Historical Climate Trends and Extreme Weather Events in the Tri-State Area: A Detailed Analysis of Urban and Suburban Differences
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Statistical and Data Analysis
3. Results and Discussions
3.1. Annual Seasonal Temperature Trends
3.2. Annual Variation in Temperature
3.3. Heat Wave Trends
3.4. Spatial Analysis of Temperature
3.5. Urban Snowfall Trends
3.6. Extreme Precipitation Time Series
3.7. A Spatial Analysis of Extreme Precipitation Events
3.7.1. 1972: Hurricane Agnes
3.7.2. 1991: Hurricane Bob
3.7.3. 2011: Hurricane Irene
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change 2022. Mitigation of Climate Change. In Working Group III; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar]
- Tian, H.; Lu, C.; Ciais, P.; Michalak, A.M.; Canadell, J.G.; Saikawa, E.; Huntzinger, D.N.; Gurney, K.R.; Sitch, S.; Zhang, B.; et al. The Terrestrial Biosphere as a Net Source of Greenhouse Gases to the Atmosphere. Nature 2016, 531, 225–228. [Google Scholar] [CrossRef] [PubMed]
- Le Quéré, C.; Raupach, M.R.; Canadell, J.G.; Marland, G.; Bopp, L.; Ciais, P.; Conway, T.J.; Doney, S.C.; Feely, R.A.; Foster, P.; et al. Trends in the Sources and Sinks of Carbon Dioxide. Nat. Geosci. 2009, 2, 831–836. [Google Scholar] [CrossRef]
- Lee, D.; Brenner, T. Perceived Temperature in the Course of Climate Change: An Analysis of Global Heat Index from 1979 to 2013. Earth Syst. Sci. Data 2015, 7, 193–202. [Google Scholar] [CrossRef]
- Ban, N.; Schmidli, J.; Schär, C. Heavy Precipitation in a Changing Climate: Does Short-Term Summer Precipitation Increase Faster? Geophys. Res. Lett. 2015, 42, 1165–1172. [Google Scholar] [CrossRef]
- Westra, S.; Alexander, L.V.; Zwiers, F.W. Global Increasing Trends in Annual Maximum Daily Precipitation. J. Clim. 2013, 26, 3904–3918. [Google Scholar] [CrossRef]
- Vu, T.M.; Mishra, A.K. Nonstationary Frequency Analysis of the Recent Extreme Precipitation Events in the United States. J. Hydrol. 2019, 575, 999–1010. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2007. The Fourth Assessment Report (AR4). Intergov. Panel Clim. Chang. 2007, 1, 976. [Google Scholar]
- Brown, S.J.; Caesar, J.; Ferro, C.A.T. Global Changes in Extreme Daily Temperature since 1950. J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef]
- Bathiany, S.; Dakos, V.; Scheffer, M.; Lenton, T.M. Climate Models Predict Increasing Temperature Variability in Poor Countries. Sci. Adv. 2018, 4, eaar5809. [Google Scholar] [CrossRef]
- IPCC. Global Warming of 1.5 °C; IPCC: Geneva, Switzerland, 2022. [Google Scholar]
- Masson, V.; Lemonsu, A.; Hidalgo, J.; Voogt, J. Urban Climates and Climate Change. Annu. Rev. Environ. Resour. 2020, 45, 411–444. [Google Scholar] [CrossRef]
- Yin, Z.; Liu, Z.; Liu, X.; Zheng, W.; Yin, L. Urban Heat Islands and Their Effects on Thermal Comfort in the US: New York and New Jersey. Ecol. Indic. 2023, 154, 110765. [Google Scholar] [CrossRef]
- Cebrián, A.C.; Asín, J.; Gelfand, A.E.; Schliep, E.M.; Castillo-Mateo, J.; Beamonte, M.A.; Abaurrea, J. Spatio-Temporal Analysis of the Extent of an Extreme Heat Event. Stoch. Environ. Res. Risk Assess. 2022, 36, 2737–2751. [Google Scholar] [CrossRef]
- Orton, P.; Lin, N.; Gornitz, V.; Colle, B.; Booth, J.; Feng, K.; Buchanan, M.; Oppenheimer, M.; Patrick, L. New York City Panel on Climate Change 2019 Report Chapter 4: Coastal Flooding. Ann. N. Y. Acad. Sci. 2019, 1439, 95–114. [Google Scholar] [CrossRef]
- Zimmerman, R.; Foster, S.; González, J.E.; Jacob, K.; Kunreuther, H.; Petkova, E.P.; Tollerson, E. New York City Panel on Climate Change 2019 Report Chapter 7: Resilience Strategies for Critical Infrastructures and Their Interdependencies. Ann. N. Y. Acad. Sci. 2019, 1439, 174–229. [Google Scholar] [CrossRef] [PubMed]
- López-Bueno, J.A.; Navas-Martín, M.A.; Linares, C.; Mirón, I.J.; Luna, M.Y.; Sánchez-Martínez, G.; Culqui, D.; Díaz, J. Analysis of the Impact of Heat Waves on Daily Mortality in Urban and Rural Areas in Madrid. Environ. Res. 2021, 195, 110892. [Google Scholar] [CrossRef]
- Madrigano, J.; Ito, K.; Johnson, S.; Kinney, P.L.; Matte, T. A Case-Only Study of Vulnerability to Heat Wave–Related Mortality in New York City (2000–2011). Environ. Health Perspect. 2015, 123, 672–678. [Google Scholar] [CrossRef] [PubMed]
- Bornstein, R.D. Observations of the Urban Heat Island Effect in New York City. J. Appl. Meteorol. 1968, 7, 575–582. [Google Scholar] [CrossRef]
- Parker, D.E. Urban Heat Island Effects on Estimates of Observed Climate Change. Wiley Interdiscip. Rev. Clim. Chang. 2010, 1, 123–133. [Google Scholar] [CrossRef]
- Horton, R.; Rosenzweig, C.; Gornitz, V.; Bader, D.; O’Grady, M. Climate Risk Information: Climate Change Scenarios and Implications for NYC Infrastructure. New York City Panel on Climate Change. Ann. N. Y. Acad. Sci. 2010, 1196, 147–228. [Google Scholar] [CrossRef]
- Heo, S.; Bell, M.L.; Lee, J.T. Comparison of Health Risks by Heat Wave Definition: Applicability of Wet-Bulb Globe Temperature for Heat Wave Criteria. Environ. Res. 2019, 168, 158–170. [Google Scholar] [CrossRef]
- Nairn, J.R.; Fawcett, R.J.B. The Excess Heat Factor: A Metric for Heatwave Intensity and Its Use in Classifying Heatwave Severity. Int. J. Environ. Res. Public Health 2014, 12, 227–253. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Li, Y. Spatial Interpolation of Temperature in the United States Using Residual Kriging. Appl. Geogr. 2013, 44, 112–120. [Google Scholar] [CrossRef]
- Oleson, K.W.; Monaghan, A.; Wilhelmi, O.; Barlage, M.; Brunsell, N.; Feddema, J.; Hu, L.; Steinhoff, D.F. Interactions between Urbanization, Heat Stress, and Climate Change. Clim. Chang. 2015, 129, 525–541. [Google Scholar] [CrossRef]
- Ward, K.; Lauf, S.; Kleinschmit, B.; Endlicher, W. Heat Waves and Urban Heat Islands in Europe: A Review of Relevant Drivers. Sci. Total Environ. 2016, 569, 527–539. [Google Scholar] [CrossRef] [PubMed]
- Perkins-Kirkpatrick, S.E.; Lewis, S.C. Increasing Trends in Regional Heatwaves. Nat. Commun. 2020, 11, 3357. [Google Scholar] [CrossRef]
- Matonse, A.H.; Pierson, D.C.; Frei, A.; Zion, M.S.; Schneiderman, E.M.; Anandhi, A.; Mukundan, R.; Pradhanang, S.M. Effects of Changes in Snow Pattern and the Timing of Runoff on NYC Water Supply System. Hydrol. Process. 2011, 25, 3278–3288. [Google Scholar] [CrossRef]
- Armal, S.; Devineni, N.; Khanbilvardi, R. Trends in Extreme Rainfall Frequency in the Contiguous United States: Attribution to Climate Change and Climate Variability Modes. J. Clim. 2018, 31, 369–385. [Google Scholar] [CrossRef]
- Bailey, J.F.; Patterson, J.L.; Paulhus, J.L.H. Hurricane Agnes Rainfall and Floods, June–July 1972; U.S. Government Printing Office: Washington, DC, USA, 1975. [Google Scholar]
- Sun, Y.; Chen, C.; Beardsley, R.C.; Xu, Q.; Qi, J.; Lin, H. Impact of Current-Wave Interaction on Storm Surge Simulation: A Case Study for Hurricane Bob. J. Geophys. Res. Ocean. 2013, 118, 2685–2701. [Google Scholar] [CrossRef]
- Aerts, J.C.J.H.; Botzen, W.J.W. Brief Communication “Hurricane Irene: A Wake-up Call for New York City?”. Nat. Hazards Earth Syst. Sci. 2012, 12, 1837–1840. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malikah, S.; Avila, S.; Garcia, G.; Lakhankar, T. Historical Climate Trends and Extreme Weather Events in the Tri-State Area: A Detailed Analysis of Urban and Suburban Differences. Climate 2024, 12, 32. https://doi.org/10.3390/cli12030032
Malikah S, Avila S, Garcia G, Lakhankar T. Historical Climate Trends and Extreme Weather Events in the Tri-State Area: A Detailed Analysis of Urban and Suburban Differences. Climate. 2024; 12(3):32. https://doi.org/10.3390/cli12030032
Chicago/Turabian StyleMalikah, Sameeha, Stephanie Avila, Gabriella Garcia, and Tarendra Lakhankar. 2024. "Historical Climate Trends and Extreme Weather Events in the Tri-State Area: A Detailed Analysis of Urban and Suburban Differences" Climate 12, no. 3: 32. https://doi.org/10.3390/cli12030032
APA StyleMalikah, S., Avila, S., Garcia, G., & Lakhankar, T. (2024). Historical Climate Trends and Extreme Weather Events in the Tri-State Area: A Detailed Analysis of Urban and Suburban Differences. Climate, 12(3), 32. https://doi.org/10.3390/cli12030032