Extremely Cold Climate and Social Vulnerability in Alaska: Problems and Prospects
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methods
2.3. Data
3. Results
4. Discussion
4.1. Indigenous Knowledge and Social Support Network
4.2. Limitations and Advantages
4.3. Recommendations: Reducing Vulnerability through Adaptation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Report on the Goals and Objectives for Arctic Research 2023–2024 for the US Arctic Research Program Plan United States Arctic Research Commission. United States Arctic Research Commission. (2023). Report on the Goals and Objectives for Arctic Research 2023–2024 for the US Arctic Research Program Plan. Arlington, VA: United States Arctic Research Commission. Available online: https://www.arctic.gov/uploads/assets/arctic-research-2023-2024.pdf (accessed on 4 October 2023).
- Arctic Climate Change Update 2021: Key Trends and Impacts. In Summary for Policy-Makers; Arctic Monitoring and Assessment Programme (AMAP): Tromsø, Norway, 2021; 16p, Available online: https://www.amap.no/documents/doc/arctic-climate-change-update-2021-key-trends-and-impacts.-summary-for-policy-makers/3508 (accessed on 4 October 2023).
- Rantanen, M.; Karpechko, A.Y.; Lipponen, A.; Nordling, K.; Hyvärinen, O.; Ruosteenoja, K.; Vihma, T.; Laaksonen, A. The Arctic has warmed nearly four times faster than the globe since 1979. Commun. Earth Environ. 2022, 3, 168. [Google Scholar] [CrossRef]
- Esau, I.; Pettersson, L.H.; Cancet, M.; Chapron, B.; Chernokulsky, A.; Donlon, C.; Sizov, O.; Soromotin, A.; Johannesen, J.A. The Arctic Amplification and Its Impact: A Synthesis through Satellite Observations. Remote Sens. 2023, 15, 1354. [Google Scholar] [CrossRef]
- Nielsen-Englyst, P.; Høyer, J.L.; Kolbe, W.M.; Dybkjær, G.; Lavergne, T.; Tonboe, R.T.; Skarpalezos, S.; Karagali, I. A combined sea and sea-ice surface temperature climate dataset of the Arctic, 1982–2021. Remote Sens. Environ. 2023, 284, 113331. [Google Scholar] [CrossRef]
- Attanasio, O.; Kitao, S.; Violante, G.L. Global demographic trends and social security reform. J. Monetary Econ. 2007, 54, 144–198. [Google Scholar] [CrossRef]
- Nakashima, D.; Galloway, M.; Thulstrup, H.; Ramos, C.; Rubis, J. Weathering Uncertainty: Traditional Knowledge for Climate Change Assessment and Adaptation; UNESCO: Paris, France; United Nations University: Darwin, Australia, 2012; 120p. [Google Scholar]
- Devlin, M.K.; Grey, M.A. Climate Change Refugees and Public Health Implications. In Good Health and Well-Being. Encyclopedia of the UN Sustainable Development Goals; Leal Filho, W., Wall, T., Azul, A.M., Brandli, L., Özuyar, P.G., Eds.; Springer: Cham, Switzerland, 2020; pp. 91–99. [Google Scholar] [CrossRef]
- Andharia, J. Vulnerability: Its discursive and material nature. In Routledge Handbook of Environmental Hazards and Society; Routledge: London, UK; New York, NY, USA, 2022; pp. 185–200. [Google Scholar] [CrossRef]
- Wisner, B.; Blaikie, P.; Cannon, T.; Davis, I. At Risk: Natural Hazards, Peoples’ Vulnerabilities and Disasters; Routledge: London, UK; New York, NY, USA, 2004. [Google Scholar]
- Birkmann, J.; Cardona, O.D.; Carreño, M.L.; Barbat, A.H.; Pelling, M.; Schneiderbauer, S.; Kienberger, S.; Keiler, M.; Alexander, D.; Zeil, P.; et al. Framing vulnerability, risk and societal responses: The MOVE framework. Nat. Hazards 2013, 67, 193–211. [Google Scholar] [CrossRef]
- Cutter, S.L.; Mitchell, J.T.; Scott, M.S. Revealing the vulnerability of people and places: A case study of Georgetown County, South Carolina. Ann. Assoc. Am. Geogr. 2000, 90, 713–737. [Google Scholar] [CrossRef]
- Cutter, S.L.; Boruff, B.J.; Shirley, W.L. Social Vulnerability to Environmental Hazards. Soc. Sci. Q. 2003, 84, 242–261. [Google Scholar] [CrossRef]
- McCarthy, J.; Canziani, O.; Leary, N.; Dokken, D.; White, K. Climate change 2001: Impacts, adaptation, and vulnerability. In Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2001; 19p. [Google Scholar]
- Adger, W.N. Vulnerability. Glob. Environ. Change 2006, 16, 268–281. [Google Scholar] [CrossRef]
- Wilhelmi, O.V.; Hayden, M.H. Connecting people and place: A new framework for reducing urban vulnerability to extreme heat. Environ. Res. Lett. 2010, 5, 014021. [Google Scholar] [CrossRef]
- Lorencová, E.K.; Whitham, C.E.L.; Bašta, P.; Harmáčková, Z.V.; Štěpánek, P.; Zahradníček, P.; Farda, A.; Vačkář, D. Participatory climate change impact assessment in three Czech cities: The case of heatwaves. Sustainability 2018, 10, 1906. [Google Scholar] [CrossRef]
- Yoon, D.K. Assessment of social vulnerability to natural disasters: A comparative study. Nat. Hazards 2012, 63, 823–843. [Google Scholar] [CrossRef]
- Fatemi, F.; Ardalan, A.; Aguirre, B.; Mansouri, N.; Mohammadfam, I. Social vulnerability indicators in disasters: Findings from a systematic review. Int. J. Disaster Risk Reduct. 2017, 22, 219–227. [Google Scholar] [CrossRef]
- Ran, J.; MacGillivray, B.H.; Gong, Y.; Hales, T.C. The application of frameworks for measuring social vulnerability and resilience to geophysical hazards within developing countries: A systematic review and narrative synthesis. Sci. Total Environ. 2020, 711, 134486. [Google Scholar] [CrossRef]
- De Pascale, F. The Social Vulnerability Index: A Literature Review. In Geohazards and Disaster Risk Reduction. Advances in Natural and Technological Hazards Research; D’Amico, S., De Pascale, F., Eds.; Springer: Cham, Switzerland, 2023; p. 51. [Google Scholar] [CrossRef]
- Azar, D.; Rain, D. Identifying population vulnerability to hydrological hazards in San Juan, Puerto Rico. GeoJournal 2007, 69, 23–43. [Google Scholar] [CrossRef]
- Zahran, S.; Brody, S.D.; Peacock, W.G.; Vedlitz, A.; Grover, H. Social vulnerability and the natural and built environment: A model of flood casualties in Texas, 1997–2001. Disasters 2008, 32, 537–560. [Google Scholar] [CrossRef]
- Fekete, A. Spatial disaster vulnerability and risk assessments: Challenges in their quality and acceptance. Nat. Hazards 2012, 61, 1161–1178. [Google Scholar] [CrossRef]
- Rufat, S.; Tate, E.; Burton, C.G.; Maroof, A.S. Social vulnerability to floods: Review of case studies and implications for measurement. Int. J. Disaster Risk Reduct. 2015, 14, 470–486. [Google Scholar] [CrossRef]
- Aroca-Jiménez, E.; Bodoque, J.M.; García, J.A. How to construct and validate an Integrated Socio-Economic Vulnerability Index: Implementation at regional scale in urban areas prone to flash flooding. Sci. Total Environ. 2020, 746, 140905. [Google Scholar] [CrossRef]
- Hinojos, S.; McPhillips, L.; Stempel, P.; Grady, C. Social and environmental vulnerability to flooding: Investigating cross-scale hypotheses. Appl. Geogr. 2023, 157, 103017. [Google Scholar] [CrossRef]
- Lapietra, I.; Rizzo, A.; Colacicco, R.; Dellino, P.; Capolongo, D. Evaluation of Social Vulnerability to Flood Hazard in Basilicata Region (Southern Italy). Water 2023, 15, 1175. [Google Scholar] [CrossRef]
- Rygel, L.; O’Sullivan, D.; Yarnal, B. A method for constructing a social vulnerability index: An application to hurricane storm surges in a developed country. Mitig. Adapt. Strat. Glob. Chang. 2006, 11, 741–764. [Google Scholar] [CrossRef]
- Wu, S.Y.; Yarnal, B.; Fisher, A. Vulnerability of coastal communities to sea-level rise: A case study of Cape May County, New Jersey, USA. Clim. Res. 2002, 22, 255–270. [Google Scholar] [CrossRef]
- Boruff, B.J.; Cutter, S.L. The environmental vulnerability of Caribbean island nations. Geogr. Rev. 2007, 97, 24–45. [Google Scholar] [CrossRef]
- Mafi-Gholami, D.; Jaafari, A.; Zenner, E.K.; Kamari, A.N.; Bui, D.T. Vulnerability of coastal communities to climate change: Thirty-year trend analysis and prospective prediction for the coastal regions of the Persian Gulf and Gulf of Oman. Sci. Total Environ. 2020, 741, 140305. [Google Scholar] [CrossRef]
- Wood, N.; Burton, C.; Cutter, S. Community variations in social vulnerability to Cascadia-related tsunamis in the U.S. Pacific Northwest. Nat. Hazards 2010, 52, 369–389. [Google Scholar] [CrossRef]
- Myers, C.A.; Slack, T.; Singlemann, J. Social vulnerability and migration in the wake of disaster: The case of Hurricanes Katrina and Rita. Popul. Environ. 2008, 29, 271–291. [Google Scholar] [CrossRef]
- Johnson, D.; Stanforth, A.; Lulla, V.; Luber, G. Developing an applied extreme heat vulnerability index utilizing socioeconomic and environmental data. Appl. Geogr. 2012, 35, 23–31. [Google Scholar] [CrossRef]
- De Oliveira Mendes, J. Social Vulnerability Indexes as planning tools: Beyond the preparedness paradigm. J. Risk Res. 2009, 12, 43–58. [Google Scholar] [CrossRef]
- Finch, C.; Emrich, C.; Cutter, S. Disaster Disparities and Differential Recovery in New Orleans. In Global Labour in Distress, Volume I. Palgrave Readers in Economics; Goulart, P., Ramos, R., Ferrittu, G., Eds.; Palgrave Macmillan: Cham, Switzerland, 2022. [Google Scholar] [CrossRef]
- Wheeler, A.F.; Conservation, C.V. National Infrastructure and Buildings Climate Change Adaptation State of Play Report. Prepared for the Infrastructure and Buildings Working Group, Part of Canada’s Climate Change Adaptation Platform. 2017. Available online: http://www.ibwgsop.org/assets/IBWG_SOP_Final_-_August_10_2017.pdf (accessed on 4 October 2023).
- Borden, K.A.; Schmidtlein, M.C.; Emrich, C.T.; Piegorsch, W.W.; Cutter, S.L. Vulnerability of US cities to environmental hazards. J. Homel. Secur. Emerg. Manag. 2007, 4, 5. [Google Scholar] [CrossRef]
- Cutter, S.L.; Finch, C. Temporal and spatial changes in social vulnerability to natural hazards. Proc. Natl. Acad. Sci. USA 2008, 105, 2301–2306. [Google Scholar] [CrossRef]
- Modgil, S.; Singh, R.K.; Foropon, C. Quality management in humanitarian operations and disaster relief management: A review and future research directions. Ann. Oper. Res. 2022, 319, 1045–1098. [Google Scholar] [CrossRef] [PubMed]
- Holand, I.; Lujala, P. Replicating and adapting an index of social vulnerability to a new context: A comparison study for Norway. Prof. Geogr. 2013, 65, 312–328. [Google Scholar] [CrossRef]
- Fekete, A. Validation of a social vulnerability index in context to river-floods in Germany. Nat. Hazard Earth Syst. 2009, 9, 393–403. [Google Scholar] [CrossRef]
- Guillard-Goncalves, C.; Cutter, S.; Emrich, C.; Zezere, J. Application of Social Vulnerability Index (SoVI) and delineation of natural risk zones in Greater Lisbon, Portugal. J. Risk Res. 2015, 18, 651–674. [Google Scholar] [CrossRef]
- Chen, W.; Cutter, S.; Emrich, C.; Shi, P. Measuring social vulnerability to natural hazards in the Yangtze River Delta region, China. Int. J. Disaster Risk Sci. 2013, 4, 169–181. [Google Scholar] [CrossRef]
- de Loyola Hummel, B.; Cutter, S.; Emrich, C. Social vulnerability to natural hazards in Brazil. Int. J. Disaster Risk Sci. 2016, 7, 111–122. [Google Scholar] [CrossRef]
- Lloyd, S.; Gray, J.; Healey, S.; Opdyke, A. Social vulnerability to natural hazards in the Philippines. Int. J. Disaster Risk Reduct. 2022, 79, 103103. [Google Scholar] [CrossRef]
- Chakraborty, J.; Montz, B.E.; Tobin, G.A. Population evacuation: Assessing spatial variability in geophysical risk and social vulnerability to natural hazards. Nat. Hazards Rev. 2005, 6, 23–33. [Google Scholar] [CrossRef]
- Szagri, D.; Nagy, B.; Szalay, Z. How can we predict where heatwaves will have an impact?—A literature review on heat vulnerability indexes. Urban Clim. 2023, 52, 101711. [Google Scholar] [CrossRef]
- Nayak, S.; Shrestha, S.; Kinney, P.; Ross, Z.; Sheridan, S.; Pantea, C.; Hsu, W.; Muscatiello, N.; Hwang, S. Development of a heat vulnerability index for New York State. Public Health 2018, 61, 127–137. [Google Scholar] [CrossRef]
- Zuhra, S.S.; Tabinda, A.B.; Yasar, A. Appraisal of the heat vulnerability index in Punjab: A case study of spatial pattern for exposure, sensitivity, and adaptive capacity in megacity Lahore, Pakistan. Int. J. Biometeorol. 2019, 63, 1669–1682. [Google Scholar] [CrossRef]
- Wolf, T.; McGregor, G. The development of a heat wave vulnerability index for London, United Kingdom. Weather Clim. Extremes 2013, 1, 59–68. [Google Scholar] [CrossRef]
- Chow, W.; Chuang, W.-C.; Gober, P. Vulnerability to extreme heat in Metropolitan Phoenix: Spatial, temporal, and demographic dimensions. Prof. Geogr. 2012, 64, 286–302. [Google Scholar] [CrossRef]
- Bradford, K.; Abrahams, L.; Hegglin, M.; Klima, K. A heat vulnerability index and adaptation solutions for Pittsburgh, Pennsylvania. Environ. Sci. Technol. 2015, 49, 11303–11311. [Google Scholar] [CrossRef]
- Oh, K.-Y.; Lee, M.-J.; Jeon, S.-W. Development of the Korean Climate Change Vulnerability Assessment Tool (VESTAP)-centered on health vulnerability to heat waves. Sustainability 2017, 9, 1103. [Google Scholar] [CrossRef]
- Grigorieva, E.A.; Revich, B.A. Health Risks to the Russian Population from Temperature Extremes at the Beginning of the XXI Century. Atmosphere 2021, 12, 1331. [Google Scholar] [CrossRef]
- Demoury, C.; Aerts, R.; Vandeninden, B.; Van Schaeybroeck, B.; De Clercq, E.M. Impact of Short-Term Exposure to Extreme Temperatures on Mortality: A Multi-City Study in Belgium. Int. J. Environ. Res. Public Health 2022, 19, 3763. [Google Scholar] [CrossRef]
- Masselot, P.; Mistry, M.; Vanoli, J.; Schneider, R.; Iungman, T.; Garcia-Leon, D.; Ciscar, J.-C.; Feyen, L.; Orru, H.; Urban, A.; et al. Excess mortality attributed to heat and cold: A health impact assessment study in 854 cities in Europe. Lancet Planet. Health 2023, 7, e271–e281. [Google Scholar] [CrossRef]
- de Schrijver, E.; Royé, D.; Gasparrini, A.; Franco, O.H.; Vicedo-Cabrera, A.M. Exploring vulnerability to heat and cold across urban and rural populations in Switzerland. Environ. Res. Health 2023, 1, 025003. [Google Scholar] [CrossRef] [PubMed]
- Lauta, K.C.; Vendelø, M.T.; Sørensen, B.R.; Dahlberg, R. Conceptualizing cold disasters: Disaster risk governance at the Arctic edge. Int. J. Disaster Risk Reduct. 2018, 31, 1276–1282. [Google Scholar] [CrossRef]
- López-Bueno, J.; Díaz, J.; Navas, M.; Mirón, I.; Follos, F.; Vellón, J.; Ascaso, M.; Luna, M.; Martínez, G.; Linares, C. Temporal evolution of threshold temperatures for extremely cold days in Spain. Sci. Total Environ. 2022, 844, 157183. [Google Scholar] [CrossRef] [PubMed]
- Bieniek, P.A.; Bhatt, U.S.; Thoman, R.L.; Angeloff, H.; Partain, J.; Papineau, J.; Fritsch, F.; Holloway, E.; Walsh, J.E.; Daly, C.; et al. Climate divisions for Alaska based on objective methods. J. Appl. Meteorol. Climatol. 2012, 51, 1276–1289. [Google Scholar] [CrossRef]
- Mölders, N. Outdoor Universal Thermal Comfort Index Climatology for Alaska. Atmos. Clim. Sci. 2019, 9, 558–582. [Google Scholar] [CrossRef]
- Walsh, J.E. Arctic climate change, variability, and extremes. In Arctic Hydrology, Permafrost and Ecosystems; Yang, D., Kane, D.L., Eds.; Springer: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Grigorieva, E.; Alexeev, V.; Walsh, J. Universal Thermal Climate Index in the Arctic in an era of climate change: Alaska and Chukotka as a case study. Int. J. Biometeorol. 2023, 67, 1703–1721. [Google Scholar] [CrossRef]
- Peel, M.C.; Finlayson, B.L.; Mcmahon, T.A. Updated world map of the Köppen–Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef]
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef]
- Allhoff, F.; Golemon, L. Rural Bioethics: The Alaska Context. HEC Forum 2020, 32, 313–331. [Google Scholar] [CrossRef]
- Alaska: 2020 Census. United States Census Buro. 2022. Available online: https://www.census.gov/library/stories/state-by-state/alaska-population-change-between-census-decade.html (accessed on 18 January 2024).
- Social Context Team; Shaw, A.; Kelsey, L.; Doherty, J.; Grigsby, C. Census Bureau 2010–2014; US Census Bureau: Anchorage, CA, USA, 2015. [Google Scholar]
- Bröde, P.; Fiala, D.; Błażejczyk, K.; Holmér, I.; Jendritzky, G.; Kampmann, B.; Tinz, B.; Havenith, G. Deriving the operational procedure for the Universal Thermal Climate Index (UTCI). Int. J. Biometeorol. 2012, 56, 481–494. [Google Scholar] [CrossRef]
- Jendritzky, G.; de Dear, R.; Havenith, G. UTCI—Why another thermal index? Int. J. Biometeorol. 2012, 56, 421–428. [Google Scholar] [CrossRef]
- Blazejczyk, K.; Epstein, Y.; Jendritzky, G.; Staiger, H.; Tinz, B. Comparison of UTCI to selected thermal indices. Int. J. Biometeorol. 2012, 56, 515–535. [Google Scholar] [CrossRef]
- de Freitas, C.R.; Grigorieva, E.A. A comparison and appraisal of a comprehensive range of human thermal climate indices. Int. J. Biometeorol. 2017, 61, 487–512. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://djcoregon.com/news/2001/08/08/alaska-leads-nation-in-homes-that-lack-plumbing/ (accessed on 1 December 2023).
- Available online: https://highlatitudestyle.com/permafrost-can-cause-problems-for-providing-drink-water/ (accessed on 1 December 2023).
- Aten, B.H. Regional Price Parities and Real Regional Income for the United States. Soc. Indic. Res 2017, 131, 123–143. [Google Scholar] [CrossRef]
- Dufour, M.; Labrie, V.; Tremblay-Pepin, S. Using the Market Basket Measure to Discuss Income Inequality from the Perspective of Basic Needs. Soc. Indic. Res. 2021, 155, 455–478. [Google Scholar] [CrossRef]
- Schmidtlein, M.C.; Deutsch, R.C.; Piegorsch, W.W.; Cutter, S.L. A Sensitivity Analysis of the Social Vulnerability Index. Risk Anal. 2008, 28, 1099–1114. [Google Scholar] [CrossRef] [PubMed]
- Hagenlocher, M.; Renaud, F.G.; Haas, S.; Sebesvari, Z. Vulnerability and risk of deltaic social-ecological systems exposed to multiple hazards. Sci. Total Environ. 2018, 631, 71–80. [Google Scholar] [CrossRef] [PubMed]
- C3S (Copernicus Climate Change Service). Near Surface Meteorological Variables from 1979 to 2018 Derived from Bias-Corrected Reanalysis; CDS: 2020 European Centre for Medium-Range Weather Forecasts: Reading, UK. [CrossRef]
- Di Napoli, C.; Barnard, C.; Prudhomme, C.; Cloke, H.L.; Pappenberger, F. Thermal Comfort Indices Derived from ERA5 Reanalysis (Version N.N); Copernicus Climate Change Service (C3S) Climate Data Store (CDS); European Centre for Medium-Range Weather Forecasts: Reading, UK, 2020. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Carmona, R.; Díaz, J.; Mirón, I.J.; Ortíz, C.; León, I.; Linares, C. Geographical variation in relative risks associated with cold waves in Spain: The need for a cold wave prevention plan. Environ. Int. 2016, 88, 103–111. [Google Scholar] [CrossRef]
- Díaz, J.; García, R.; López, C.; Linares, C.; Tobías, A.; Prieto, L. Mortality impact of extreme winter temperatures. Int. J. Biometeorol. 2005, 49, 179–183. [Google Scholar] [CrossRef]
- Pyrgou, A.; Santamouris, M. Probability risk of heat- and cold-related mortality to temperature, gender, and age using GAM regression analysis. Climate 2020, 8, 40. [Google Scholar] [CrossRef]
- Bobb, J.F.; Peng, R.D.; Bel, M.L.; Dominici, F. Heat-related mortality and adaptation to heat in the United States. Environ. Health Perspect. 2014, 122, 811–816. [Google Scholar] [CrossRef]
- López-Bueno, J.A.; Navas-Martin, M.A.; Díaz, J.; Mirón, I.J.; Luna, M.Y.; Sánchez-Martínez, G.; Culqui, D.; Linares, C. Population vulnerability to extreme cold days in rural and urban municipalities in ten provinces in Spain. Sci. Total Environ. 2022, 852, 158165. [Google Scholar] [CrossRef]
- Dudley, J.P.; Hoberg, E.P.; Jenkins, E.J.; Parkinson, A.J. Climate Change in the North American Arctic: A One Health Perspective. EcoHealth 2015, 12, 713–725. [Google Scholar] [CrossRef]
- Harper, S.L.; Wright, C.; Masina, S.; Coggins, S. Climate change, water, and human health research in the Arctic. Water Secur. 2020, 10, 100062. [Google Scholar] [CrossRef]
- Ford, J.D.; Pearce, T.; Canosa, I.V.; Harper, S. The rapidly changing Arctic and its societal implications. Wiley Interdiscip. Rev. Clim. Chang. 2021, 12, e735. [Google Scholar] [CrossRef]
- Kruse, J.; Lowe, M.; Haley, S.; Fay, G.; Hamilton, L.; Berman, M. Arctic observing network social indicators project: Overview. Polar Geogr. 2011, 34, 1–8. [Google Scholar] [CrossRef]
- Vincent, W.F. Arctic Climate Change: Local Impacts, Global Consequences, and Policy Implications. In The Palgrave Handbook of Arctic Policy and Politics; Coates, K.S., Holroyd, C., Eds.; Palgrave Macmillan: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Berkson, J. Are there Two Regressions? J. Am. Stat. Assoc. 1950, 45, 164–180. [Google Scholar] [CrossRef]
- Beatty, B.; Graybill, J.; Grigorieva, E.; Hansen, K.L.; Lohmann, R.; Soikkeli, A. Increasing health and wellbeing for all arctic communities: A community-oriented, non-clinical approach. In Fulbright Arctic Initiative III (2021–2023). Policy Brief; Poelzer, G., Rink, E.L., Eds.; Bureau of Educational and Cultural Affairs, U.S. Department of State: Washington, DC, USA, 2023; pp. 11–12. Available online: https://fulbrightscholars.org/sites/default/files/2023-04/Fulbright_Arctic_Policy_Brief_2023.pdf (accessed on 18 January 2024).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grigorieva, E.A.; Walsh, J.E.; Alexeev, V.A. Extremely Cold Climate and Social Vulnerability in Alaska: Problems and Prospects. Climate 2024, 12, 20. https://doi.org/10.3390/cli12020020
Grigorieva EA, Walsh JE, Alexeev VA. Extremely Cold Climate and Social Vulnerability in Alaska: Problems and Prospects. Climate. 2024; 12(2):20. https://doi.org/10.3390/cli12020020
Chicago/Turabian StyleGrigorieva, Elena A., John E. Walsh, and Vladimir A. Alexeev. 2024. "Extremely Cold Climate and Social Vulnerability in Alaska: Problems and Prospects" Climate 12, no. 2: 20. https://doi.org/10.3390/cli12020020
APA StyleGrigorieva, E. A., Walsh, J. E., & Alexeev, V. A. (2024). Extremely Cold Climate and Social Vulnerability in Alaska: Problems and Prospects. Climate, 12(2), 20. https://doi.org/10.3390/cli12020020