Impacts of Climate Change Scenarios on the Corn and Soybean Double-Cropping System in Brazil
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Expected Impacts of Future Climate Changes on Soybean
3.2. Expected Impacts of Future Climate Changes on Corn
3.3. Expected Impacts of Future Climate Changes on the Double-Cropping System
3.4. Limitations of the Study
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
CO2 Emission Model | Description | Source |
---|---|---|
SRES A1 | The A1 family of scenarios describes very rapid economic growth. The global population peaks at mid-century and declines shortly thereafter. There is also a rapid introduction of new and more efficient technologies. The main underlying themes are convergence between regions, capacity building, and increasing social and cultural interactions, with a substantial reduction in per capita income differences between regions. The A1 family of scenarios is developed into three groups that describe alternative directions of technological change in the energy system. The three A1 groups are distinguished by their technology emphases: fossil energy-intensive (A1FI), non-fossil energy sources (AIT), or a balance of all sources (A1B). | [94] |
SRES A2 | Scenario A2 describes a very heterogeneous world. It is based on national self-sufficiency and the preservation of local identities. Fertility patterns across regions converge very slowly, resulting in a continued increase in the global population. Economic development is primarily regionally oriented, and per capita economic growth and technological change are more fragmented and slower than in other future stories. | [94] |
SRES B1 | Scenario B1 describes a converging world with the same global population that peaks at mid-century and declines shortly thereafter—as in future story A1—but with rapid changes in economic structures toward a service and information economy, with reductions in material intensity and the introduction of clean and resource-efficient technology. Emphasis is on global solutions for economic, social, and environmental sustainability, including increased equity, but without additional climate initiatives. | [94] |
SRES B2 | The B2 scenario describes a world where the emphasis is on local solutions for economic, social, and environmental sustainability. It is a world with continued global population growth at a slower rate than in the A2 family, intermediate levels of economic development, and slower and more diversified technological change than in the B1 and A1 future stories. Although the scenario is also oriented toward environmental protection and social equity, its focus is local and regional. | [94] |
RCP 4.5 | The Representative Concentration Pathways (RCPs) describe different 21st century pathways of greenhouse gas (GHG) emissions and atmospheric concentrations, air pollutant emissions, and land use. The RCPs cover a wider range than the scenarios from the Special Report on Emissions Scenarios (SRES) used in previous assessments, as they also represent scenarios with climate policy. In terms of overall forcing, RCP8.5 is broadly comparable to the SRES A2/A1FI scenario and RCP4.5 to B1. | [95] |
RCP 8.5 |
References
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food Security: The Challenge of Feeding 9 Billion People. Science 2010, 327, 812–818. [Google Scholar] [CrossRef]
- Loboguerrero, A.; Campbell, B.; Cooper, P.; Hansen, J.; Rosenstock, T.; Wollenberg, E. Food and Earth Systems: Priorities for Climate Change Adaptation and Mitigation for Agriculture and Food Systems. Sustainability 2019, 11, 1372. [Google Scholar] [CrossRef]
- Malhi, Y.; Meir, P.; Brown, S. Forests, carbon and global climate. Philos. Trans. R. Soc. London. Ser. A Math. Phys. Eng. Sci. 2002, 360, 1567–1591. [Google Scholar] [CrossRef]
- Watson, J.E.M.; Evans, T.; Venter, O.; Williams, B.; Tulloch, A.; Stewart, C.; Thompson, I.; Ray, J.C.; Murray, K.; Salazar, A.; et al. The exceptional value of intact forest ecosystems. Nat. Ecol. Evol. 2018, 2, 599–610. [Google Scholar] [CrossRef]
- Beltran-Peña, A.; Rosa, L.; D’Odorico, P. Global food self-sufficiency in the 21st century under sustainable intensification of agriculture. Environ. Res. Lett. 2020, 15, 095004. [Google Scholar] [CrossRef]
- Frank, S.; Havlík, P.; Soussana, J.-F.; Levesque, A.; Valin, H.; Wollenberg, E.; Kleinwechter, U.; Fricko, O.; Gusti, M.; Herrero, M.; et al. Reducing greenhouse gas emissions in agriculture without compromising food security? Environ. Res. Lett. 2017, 12, 105004. [Google Scholar] [CrossRef]
- Strassburg, B.B.N.; Latawiec, A.E.; Barioni, L.G.; Nobre, C.A.; da Silva, V.P.; Valentim, J.F.; Vianna, M.; Assad, E.D. When enough should be enough: Improving the use of current agricultural lands could meet production demands and spare natural habitats in Brazil. Glob. Environ. Chang. 2014, 28, 84–97. [Google Scholar] [CrossRef]
- Tilman, D.; Balzer, C.; Hill, J.; Befort, B.L. Global food demand and the sustainable intensification of agriculture. Proc. Natl. Acad. Sci. USA 2011, 108, 20260–20264. [Google Scholar] [CrossRef]
- FAO. Food Outlook—Biannual Report on Global Food Markets; Food and Agriculture Organization—FAO: Rome, Italy, 2019. [Google Scholar]
- CONAB. Série Histórica Das Safras. Available online: https://www.conab.gov.br/info-agro/safras/serie-historica-das-safras (accessed on 2 December 2020).
- Deryng, D.; Conway, D.; Ramankutty, N.; Price, J.; Warren, R. Global crop yield response to extreme heat stress under multiple climate change futures. Environ. Res. Lett. 2014, 9, 034011. [Google Scholar] [CrossRef]
- Khordadi, M.J.; Olesen, J.E.; Alizadeh, A.; Nassiri Mahallati, M.; Ansari, H.; Sanaeinejad, H. Climate change impacts and adaptation for crop management of winter wheat and maize in the semi-arid region of Iran. Irrig. Drain. 2019, 68, 841–856. [Google Scholar] [CrossRef]
- Leng, G.; Hall, J. Crop yield sensitivity of global major agricultural countries to droughts and the projected changes in the future. Sci. Total Environ. 2019, 654, 811–821. [Google Scholar] [CrossRef]
- Liu, Y.; Tang, L.; Qiu, X.; Liu, B.; Chang, X.; Liu, L.; Zhang, X.; Cao, W.; Zhu, Y. Impacts of 1.5 and 2.0 °C global warming on rice production across China. Agric. For. Meteorol. 2020, 284, 107900. [Google Scholar] [CrossRef]
- Sultan, B.; Gaetani, M. Agriculture in West Africa in the Twenty-First Century: Climate Change and Impacts Scenarios, and Potential for Adaptation. Front. Plant Sci. 2016, 7, 1262. [Google Scholar] [CrossRef]
- Ullah, A.; Ahmad, I.; Ahmad, A.; Khaliq, T.; Saeed, U.; Habib-ur-Rahman, M.; Hussain, J.; Ullah, S.; Hoogenboom, G. Assessing climate change impacts on pearl millet under arid and semi-arid environments using CSM-CERES-Millet model. Environ. Sci. Pollut. Res. 2019, 26, 6745–6757. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, C.; Müller, C.; Wang, C.; Ciais, P.; Janssens, I.; Peñuelas, J.; Asseng, S.; Li, T.; Elliott, J.; et al. Emergent constraint on crop yield response to warmer temperature from field experiments. Nat. Sustain. 2020, 3, 908–916. [Google Scholar] [CrossRef]
- Molotoks, A.; Smith, P.; Dawson, T.P. Impacts of land use, population, and climate change on global food security. Food Energy Secur. 2021, 10, e261. [Google Scholar] [CrossRef]
- Dawson, T.P.; Perryman, A.H.; Osborne, T.M. Modelling impacts of climate change on global food security. Clim. Chang. 2016, 134, 429–440. [Google Scholar] [CrossRef]
- Hasegawa, T.; Fujimori, S.; Havlík, P.; Valin, H.; Bodirsky, B.L.; Doelman, J.C.; Fellmann, T.; Kyle, P.; Koopman, J.F.L.; Lotze-Campen, H.; et al. Risk of increased food insecurity under stringent global climate change mitigation policy. Nat. Clim. Chang. 2018, 8, 699–703. [Google Scholar] [CrossRef]
- Ray, D.K.; West, P.C.; Clark, M.; Gerber, J.S.; Prishchepov, A.V.; Chatterjee, S. Climate change has likely already affected global food production. PLoS ONE 2019, 14, e0217148. [Google Scholar] [CrossRef]
- Knox, J.; Daccache, A.; Hess, T.; Haro, D. Meta-analysis of climate impacts and uncertainty on crop yields in Europe. Environ. Res. Lett. 2016, 11, 113004. [Google Scholar] [CrossRef]
- Iizumi, T.; Shiogama, H.; Imada, Y.; Hanasaki, N.; Takikawa, H.; Nishimori, M. Crop production losses associated with anthropogenic climate change for 1981–2010 compared with preindustrial levels. Int. J. Climatol. 2018, 38, 5405–5417. [Google Scholar] [CrossRef]
- Zhao, C.; Liu, B.; Piao, S.; Wang, X.; Lobell, D.B.; Huang, Y.; Huang, M.; Yao, Y.; Bassu, S.; Ciais, P.; et al. Temperature increase reduces global yields of major crops in four independent estimates. Proc. Natl. Acad. Sci. USA 2017, 114, 9326–9331. [Google Scholar] [CrossRef]
- IPCC. Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change; Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P.R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., et al., Eds.; Intergovernmental Panel on Climate Change—IPCC: Geneva, Switzerland, 2018. [Google Scholar]
- Avila-Diaz, A.; Benezoli, V.; Justino, F.; Torres, R.; Wilson, A. Assessing current and future trends of climate extremes across Brazil based on reanalyses and earth system model projections. Clim. Dyn. 2020, 55, 1403–1426. [Google Scholar] [CrossRef]
- Kitoh, A.; Endo, H. Changes in precipitation extremes projected by a 20-km mesh global atmospheric model. Weather Clim. Extrem. 2016, 11, 41–52. [Google Scholar] [CrossRef]
- Chisanga, C.B.; Phiri, E.; Chinene, V.R.N.; Chabala, L.M. Projecting maize yield under local-scale climate change scenarios using crop models: Sensitivity to sowing dates, cultivar, and nitrogen fertilizer rates. Food Energy Secur. 2020, 9, e231. [Google Scholar] [CrossRef]
- Gummadi, S.; Kadiyala, M.D.M.; Rao, K.P.C.; Athanasiadis, I.; Mulwa, R.; Kilavi, M.; Legesse, G.; Amede, T. Simulating adaptation strategies to offset potential impacts of climate variability and change on maize yields in Embu County, Kenya. PLoS ONE 2020, 15, e0241147. [Google Scholar] [CrossRef]
- Jin, Z.; Ainsworth, E.A.; Leakey, A.D.B.; Lobell, D.B. Increasing drought and diminishing benefits of elevated carbon dioxide for soybean yields across the US Midwest. Glob. Chang. Biol. 2018, 24, e522–e533. [Google Scholar] [CrossRef]
- Liu, L.; Basso, B. Impacts of climate variability and adaptation strategies on crop yields and soil organic carbon in the US Midwest. PLoS ONE 2020, 15, e0225433. [Google Scholar] [CrossRef]
- Rao, C.S.; Rao, P.J. Integrated Assessment of Climate Change Impacts on Maize Crop in North Coastal Region of Andhra Pradesh, India; Springer: Cham, Switzerland, 2019; pp. 699–705. [Google Scholar]
- Sima, M.W.; Fang, Q.X.; Burkey, K.O.; Ray, S.J.; Pursley, W.A.; Kersebaum, K.C.; Boote, K.J.; Malone, R.W. Field and model assessments of irrigated soybean responses to increased air temperature. Agron. J. 2020, 112, 4849–4860. [Google Scholar] [CrossRef]
- Holzkämper, A. Varietal adaptations matter for agricultural water use—A simulation study on grain maize in Western Switzerland. Agric. Water Manag. 2020, 237, 106202. [Google Scholar] [CrossRef]
- Qian, B.; Zhang, X.; Smith, W.; Grant, B.; Jing, Q.; Cannon, A.J.; Neilsen, D.; McConkey, B.; Li, G.; Bonsal, B.; et al. Climate change impacts on Canadian yields of spring wheat, canola and maize for global warming levels of 1.5 °C, 2.0 °C, 2.5 °C and 3.0 °C. Environ. Res. Lett. 2019, 14, 074005. [Google Scholar] [CrossRef]
- Zimmermann, A.; Webber, H.; Zhao, G.; Ewert, F.; Kros, J.; Wolf, J.; Britz, W.; de Vries, W. Climate change impacts on crop yields, land use and environment in response to crop sowing dates and thermal time requirements. Agric. Syst. 2017, 157, 81–92. [Google Scholar] [CrossRef]
- Schick-Makaroff, K.; MacDonald, M.; Plummer, M.; Burgess, J.; Neander, W. What Synthesis Methodology Should I Use? A Review and Analysis of Approaches to Research Synthesis. AIMS Public Health 2016, 3, 172–215. [Google Scholar] [CrossRef]
- PULLIN, A.S.; STEWART, G.B. Guidelines for Systematic Review in Conservation and Environmental Management. Conserv. Biol. 2006, 20, 1647–1656. [Google Scholar] [CrossRef]
- Asseng, S.; Zhu, Y.; Wang, E.; Zhang, W. Crop modeling for climate change impact and adaptation. In Crop Physiology; Elsevier: Amsterdam, The Netherlands, 2015; pp. 505–546. [Google Scholar]
- Di Paola, A.; Valentini, R.; Santini, M. An overview of available crop growth and yield models for studies and assessments in agriculture. J. Sci. Food Agric. 2016, 96, 709–714. [Google Scholar] [CrossRef]
- Kogo, B.K.; Kumar, L.; Koech, R.; Langat, P. Modelling Impacts of Climate Change on Maize (Zea mays L.) Growth and Productivity: A Review of Models, Outputs and Limitations. J. Geosci. Environ. Prot. 2019, 07, 76–95. [Google Scholar] [CrossRef]
- Lobell, D.B.; Asseng, S. Comparing estimates of climate change impacts from process-based and statistical crop models. Environ. Res. Lett. 2017, 12, 015001. [Google Scholar] [CrossRef]
- Roberts, M.J.; Braun, N.O.; Sinclair, T.R.; Lobell, D.B.; Schlenker, W. Comparing and combining process-based crop models and statistical models with some implications for climate change. Environ. Res. Lett. 2017, 12, 095010. [Google Scholar] [CrossRef]
- Stöckle, C.O.; Kemanian, A.R. Can Crop Models Identify Critical Gaps in Genetics, Environment, and Management Interactions? Front. Plant Sci. 2020, 11, 737. [Google Scholar] [CrossRef]
- White, J.W.; Hoogenboom, G.; Kimball, B.A.; Wall, G.W. Methodologies for simulating impacts of climate change on crop production. F. Crop. Res. 2011, 124, 357–368. [Google Scholar] [CrossRef]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; de Moraes Gonçalves, J.L.; Sparovek, G. Köppen’s climate classification map for Brazil. Meteorol. Zeitschrift 2013, 22, 711–728. [Google Scholar] [CrossRef]
- Köppen, W. Das geographische System der Klimate. In Handbuch der Klimatologie; Köppen, W., Geiger, R., Eds.; Gebrüder Bornträger: Berlin, Germany, 1936; Part C; pp. 1–44. [Google Scholar]
- Minuzzi, R.B.; Lopes, F.Z. Desempenho agronômico do milho em diferentes cenários climáticos no Centro-Oeste do Brasil. Rev. Bras. Eng. Agrícola e Ambient. 2015, 19, 734–740. [Google Scholar] [CrossRef]
- Andrea, M.C.d.S.; Dallacort, R.; Barbieri, J.D.; Tieppo, R.C. Impacts of Future Climate Predictions on Second Season Maize in an Agrosystem on a Biome Transition Region in Mato Grosso State. Rev. Bras. Meteorol. 2019, 34, 335–347. [Google Scholar] [CrossRef]
- Eulenstein, F.; Lana, M.; Luis Schlindwein, S.; Sheudzhen, A.; Tauscke, M.; Behrendt, A.; Guevara, E.; Meira, S. Regionalization of Maize Responses to Climate Change Scenarios, N Use Efficiency and Adaptation Strategies. Horticulturae 2016, 3, 9. [Google Scholar] [CrossRef]
- Costa Resende Ferreira, N.; Honorio Miranda, J. Projected changes in corn crop productivity and profitability in Parana, Brazil. Environ. Dev. Sustain. 2021, 23, 3236–3250. [Google Scholar] [CrossRef]
- Lana, M.A.; Eulenstein, F.; Schlindwein, S.; Guevara, E.; Meira, S.; Wurbs, A.; Sieber, S.; Svoboda, N.; Bonatti, M. Regionalization of climate scenarios impacts on maize production and the role of cultivar and planting date as an adaptation strategy. Reg. Environ. Chang. 2016, 16, 1319–1331. [Google Scholar] [CrossRef]
- Oliveira, L.A.d.; Miranda, J.H.d.; Cooke, R.A.C. Water management for sugarcane and corn under future climate scenarios in Brazil. Agric. Water Manag. 2018, 201, 199–206. [Google Scholar] [CrossRef]
- Camilo, J.A.; Andrade, C.L.T.; Amaral, T.A.; Tigges, C.H.P.; Melo, M.L.A.; Chou, S.C.; Garcia y Garcia, A. Impact of Climate Change on Maize Grown in the Brazilian Cerrado. In Proceedings of the 2018 ASABE Annual International Meeting, Detroit, MI, USA, 29 July 29–1 August 2018; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2018. [Google Scholar]
- Martins, M.A.; Tomasella, J.; Dias, C.G. Maize yield under a changing climate in the Brazilian Northeast: Impacts and adaptation. Agric. Water Manag. 2019, 216, 339–350. [Google Scholar] [CrossRef]
- Souza, T.T.d.; Antolin, L.A.S.; Bianchini, V.d.J.M.; Pereira, R.A.d.A.; Silva, E.H.F.M.; Marin, F.R. Longer crop cycle lengths could offset the negative effects of climate change on Brazilian maize. Bragantia 2019, 78, 622–631. [Google Scholar] [CrossRef]
- Andrea, M.C.d.S.; Dallacort, R.; Tieppo, R.C.; Barbieri, J.D. Assessment of climate change impact on double-cropping systems. SN Appl. Sci. 2020, 2, 544. [Google Scholar] [CrossRef]
- Pires, G.F.; Abrahão, G.M.; Brumatti, L.M.; Oliveira, L.J.C.; Costa, M.H.; Liddicoat, S.; Kato, E.; Ladle, R.J. Increased climate risk in Brazilian double cropping agriculture systems: Implications for land use in Northern Brazil. Agric. For. Meteorol. 2016, 228–229, 286–298. [Google Scholar] [CrossRef]
- da Silva, V.d.P.; Maciel, G.F.; de Souza, E.P.; Braga, C.C.; Holanda, R.M.d. Soybean yield in the Matopiba region under climate changes. Rev. Bras. Eng. Agrícola Ambient. 2020, 24, 8–14. [Google Scholar] [CrossRef]
- do Rio, A.; Sentelhas, P.C.; Farias, J.R.B.; Sibaldelli, R.N.R.; Ferreira, R.C. Alternative sowing dates as a mitigation measure to reduce climate change impacts on soybean yields in southern Brazil. Int. J. Climatol. 2016, 36, 3664–3672. [Google Scholar] [CrossRef]
- Battisti, R.; Sentelhas, P.C.; Parker, P.S.; Nendel, C.; Câmara, G.M.D.S.; Farias, J.R.B.; Basso, C.J. Assessment of crop-management strategies to improve soybean resilience to climate change in Southern Brazil. Crop Pasture Sci. 2018, 69, 154. [Google Scholar] [CrossRef]
- Cera, J.C.; Streck, N.A.; Fensterseifer, C.A.J.; Ferraz, S.E.T.; Bexaira, K.P.; Silveira, W.B.; Cardoso, Â.P. Soybean yield in future climate scenarios for the state of Rio Grande do Sul, Brazil. Pesqui. Agropecuária Bras. 2017, 52, 380–392. [Google Scholar] [CrossRef]
- Minuzzi, R.B.; Frederico, C.d.A.; Silva, T.G.F. da Estimation of soybean agronomic performance in climatic scenarios for Southern Brazil. Rev. Ceres 2017, 64, 567–573. [Google Scholar] [CrossRef]
- Hampf, A.C.; Stella, T.; Berg-Mohnicke, M.; Kawohl, T.; Kilian, M.; Nendel, C. Future yields of double-cropping systems in the Southern Amazon, Brazil, under climate change and technological development. Agric. Syst. 2020, 177, 102707. [Google Scholar] [CrossRef]
- Justino, F.; Oliveira, E.C.; Rodrigues, R.d.Á.; Gonçalves, P.H.L.; Souza, P.J.O.P.; Stordal, F.; Marengo, J.; Silva, T.G.d.; Delgado, R.C.; Lindemann, D.d.S.; et al. Mean and Interannual Variability of Maize and Soybean in Brazil under Global Warming Conditions. Am. J. Clim. Chang. 2013, 02, 237–253. [Google Scholar] [CrossRef]
- Confalonieri, R.; Soliman, A.; Donatelli, M.; Tubiello, F.; Fernandes, E.C.M. Climate Change and Agriculture in Latin America, 2020-2050; World Bank Group: Washington, DC, USA, 2012. [Google Scholar]
- Brumatti, L.M.; Pires, G.F.; Santos, A.B. Challenges to the Adaptation of Double Cropping Agricultural Systems in Brazil under Changes in Climate and Land Cover. Atmosphere 2020, 11, 1310. [Google Scholar] [CrossRef]
- Travasso, M.I.; Magrin, G.O.; Baethgen, W.E.; Castaño, J.P.; Rodriguez, G.R.; Pires, J.L.; Gimenez, A.; Cunha, G.; Fernandes, M. Adaptation Measures for Maize and Soybean in Southeastern South America; AIACC—Assessments of Impacts and Adaptations to Climate Change: Washington, DC, USA, 2006. [Google Scholar]
- Ainsworth, E.A.; Long, S.P. 30 years of free-air carbon dioxide enrichment (FACE): What have we learned about future crop productivity and its potential for adaptation? Glob. Chang. Biol. 2021, 27, 27–49. [Google Scholar] [CrossRef]
- Kimball, B.A. Crop responses to elevated CO2 and interactions with H2O, N, and temperature. Curr. Opin. Plant Biol. 2016, 31, 36–43. [Google Scholar] [CrossRef]
- Makowski, D.; Marajo-Petitzon, E.; Durand, J.-L.; Ben-Ari, T. Quantitative synthesis of temperature, CO2, rainfall, and adaptation effects on global crop yields. Eur. J. Agron. 2020, 115, 126041. [Google Scholar] [CrossRef]
- Reich, P.B.; Hobbie, S.E.; Lee, T.D.; Pastore, M.A. Unexpected reversal of C3 versus C4 grass response to elevated CO2 during a 20-year field experiment. Science 2018, 360, 317–320. [Google Scholar] [CrossRef]
- Bunce, J.A. Responses of soybeans and wheat to elevated CO2 in free-air and open top chamber systems. F. Crop. Res. 2016, 186, 78–85. [Google Scholar] [CrossRef]
- Hao, X.; Gao, J.; Han, X.; Ma, Z.; Merchant, A.; Ju, H.; Li, P.; Yang, W.; Gao, Z.; Lin, E. Effects of open-air elevated atmospheric CO2 concentration on yield quality of soybean (Glycine max (L.) Merr). Agric. Ecosyst. Environ. 2014, 192, 80–84. [Google Scholar] [CrossRef]
- Li, D.; Liu, H.; Qiao, Y.; Wang, Y.; Cai, Z.; Dong, B.; Shi, C.; Liu, Y.; Li, X.; Liu, M. Effects of elevated CO2 on the growth, seed yield, and water use efficiency of soybean (Glycine max (L.) Merr.) under drought stress. Agric. Water Manag. 2013, 129, 105–112. [Google Scholar] [CrossRef]
- Bishop, K.A.; Betzelberger, A.M.; Long, S.P.; Ainsworth, E.A. Is there potential to adapt soybean (Glycine max Merr.) to future [CO2]? An analysis of the yield response of 18 genotypes in free-air CO2 enrichment. Plant. Cell Environ. 2015, 38, 1765–1774. [Google Scholar] [CrossRef]
- Jancic Tovjanin, M.; Djurdjevic, V.; Pejic, B.; Novkovic, N.; Mutavdzic, B.; Markovic, M.; Mackic, K. Modeling the impact of climate change on yield, water requirements, and water use efficiency of maize and soybean grown under moderate continental climate in the Pannonian lowland. Időjárás 2019, 123, 469–486. [Google Scholar] [CrossRef]
- Qiao, Y.; Miao, S.; Li, Q.; Jin, J.; Luo, X.; Tang, C. Elevated CO2 and temperature increase grain oil concentration but their impacts on grain yield differ between soybean and maize grown in a temperate region. Sci. Total Environ. 2019, 666, 405–413. [Google Scholar] [CrossRef]
- Drag, D.W.; Slattery, R.; Siebers, M.; DeLucia, E.H.; Ort, D.R.; Bernacchi, C.J. Soybean photosynthetic and biomass responses to carbon dioxide concentrations ranging from pre-industrial to the distant future. J. Exp. Bot. 2020, 71, 3690–3700. [Google Scholar] [CrossRef]
- Fu, T.; Ha, B.; Ko, J. Simulation of CO2 enrichment and climate change impacts on soybean production. Int. Agrophys. 2016, 30, 25–37. [Google Scholar] [CrossRef]
- Soba, D.; Shu, T.; Runion, G.B.; Prior, S.A.; Fritschi, F.B.; Aranjuelo, I.; Sanz-Saez, A. Effects of elevated [CO2] on photosynthesis and seed yield parameters in two soybean genotypes with contrasting water use efficiency. Environ. Exp. Bot. 2020, 178, 104154. [Google Scholar] [CrossRef]
- Hatfield, J.L.; Boote, K.J.; Kimball, B.A.; Ziska, L.H.; Izaurralde, R.C.; Ort, D.; Thomson, A.M.; Wolfe, D. Climate Impacts on Agriculture: Implications for Crop Production. Agron. J. 2011, 103, 351–370. [Google Scholar] [CrossRef]
- Vanaja, M.; Sathish, P.; Kumar, G.V.; Razzaq, A.; Vagheera, P.; Lakshmi, N.J.; Yadav, S.K.; Sarkar, B.; Maheswari, M. Elevated temperature and moisture deficit stress impact on phenology, physiology and yield responses of hybrid maize. J. Agrometeorol. 2017, 19, 295–300. [Google Scholar] [CrossRef]
- Abebe, A.; Pathak, H.; Singh, S.D.; Bhatia, A.; Harit, R.C.; Kumar, V. Growth, yield and quality of maize with elevated atmospheric carbon dioxide and temperature in north–west India. Agric. Ecosyst. Environ. 2016, 218, 66–72. [Google Scholar] [CrossRef]
- Saddique, Q.; Khan, M.I.; Habib ur Rahman, M.; Jiatun, X.; Waseem, M.; Gaiser, T.; Mohsin Waqas, M.; Ahmad, I.; Chong, L.; Cai, H. Effects of Elevated Air Temperature and CO2 on Maize Production and Water Use Efficiency under Future Climate Change Scenarios in Shaanxi Province, China. Atmosphere 2020, 11, 843. [Google Scholar] [CrossRef]
- Parent, B.; Leclere, M.; Lacube, S.; Semenov, M.A.; Welcker, C.; Martre, P.; Tardieu, F. Maize yields over Europe may increase in spite of climate change, with an appropriate use of the genetic variability of flowering time. Proc. Natl. Acad. Sci. USA 2018, 115, 10642–10647. [Google Scholar] [CrossRef]
- Liu, M.; Xu, X.; Jiang, Y.; Huang, Q.; Huo, Z.; Liu, L.; Huang, G. Responses of crop growth and water productivity to climate change and agricultural water-saving in arid region. Sci. Total Environ. 2020, 703, 134621. [Google Scholar] [CrossRef]
- Allen, L.H.; Kakani, V.G.; Vu, J.C.V.; Boote, K.J. Elevated CO2 increases water use efficiency by sustaining photosynthesis of water-limited maize and sorghum. J. Plant Physiol. 2011, 168, 1909–1918. [Google Scholar] [CrossRef]
- Markelz, R.J.C.; Strellner, R.S.; Leakey, A.D.B. Impairment of C4 photosynthesis by drought is exacerbated by limiting nitrogen and ameliorated by elevated [CO2] in maize. J. Exp. Bot. 2011, 62, 3235–3246. [Google Scholar] [CrossRef]
- Han, Y.; Wang, J.; Zhang, Y.; Wang, S. Effects of Regulated Deficit Irrigation and Elevated CO2 Concentration on the Photosynthetic Parameters and Stomatal Morphology of Two Maize Cultivars. J. Plant Growth Regul. 2023, 42, 2884–2892. [Google Scholar] [CrossRef]
- Marin, F.; Nassif, D.S.P. Mudanças climáticas e a cana-de-açúcar no Brasil: Fisiologia, conjuntura e cenário futuro. Rev. Bras. Eng. Agrícola e Ambient. 2013, 17, 232–239. [Google Scholar] [CrossRef]
- Li, X.; Kang, S.; Zhang, X.; Li, F.; Lu, H. Deficit irrigation provokes more pronounced responses of maize photosynthesis and water productivity to elevated CO2. Agric. Water Manag. 2018, 195, 71–83. [Google Scholar] [CrossRef]
- Kellner, J.; Houska, T.; Manderscheid, R.; Weigel, H.; Breuer, L.; Kraft, P. Response of maize biomass and soil water fluxes on elevated CO2 and drought—From field experiments to process-based simulations. Glob. Chang. Biol. 2019, 25, 2947–2957. [Google Scholar] [CrossRef]
- Clarke, L.; Edmonds, J.; Jacoby, H.; Pitcher, H.; Reilly, J.; Richels, R. Scenarios of Greenhouse Gas Emissions and Atmospheric Concentrations. Sub-Report 2.1 A of Synthesis and Assessment Product 2.1 by the U.S.; Climate Change Science Program and the Subcommittee on Global Change Research, Department of Energy, Office of Biological & Environmental Research: Washington, DC, USA, 2007. [Google Scholar]
- IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Pachauri, R.K., Meyer, L.A., Eds.; IPCC—Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2014. [Google Scholar]
P.I.C.O.T. | Variable Definition |
---|---|
Population | Soybean and corn crops grown in Brazil. |
Intervention | Future climate changes projected up to the end of the 21st century with Global Circulation Models (GCMs), including temperature, precipitation, and CO2 concentration as variables. |
Comparator | Current climate (baseline) |
Outcomes | Quantitative results of crop yields. If available, data on the impacts of climate change on crop phenology, crop system, and possible strategies for adapting crop management. |
Types of studies | Studies that used crop models to estimate crop yields. |
Ref. | Crop | Crop Model | Co2 Emission Scenarios * | Periods | CO2 Effects |
---|---|---|---|---|---|
[48] | Corn | AquaCrop | RCP 4.5 | 1998/2025/2055 | YES |
[49] | Corn | DSSAT | RCP 4.5 and 8.5 | 1995/2025/2055/2085 | YES |
[50] | Corn | DSSAT | SRES A1 | 2007/2025 | YES |
[51] | Corn | SISDRENA | RCP 4.5 and 8.5 | 1993/2058 | NO |
[52] | Corn | DSSAT | SRES A1 | 2012/2040 | YES |
[53] | Corn | DSSAT | SRES A2, A1 and B1 | 1997/2077 | NO |
[54] | Corn | DSSAT | RCP 4.5 and 8.5 | 2024/2055/2085 | NO |
[55] | Corn | AquaCrop | RCP 4.5 and 8.5 | 1993/2023/2055/2085 | YES |
[56] | Corn | DSSAT | RCP 4.5 and 8.5 | 2020/2055 | YES |
[57] | Corn | DSSAT | RCP 4.5 and 8.5 | 2000/2055/2085 | YES |
[58] | Soybean | Inland | RCP 8.5 | 2020/2040 | YES |
[59] | Soybean | AquaCrop | RCP 4.5 e 8.5 | 2014/2050/2085 | YES |
[60] | Soybean | DSSAT | SRES A2 and B2 | 1975/2028/2056 | NO |
[61] | Soybean | DSSAT, APSIM e MONICA | SRES A1 | 1988/2055 | YES |
[62] | Soybean | DSSAT e SoySim | SRES A1 and RCP 4.5 | 1995/2020/2070 | YES |
[63] | Soybean | AquaCrop | RCP 4.5 | 1998/2025/2055 | YES |
[64] | Soybean + corn | MONICA | SRES A1 | 2016/2040 | NO |
[65] | Soybean + corn | DSSAT | SRES A2 and B2 | 1975/2085 | YES |
[66] | Soybean + corn | AZS BioMA | SRES A1 and B1 | 2000/2020/2050 | YES |
[67] | Soybean + corn | Inland | RCP 8.5 | 2005/2050 | YES |
[68] | Soybean + corn | DSSAT | SRES A2 and B2 | 1975/2020/2050/2080 | YES |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bigolin, T.; Talamini, E. Impacts of Climate Change Scenarios on the Corn and Soybean Double-Cropping System in Brazil. Climate 2024, 12, 42. https://doi.org/10.3390/cli12030042
Bigolin T, Talamini E. Impacts of Climate Change Scenarios on the Corn and Soybean Double-Cropping System in Brazil. Climate. 2024; 12(3):42. https://doi.org/10.3390/cli12030042
Chicago/Turabian StyleBigolin, Tiago, and Edson Talamini. 2024. "Impacts of Climate Change Scenarios on the Corn and Soybean Double-Cropping System in Brazil" Climate 12, no. 3: 42. https://doi.org/10.3390/cli12030042
APA StyleBigolin, T., & Talamini, E. (2024). Impacts of Climate Change Scenarios on the Corn and Soybean Double-Cropping System in Brazil. Climate, 12(3), 42. https://doi.org/10.3390/cli12030042