholar] [CrossRef]
- Forrester, A.; Sóbester, A.; Keane, A. Engineering Design via Surrogate Modelling: A Practical Guide; Wiley: Chichester, UK, 2008; p. 240. [Google Scholar]
- Bhosekar, A.; Ierapetritou, M. Advances in surrogate based modeling, feasibility analysis, and optimization: A review. Comput. Chem. Eng. 2018, 108, 250–267. [Google Scholar] [CrossRef]
- Gramacy, R.B. Surrogates: Gaussian Process Modeling, Design and Optimization for the Applied Sciences; Chapman Hall/CRC: Boca Raton, FL, USA, 2020; p. 543. [Google Scholar]
- Jiang, P.; Zhou, Q.; Shao, X. Surrogate Model-Based Engineering Design and Optimization; Springer: Singapore, 2020; p. 240. [Google Scholar]
- Koziel, S.; Pietrenko-Dabrowska, A. Performance-Driven Surrogate Modeling of High-Frequency Structures; Springer: Berlin/Heidelberg, Germany, 2020; p. 419. [Google Scholar]
- Alizadeh, R.; Allen, J.K.; Mistree, F. Managing computational complexity using surrogate models: A critical review. Res. Eng. Des. 2020, 31, 275–298. [Google Scholar] [CrossRef]
- McDermott, P.L.; Wikle, C.K. Deep echo state networks with uncertainty quantification for spatio-temporal forecasting. Environmetrics 2018, 30, e2553. [Google Scholar] [CrossRef]
- Pasini, A.; Racca, P.; Amendola, S.; Cartocci, G.; Cassardo, C. Attribution of recent temperature behaviour reassessed by a neural-network method. Sci. Rep. 2017, 7, 17681. [Google Scholar] [CrossRef] [PubMed]
- Ham, Y.G.; Kim, J.H.; Luo, J.J. Deep learning for multi-year ENSO forecasts. Nature 2019, 573, 568–572. [Google Scholar] [CrossRef] [PubMed]
- Mu, B.; Qin, B.; Yuan, S.J. ENSO-ASC 1.0.0: ENSO deep learning forecast model with a multivariate air–sea coupler. Geosci. Model Dev. 2021, 14, 6977–6999. [Google Scholar] [CrossRef]
- Zhu, Y.C.; Zhang, R.-H.; Moum, J.N.; Wang, F.; Li, X.F.; Li, D.L. Physics-informed deep-learning parameterization of ocean vertical mixing improves climate simulations. Natl. Sci. Rev. 2022, 9, nwac044. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Zhang, R.-H. A self-attention-based neural network for three-dimensional multivariate modeling and its skillful ENSO predictions. Sci. Adv. 2023, 9, eadf2827. [Google Scholar] [CrossRef] [PubMed]
- Field, R.V.; Constantine, P.; Boslough, M. Statistical Surrogate Models for Prediction of High-Consequence Climate Change; Sandia National Laboratories: Albuquerque, NM, USA; Livermore, CA, USA, 2008; p. 38. [Google Scholar]
- Prieß, M.; Piwonski, J.; Koziel, S.; Slawig, T. Parameter identification in climate models using surrogate-based optimization. J. Comput. Methods Sci. Eng. 2012, 12, 47–62. [Google Scholar] [CrossRef]
- Rasp, S.; Pritchard, M.S.; Gentine, P. Deep learning to represent subgrid processes in climate models. Proc. Natl. Acad. Sci. USA 2018, 115, 9684–9689. [Google Scholar] [CrossRef] [PubMed]
- Brenowitz, N.D.; Bretherton, C.S. Spatially extended tests of a neural network parameterization trained by coarse-graining. J. Adv. Model. Earth Syst. 2019, 11, 2727–2744. [Google Scholar]
- Chattopadhyay, A.; Ashesh, K.; Hassanzadeh, P.; Subramanian, D.; Palem, K.; Jiang, C.; Subel, A. Data-Driven Surrogate Models for Climate Modeling: Application of Echo State Networks, RNN-LSTM and ANN to the Multi-Scale Lorenz System as a Test Case. ICML Workshop on Climate Change, Long Beach, CA, USA. 2019. Available online: https://www.climatechange.ai/papers/icml2019/22 (accessed on 10 July 2024).
- Hudson, B.; Nijweide, F.; Sebenius, I. Computationally-Efficient Climate Predictions using Multi-Fidelity Surrogate Modelling. arXiv 2021, arXiv:2109.07468. [Google Scholar]
- Yuval, J.; O’Gorman, P.A. Stable machine-learning parameterization of subgrid processes for climate modeling at a range of resolutions. Nat. Commun. 2020, 11, 3295. [Google Scholar] [CrossRef] [PubMed]
- Pawar, S.; San, O. Equation-free surrogate modeling of geophysical flows at the intersection of machine learning and data assimilation. J. Adv. Model. Earth Syst. 2022, 14, e2022MS003170. [Google Scholar] [CrossRef]
- Jin, Q.; Jiang, X.; Hua, F.; Yang, Y.; Jiang, S.; Yu, C.; Song, Z. GWSM4C: A global wave surrogate model for climate simulation based on a convolutional architecture. Ocean. Eng. 2024, 309, 118458. [Google Scholar] [CrossRef]
- Durand, C.; Finn, T.S.; Farchi, A.; Bocquet, M.; Boutin, G.; Ólason, E. Data-driven surrogate modeling of high-resolution sea-ice thickness in the Arctic. Cryosphere 2024, 18, 1791–1815. [Google Scholar] [CrossRef]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning (Adaptive Computation and Machine Learning Series); MIT Press: Cambridge, MA, USA, 2016; p. 800. [Google Scholar]
- Aggarwal, C.C. Neural Networks and Deep Learning; Springer: Cham, Switzerland, 2023; p. 529. [Google Scholar]
- Bishop, C.M.; Bishop, H. Deep Learning: Foundation and Concepts; Springer: Cham, Switzerland, 2024; p. 649. [Google Scholar]
- Balogh, B.; Saint-Martin, D.; Ribes, A. A toy model to investigate stability of AI-based dynamical systems. Geophys. Res. Lett. 2021, 48, e2020GL092133. [Google Scholar] [CrossRef]
- Lorenz, E.N. Deterministic nonperiodic flow. J. Atmos. Sci. 1963, 20, 130–141. [Google Scholar] [CrossRef]
- Pasini, A.; Langone, R.; Maimone, F.; Pelino, V. Energy-based predictions in Lorenz system by a unified formalism and neural network modelling. Nonlinear Process. Geophys. 2010, 17, 809–815. [Google Scholar] [CrossRef]
- Boffetta, G.; Crisanti, A.; Paparella, F.; Provenzale, A.; Vulpiani, A. Slow and fast dynamics in coupled systems: A time series analysis view. Phys. D 1998, 116, 301–312. [Google Scholar] [CrossRef]
- Boffetta, G.; Giuliani, P.; Paladin, G.; Vulpiani, A. An Extension of the Lyapunov Analysis for the Predictability Problem. J. Atmos. Sci. 1998, 55, 3409–3416. [Google Scholar] [CrossRef]
- Peña, M.; Kalnay, E. Separating fast and slow modes in coupled chaotic systems. Nonlinear Process. Geophys. 2004, 11, 319–327. [Google Scholar] [CrossRef]
- Siqueira, L.; Kirtman, B. Predictability of a low-order interactive ensemble. Nonlinear Process. Geophys. 2012, 19, 273–282. [Google Scholar] [CrossRef]
- Soldatenko, S.; Steinle, P.; Tingwell, C.; Chichkine, S. Some aspects of sensitivity analysis in variational data assimilation for coupled dynamical systems. Adv. Meteorol. 2015, 2015, 1–22. [Google Scholar] [CrossRef]
- Soldatenko, S.; Chichkine, D. Correlation and Spectral Properties of a Coupled Nonlinear Dynamical System in the Context of Numerical Weather Prediction and Climate Modeling. Discret. Dyn. Nat. Soc. 2014, 2014, 498184. [Google Scholar] [CrossRef]
- Dymnikov, V.P.; Filatov, A.N. Mathematics of Climate Modeling; Birkhauser: Boston, MA, USA, 1997; p. 264. [Google Scholar]
- Russell, S.; Norvig, P. Artificial Intelligence: A Modern Approach; Pearson: Hoboken, NJ, USA, 2021; p. 1168. [Google Scholar]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Graves, A.; Schmidhuber, J. Framewise phoneme classification with bidirectional LSTM networks. In Proceedings of the IEEE International Joint Conference on Neural Networks (IJCNN), Montreal, QC, Canada, 31 July–4 August 2005; Volume 4, pp. 2047–2052. [Google Scholar]
- Van Houdt, G.; Mosquera, C.; Nápoles, G. A review on the long short-term memory model. Artif. Intell. Rev. 2020, 53, 5929–5955. [Google Scholar] [CrossRef]
- Han, D.; Liu, P.; Xie, K.; Li, H.; Xia, Q.; Cheng, Q.; Wang, Y.; Yang, Z.; Zhang, Y.; Xia, J. An attention-based LSTM model for long-term runoff forecasting and factor recognition. Environ. Res. Lett. 2023, 18, 024004. [Google Scholar] [CrossRef]
- Rubasinghe, O.; Zhang, X.; Chau, T.K.; Chow, Y.H.; Fernando, T.; Iu, H.H.C. A novel sequence to sequence data modelling based CNN-LSTM algorithm for three years ahead monthly peak load forecasting. IEEE Trans. Power Syst. 2024, 39, 1932–1947. [Google Scholar] [CrossRef]
- Song, Y.; Tsai, W.P.; Gluck, J.; Rhoades, A.; Zarzycki, C.; McCrary, R.; Lawson, K.; Shen, C. LSTM-based data integration to improve snow water equivalent prediction and diagnose error sources. J. Hydrometeorol. 2024, 25, 223–237. [Google Scholar] [CrossRef]
- Heaton, J. Introduction to Neural Networks with JAVA; Heaton Research Publication: St. Louise, MO, USA, 2008; p. 439. [Google Scholar]
Forecast Lead Time in MTU | 16 Nodes | 128 Nodes | ||
---|---|---|---|---|
RMSE | MAE | RMSE | MAE | |
5 | 0.010 | 0.011 | 0.010 | 0.005 |
10 | 0.025 | 0.014 | 0.009 | 0.025 |
50 | 0.136 | 0.070 | 0.136 | 0.057 |
75 | 0.141 | 0.075 | 0.144 | 0.070 |
100 | 0.202 | 0.137 | 0.151 | 0.092 |
150 | 0.253 | 0.192 | 0.221 | 0.157 |
Forecast Lead Time | 16 Nodes | 128 Nodes | ||
---|---|---|---|---|
RMSE | MAE | RMSE | MAE | |
5 | 0.006 | 0.004 | 0.002 | 0.002 |
10 | 0.005 | 0.004 | 0.004 | 0.002 |
50 | 0.051 | 0.026 | 0.037 | 0.012 |
75 | 0.110 | 0.058 | 0.100 | 0.041 |
100 | 0.118 | 0.058 | 0.136 | 0.059 |
150 | 0.237 | 0.165 | 0.223 | 0.126 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soldatenko, S.; Angudovich, Y. Using Machine Learning for Climate Modelling: Application of Neural Networks to a Slow-Fast Chaotic Dynamical System as a Case Study. Climate 2024, 12, 189. https://doi.org/10.3390/cli12110189
Soldatenko S, Angudovich Y. Using Machine Learning for Climate Modelling: Application of Neural Networks to a Slow-Fast Chaotic Dynamical System as a Case Study. Climate. 2024; 12(11):189. https://doi.org/10.3390/cli12110189
Chicago/Turabian StyleSoldatenko, Sergei, and Yaromir Angudovich. 2024. "Using Machine Learning for Climate Modelling: Application of Neural Networks to a Slow-Fast Chaotic Dynamical System as a Case Study" Climate 12, no. 11: 189. https://doi.org/10.3390/cli12110189
APA StyleSoldatenko, S., & Angudovich, Y. (2024). Using Machine Learning for Climate Modelling: Application of Neural Networks to a Slow-Fast Chaotic Dynamical System as a Case Study. Climate, 12(11), 189. https://doi.org/10.3390/cli12110189