Seasonal Ecophysiological Dynamics of Erythroxylum pauferrense in an Open Ombrophilous Forest of the Brazilian Atlantic Forest
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Site Characterization
2.2. Collection of Ecophysiological Data
2.2.1. Gas Exchanges
2.2.2. Chlorophyll a Fluorescence
2.2.3. Chlorophyll Leaf Indices
2.2.4. Morphofunctional Attributes and Water Relations
2.2.5. Electrolyte Leakage
2.3. Environmental Data Collection
2.3.1. Soil Characterization
2.3.2. Soil Moisture and Temperature
2.3.3. Canopy Structure Indices
2.4. Data Analysis
3. Results and Discussion
3.1. Environmental Variables
3.2. Ecophysiological Traits
3.3. Influence of Environmental Factors on the Ecophysiology of E. pauferrense
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ribeiro, J.E.d.S.; Barbosa, A.J.S.; Lopes, S.d.F.; Pereira, W.E.; Albuquerque, M.B.d. Seasonal variation in gas exchange by plants of Erythroxylum simonis Plowman. Acta Bot. Bras. 2018, 32, 287–296. [Google Scholar] [CrossRef]
- Mendes, K.R.; Campos, S.; da Silva, L.L.; Mutti, P.R.; Ferreira, R.R.; Medeiros, S.S.; Perez-Marin, A.M.; Marques, T.V.; Ramos, T.M.; de Lima Vieira, M.M. Seasonal variation in net ecosystem CO2 exchange of a Brazilian seasonally dry tropical forest. Sci. Rep. 2020, 10, 9454. [Google Scholar] [CrossRef]
- Derroire, G.; Powers, J.S.; Hulshof, C.M.; Cárdenas Varela, L.E.; Healey, J.R. Contrasting patterns of leaf trait variation among and within species during tropical dry forest succession in Costa Rica. Sci. Rep. 2018, 8, 285. [Google Scholar] [CrossRef]
- Marques, T.V.; Mendes, K.; Mutti, P.; Medeiros, S.; Silva, L.; Perez-Marin, A.M.; Campos, S.; Lúcio, P.S.; Lima, K.; dos Reis, J. Environmental and biophysical controls of evapotranspiration from Seasonally Dry Tropical Forests (Caatinga) in the Brazilian Semiarid. Agric. For. Meteorol. 2020, 287, 107957. [Google Scholar] [CrossRef]
- Wu, J.; Serbin, S.P.; Ely, K.S.; Wolfe, B.T.; Dickman, L.T.; Grossiord, C.; Michaletz, S.T.; Collins, A.D.; Detto, M.; McDowell, N.G. The response of stomatal conductance to seasonal drought in tropical forests. Glob. Chang. Biol. 2020, 26, 823–839. [Google Scholar] [CrossRef] [PubMed]
- Chaturvedi, R.K.; Tripathi, A.; Raghubanshi, A.S.; Singh, J.S. Functional traits indicate a continuum of tree drought strategies across a soil water availability gradient in a tropical dry forest. For. Ecol. Manag. 2021, 482, 118740. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, C.; Chen, H.Y.H.; Ruan, H. Response of plants to water stress: A meta-analysis. Front. Plant Sci. 2020, 11, 978. [Google Scholar] [CrossRef]
- Seleiman, M.F.; Al-Suhaibani, N.; Ali, N.; Akmal, M.; Alotaibi, M.; Refay, Y.; Dindaroglu, T.; Abdul-Wajid, H.H.; Battaglia, M.L. Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants 2021, 10, 259. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Wang, J.; Hui, W.; Zhao, F.; Wang, P.; Su, C.; Gong, W. Physiology of plant responses to water stress and related genes: A review. Forests 2022, 13, 324. [Google Scholar] [CrossRef]
- Dresselhaus, T.; Hückelhoven, R. Biotic and abiotic stress responses in crop plants. Agronomy 2018, 8, 267. [Google Scholar] [CrossRef]
- Zandalinas, S.I.; Mittler, R.; Balfagón, D.; Arbona, V.; Gómez-Cadenas, A. Plant adaptations to the combination of drought and high temperatures. Physiol. Plant. 2018, 162, 2–12. [Google Scholar] [CrossRef] [PubMed]
- Raza, A.; Ashraf, F.; Zou, X.; Zhang, X.; Tosif, H. Plant adaptation and tolerance to environmental stresses: Mechanisms and perspectives. In Plant Ecophysiology and Adaptation under Climate Change: Mechanisms and Perspectives I: General Consequences and Plant Responses; Springer: Singapore, 2020; pp. 117–145. [Google Scholar]
- Mathur, S.; Jain, L.; Jajoo, A. Photosynthetic efficiency in sun and shade plants. Photosynthetica 2018, 56, 354–365. [Google Scholar] [CrossRef]
- Morales, A.; Kaiser, E. Photosynthetic acclimation to fluctuating irradiance in plants. Front. Plant Sci. 2020, 11, 268. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Ke, X.; Yang, X.; Liu, Y.; Hou, X. Plants response to light stress. J. Genet. Genom. 2022, 49, 735–747. [Google Scholar] [CrossRef]
- Blondeel, H.; Perring, M.P.; Depauw, L.; De Lombaerde, E.; Landuyt, D.; De Frenne, P.; Verheyen, K. Light and warming drive forest understorey community development in different environments. Glob. Chang. Biol. 2020, 26, 1681–1696. [Google Scholar] [CrossRef]
- Deng, J.; Fang, S.; Fang, X.; Jin, Y.; Kuang, Y.; Lin, F.; Liu, J.; Ma, J.; Nie, Y.; Ouyang, S. Forest understory vegetation study: Current status and future trends. For. Res. 2023, 3, 1–23. [Google Scholar]
- Hu, S.; Ding, Y.; Zhu, C. Sensitivity and responses of chloroplasts to heat stress in plants. Front. Plant Sci. 2020, 11, 375. [Google Scholar] [CrossRef] [PubMed]
- Qi, L.; Shi, Y.; Terzaghi, W.; Yang, S.; Li, J. Integration of light and temperature signaling pathways in plants. J. Integr. Plant Biol. 2022, 64, 393–411. [Google Scholar] [CrossRef]
- Jagadish, S.V.K.; Way, D.A.; Sharkey, T.D. Plant heat stress: Concepts directing future research. Plant Cell Environ. 2021, 44, 1992–2005. [Google Scholar] [CrossRef] [PubMed]
- Brown, L.A.; Meier, C.; Morris, H.; Pastor-Guzman, J.; Bai, G.; Lerebourg, C.; Gobron, N.; Lanconelli, C.; Clerici, M.; Dash, J. Evaluation of global leaf area index and fraction of absorbed photosynthetically active radiation products over North America using Copernicus Ground Based Observations for Validation data. Remote Sens. Environ. 2020, 247, 111935. [Google Scholar] [CrossRef]
- Jiménez-Leyva, A.; Gutiérrez, A.; Ojeda-Contreras, Á.J.; Vargas, G.; Esqueda, M.; Orozco-Avitia, J.-A. Seasonal phenology, shade reliance, and ecophysiology of wild Capsicum annuum var. glabriusculum in Sonoran Desert. J. Arid Environ. 2022, 201, 104736. [Google Scholar] [CrossRef]
- Fernandes, R.; Brown, L.; Canisius, F.; Dash, J.; He, L.; Hong, G.; Huang, L.; Le, N.Q.; MacDougall, C.; Meier, C. Validation of Simplified Level 2 Prototype Processor Sentinel-2 fraction of canopy cover, fraction of absorbed photosynthetically active radiation and leaf area index products over North American forests. Remote Sens. Environ. 2023, 293, 113600. [Google Scholar] [CrossRef]
- De Bock, A.; Belmans, B.; Vanlanduit, S.; Blom, J.; Alvarado-Alvarado, A.A.; Audenaert, A. A review on the leaf area index (LAI) in vertical greening systems. Build. Environ. 2023, 229, 109926. [Google Scholar] [CrossRef]
- Yamaguchi, H.; Yasutake, D.; Hirota, T.; Nomura, K. Nondestructive Measurement Method of Leaf Area Index Using Near-infrared Radiation and Photosynthetically Active Radiation Transmitted through a Leafy Vegetable Canopy. HortScience 2023, 58, 16–22. [Google Scholar] [CrossRef]
- Zhu, L.; Bloomfield, K.J.; Hocart, C.H.; Egerton, J.J.G.; O’Sullivan, O.S.; Penillard, A.; Weerasinghe, L.K.; Atkin, O.K. Plasticity of photosynthetic heat tolerance in plants adapted to thermally contrasting biomes. Plant Cell Environ. 2018, 41, 1251–1262. [Google Scholar] [CrossRef] [PubMed]
- Gil, K.E.; Park, C.M. Thermal adaptation and plasticity of the plant circadian clock. New Phytol. 2019, 221, 1215–1229. [Google Scholar] [CrossRef]
- Lauriks, F.; Salomón, R.L.; De Roo, L.; Goossens, W.; Leroux, O.; Steppe, K. Limited plasticity of anatomical and hydraulic traits in aspen trees under elevated CO2 and seasonal drought. Plant Physiol. 2022, 188, 268–284. [Google Scholar] [CrossRef]
- Grossman, J.J. Phenological physiology: Seasonal patterns of plant stress tolerance in a changing climate. New Phytol. 2023, 237, 1508–1524. [Google Scholar] [CrossRef] [PubMed]
- IUCN. The IUCN Red List of Threatened Species. Version 2024-1. Available online: https://www.iucnredlist.org (accessed on 22 August 2024).
- Fabricante, J.R. Sociabilidade de espécies da Mata Atlântica com a exótica invasora Artocarpus heterophyllus Lam. Rev. Biol. Neotrop./J. Neotrop. Biol. 2013, 10, 18–25. [Google Scholar] [CrossRef]
- da Silva Ribeiro, J.E.; Leite, A.P.; Nóbrega, J.S.; Alves, E.U.; Bruno, R.d.L.A.; de Albuquerque, M.B. Temperatures and substrates for germination and vigor of Erythroxylum pauferrense Plowman seeds. Acta Scientiarum. Biol. Sci. 2019, 41, e46030. [Google Scholar]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; Gonçalves, J.L.d.M.; Sparovek, G. Köppen’s climate classification map for Brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef] [PubMed]
- da Silva Ribeiro, J.E.; Figueiredo, F.R.A.; dos Santos Coêlho, E.; de Albuquerque, M.B.; Pereira, W.E. Environmental factors variation in physiological aspects of Erythroxylum pauferrense. Rev. Bosque 2020, 41, 157–164. [Google Scholar] [CrossRef]
- Rosado, B.H.P.; Mattos, E.A.d. Variação temporal de características morfológicas de folhas em dez espécies do Parque Nacional da Restinga de Jurubatiba, Macaé, RJ, Brasil. Acta Bot. Bras. 2007, 21, 741–752. [Google Scholar] [CrossRef]
- Poorter, H.; Niinemets, Ü.; Poorter, L.; Wright, I.J.; Villar, R. Causes and consequences of variation in leaf mass per area (LMA): A meta-analysis. New Phytol. 2009, 182, 565–588. [Google Scholar] [CrossRef]
- Kluge, M.; Ting, I.P. Crassulacean Acid Metabolism: Analysis of an Ecological Adaptation; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; Volume 30. [Google Scholar]
- Witkowski, E.T.F.; Lamont, B.B. Leaf specific mass confounds leaf density and thickness. Oecologia 1991, 88, 486–493. [Google Scholar] [CrossRef] [PubMed]
- Barrs, H.D.; Weatherley, P.E. A re-examination of the relative turgidity technique for estimating water deficits in leaves. Aust. J. Biol. Sci. 1962, 15, 413–428. [Google Scholar] [CrossRef]
- Slavík, B.; Jarvis, M.S. Methods of Studying Plant Water Relations; Academia Publishing House of the Czechoslovak Academy of Sciences: Prague, Czech Republic, 1974. [Google Scholar]
- Bajji, M.; Kinet, J.-M.; Lutts, S. The use of the electrolyte leakage method for assessing cell membrane stability as a water stress tolerance test in durum wheat. Plant Growth Regul. 2002, 36, 61–70. [Google Scholar] [CrossRef]
- Klein, V.A. Física do Solo; SBCS: Viçosa, Brazil, 2008. [Google Scholar]
- Whitford, K.R.; Colquhoun, I.J.; Lang, A.R.G.; Harper, B.M. Measuring leaf area index in a sparse eucalypt forest: A comparison of estimates from direct measurement, hemispherical photography, sunlight transmittance and allometric regression. Agric. For. Meteorol. 1995, 74, 237–249. [Google Scholar] [CrossRef]
- Galvani, E.; de Lima, N.G.B. Fotografias hemisféricas em estudos microclimáticos: Referencial teórico-conceitual e aplicações. Ciência E Nat. 2014, 36, 215–221. [Google Scholar] [CrossRef]
- R Core Team. R Development Core Team R: A Language and Environment for Statistical Computing 2023; R Core Team: Vienna, Austria, 2023. [Google Scholar]
- Cernusak, L.A. Gas exchange and water-use efficiency in plant canopies. Plant Biol. 2020, 22, 52–67. [Google Scholar] [CrossRef]
- Lavoie-Lamoureux, A.; Sacco, D.; Risse, P.A.; Lovisolo, C. Factors influencing stomatal conductance in response to water availability in grapevine: A meta-analysis. Physiol. Plant. 2017, 159, 468–482. [Google Scholar] [CrossRef] [PubMed]
- Li, S.-l.; Tan, T.-T.; Fan, Y.-F.; Raza, M.A.; Wang, Z.-l.; Wang, B.-B.; Zhang, J.-w.; Tan, X.-m.; Ping, C.; Shafiq, I. Responses of leaf stomatal and mesophyll conductance to abiotic stress factors. J. Integr. Agric. 2022, 21, 2787–2804. [Google Scholar] [CrossRef]
- Liao, Q.; Ding, R.; Du, T.; Kang, S.; Tong, L.; Li, S. Stomatal conductance drives variations of yield and water use of maize under water and nitrogen stress. Agric. Water Manag. 2022, 268, 107651. [Google Scholar] [CrossRef]
- Taiz, L.; Zeiger, E.; Møller, I.M.; Murphy, A. Fisiologia e Desenvolvimento Vegetal; Artmed Editora: Porto Alegre, Brazil, 2017. [Google Scholar]
- Agurla, S.; Gahir, S.; Munemasa, S.; Murata, Y.; Raghavendra, A.S. Mechanism of stomatal closure in plants exposed to drought and cold stress. In Survival Strategies in Extreme Cold and Desiccation: Adaptation Mechanisms and Their Applications; Springer: Singapore, 2018; pp. 215–232. [Google Scholar]
- Buckley, T.N. How do stomata respond to water status? New Phytol. 2019, 224, 21–36. [Google Scholar] [CrossRef]
- Campelo, D.d.H.; Lacerda, C.F.; Sousa, J.A.; Correia, D.; Bezerra, A.M.E.; Araújo, J.D.M.; Neves, A.L.R. Leaf gas exchange and efficiency of photosystem II in adult plants of six forest species as function of the water supply in the soil. Rev. Árvore 2015, 39, 973–983. [Google Scholar] [CrossRef]
- Bijalwan, P.; Sharma, M.; Kaushik, P. Review of the effects of drought stress on plants: A systematic approach. Preprints 2022, 2022020014. [Google Scholar] [CrossRef]
- Pamungkas, S.S.T.; Farid, N. Drought stress: Responses and mechanism in plants. Rev. Agric. Sci. 2022, 10, 168–185. [Google Scholar] [CrossRef] [PubMed]
- Gago, J.; Daloso, D.M.; Carriquí, M.; Nadal, M.; Morales, M.; Araújo, W.L.; Nunes-Nesi, A.; Perera-Castro, A.V.; Clemente-Moreno, M.J.; Flexas, J. The photosynthesis game is in the” inter-play”: Mechanisms underlying CO2 diffusion in leaves. Environ. Exp. Bot. 2020, 178, 104174. [Google Scholar] [CrossRef]
- Wehr, R.; Munger, J.W.; McManus, J.B.; Nelson, D.D.; Zahniser, M.S.; Davidson, E.A.; Wofsy, S.C.; Saleska, S.R. Seasonality of temperate forest photosynthesis and daytime respiration. Nature 2016, 534, 680–683. [Google Scholar] [CrossRef]
- Wenzel, S.; Cox, P.M.; Eyring, V.; Friedlingstein, P. Projected land photosynthesis constrained by changes in the seasonal cycle of atmospheric CO2. Nature 2016, 538, 499–501. [Google Scholar] [CrossRef]
- Martin-StPaul, N.; Delzon, S.; Cochard, H. Plant resistance to drought depends on timely stomatal closure. Ecol. Lett. 2017, 20, 1437–1447. [Google Scholar] [CrossRef]
- Huber, A.E.; Melcher, P.J.; Piñeros, M.A.; Setter, T.L.; Bauerle, T.L. Signal coordination before, during and after stomatal closure in response to drought stress. New Phytol. 2019, 224, 675–688. [Google Scholar] [CrossRef] [PubMed]
- Leakey, A.D.B.; Ferguson, J.N.; Pignon, C.P.; Wu, A.; Jin, Z.; Hammer, G.L.; Lobell, D.B. Water use efficiency as a constraint and target for improving the resilience and productivity of C3 and C4 crops. Annu. Rev. Plant Biol. 2019, 70, 781–808. [Google Scholar] [CrossRef] [PubMed]
- Kochhar, S.L.; Gujral, S.K. Plant Physiology: Theory and Applications; Cambridge University Press: Cambridge, UK, 2020. [Google Scholar]
- Farooq, M.; Hussain, M.; Ul-Allah, S.; Siddique, K.H.M. Physiological and agronomic approaches for improving water-use efficiency in crop plants. Agric. Water Manag. 2019, 219, 95–108. [Google Scholar] [CrossRef]
- Silva, F.G.d.; Dutra, W.F.; Dutra, A.F.; Oliveira, I.M.d.; Filgueiras, L.; Melo, A.S.d. Gas exchange and chlorophyll fluorescence of eggplant grown under different irrigation depths. Rev. Bras. De Eng. Agrícola Ambient. 2015, 19, 946–952. [Google Scholar] [CrossRef]
- Cotton, C.A.R.; Edlich-Muth, C.; Bar-Even, A. Reinforcing carbon fixation: CO2 reduction replacing and supporting carboxylation. Curr. Opin. Biotechnol. 2018, 49, 49–56. [Google Scholar] [CrossRef]
- Wang, X.; Wang, F.; Sang, Y.; Liu, H. Full-spectrum solar-light-activated photocatalysts for light–chemical energy conversion. Adv. Energy Mater. 2017, 7, 1700473. [Google Scholar] [CrossRef]
- Kalaji, H.M.; Schansker, G.; Brestic, M.; Bussotti, F.; Calatayud, A.; Ferroni, L.; Goltsev, V.; Guidi, L.; Jajoo, A.; Li, P. Frequently asked questions about chlorophyll fluorescence, the sequel. Photosynth. Res. 2017, 132, 13–66. [Google Scholar] [CrossRef]
- Perboni, A.T.; Martinazzo, E.G.; Silva, D.M.; Bacarin, M.A. Baixas temperaturas sobre a fluorescência da clorofila a em plantas de diferentes híbridos de canola. Ciênc. Rural 2014, 45, 215–222. [Google Scholar] [CrossRef]
- Konrad, M.L.F.; Silva, J.A.B.d.; Furlani, P.R.; Machado, E.C. Trocas gasosas e fluorescência da clorofila em seis cultivares de cafeeiro sob estresse de alumínio. Bragantia 2005, 64, 339–347. [Google Scholar] [CrossRef]
- Baker, N.R. Chlorophyll fluorescence: A probe of photosynthesis in vivo. Annu. Rev. Plant Biol. 2008, 59, 89–113. [Google Scholar] [CrossRef] [PubMed]
- Suassuna, J.F.; de Melo, A.S.; Costa, F.S.; Fernandes, P.D.; Ferreira, R.S.; da Silva Sousa, M.S. Eficiência fotoquímica e produtividade de frutos de meloeiro cultivado sob diferentes lâminas de irrigação. Semin. Ciênc. Agrár. 2011, 32, 1251–1262. [Google Scholar] [CrossRef]
- Souza, J.T.A.; da Silva Ribeiro, J.E.; de Farias Ramos, J.P.; de Sousa, W.H.; Araújo, J.S.; Lima, G.F.C.; Dias, J.A. Rendimento quântico e eficiência de uso da água de genótipos de palma forrageira no Semiárido brasileiro. Arch. De Zootec. 2019, 68, 268–273. [Google Scholar] [CrossRef]
- Silva, L.d.A.; Brito, M.E.B.; Sá, F.V.d.S.; Moreira, R.C.L.; Soares Filho, W.d.S.; Fernandes, P.D. Mecanismos fisiológicos em híbridos de citros sob estresse salino em cultivo hidropônico. Rev. Bras. Eng. Agríc. Ambient. 2014, 18, 1–7. [Google Scholar] [CrossRef]
- Kouřil, R.; Dekker, J.P.; Boekema, E.J. Supramolecular organization of photosystem II in green plants. Biochim. Biophys. Acta (BBA)-Bioenerg. 2012, 1817, 2–12. [Google Scholar] [CrossRef]
- de Souza, R.R.; Cavalcante, M.Z.B.; Silva, E.M.; Amaral, G.C.; Brito, L.P.S.; Avelino, R.C. Alterações morfofisiológicas e crescimento de helicônias em função de diferentes ambientes de sombreamento. Comun. Sci. 2016, 7, 214–222. [Google Scholar] [CrossRef]
- Adler, P.B.; Salguero-Gómez, R.; Compagnoni, A.; Hsu, J.S.; Ray-Mukherjee, J.; Mbeau-Ache, C.; Franco, M. Functional traits explain variation in plant life history strategies. Proc. Natl. Acad. Sci. USA 2014, 111, 740–745. [Google Scholar] [CrossRef] [PubMed]
- Díaz, S.; Kattge, J.; Cornelissen, J.H.C.; Wright, I.J.; Lavorel, S.; Dray, S.; Reu, B.; Kleyer, M.; Wirth, C.; Colin Prentice, I. The global spectrum of plant form and function. Nature 2016, 529, 167–171. [Google Scholar] [CrossRef]
- Reich, P.B. The world-wide ‘fast–slow’plant economics spectrum: A traits manifesto. J. Ecol. 2014, 102, 275–301. [Google Scholar] [CrossRef]
- Niinemets, Ü. Global-scale climatic controls of leaf dry mass per area, density, and thickness in trees and shrubs. Ecology 2001, 82, 453–469. [Google Scholar] [CrossRef]
- Petter, G.; Wagner, K.; Wanek, W.; Sánchez Delgado, E.J.; Zotz, G.; Cabral, J.S.; Kreft, H. Functional leaf traits of vascular epiphytes: Vertical trends within the forest, intra-and interspecific trait variability, and taxonomic signals. Funct. Ecol. 2016, 30, 188–198. [Google Scholar] [CrossRef]
- Larcher, W.; de Assis Prado, C.H.B. Ecofisiologia Vegetal; RiMa Artes e textos São Carlos: São Carlos, Brazil, 2000. [Google Scholar]
- Caparrotta, S.; Masi, E.; Atzori, G.; Diamanti, I.; Azzarello, E.; Mancuso, S.; Pandolfi, C. Growing spinach (Spinacia oleracea) with different seawater concentrations: Effects on fresh, boiled and steamed leaves. Sci. Hortic. 2019, 256, 108540. [Google Scholar] [CrossRef]
- Ma, F.; Barrett-Lennard, E.G.; Tian, C.Y. Changes in cell size and tissue hydration (‘succulence’) cause curvilinear growth responses to salinity and watering treatments in euhalophytes. Environ. Exp. Bot. 2019, 159, 87–94. [Google Scholar] [CrossRef]
- Boeger, M.R.T.; Wisniewski, C.; Reissmann, C.B. Nutrientes foliares de espécies arbóreas de três estádios sucessionais de floresta ombrófila densa no sul do Brasil. Acta Bot. Bras. 2005, 19, 167–181. [Google Scholar] [CrossRef]
- Cabral, R.D.C.; Melo Junior, J.C.F.d.; Matilde-Silva, M. Plasticidade morfoanatômica foliar em Smilax campestris (Smilacaceae) em gradiente ambiental de restinga, SC, Brasil. Hoehnea 2018, 45, 173–183. [Google Scholar] [CrossRef]
- Peloso, A.d.F.; Tatagiba, S.D.; Reis, E.F.d.; Pezzopane, J.E.M.; Amaral, J.F.T.d. Limitações fotossintéticas em folhas de cafeeiro arábica promovidas pelo déficit hídrico. Coffee Sci. 2017, 12, 389–399. [Google Scholar] [CrossRef]
- de Almeida, J.A.S.; Lopes, A.R.; Pantano, A.P.; Silvarolla, M.B.; Mistro, J.C. Análise morfofisiológica de plantas de Coffea arabica L. em períodos de seca e de precipitação. Agrometeoros 2018, 26, 173–180. [Google Scholar] [CrossRef]
pH (H2O) | P | K+ | Na+ | H+ + Al3+ | Al3+ | Ca2+ | Mg2+ | SBs | CEC | V | OM | Sand | Silt | Clay |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
mg dm−3 | cmolc dm−3 | % | g kg−1 | g kg−1 | ||||||||||
4.97 | 6.96 | 104.89 | 0.08 | 9.74 | 0.5 | 4.55 | 3.55 | 8.44 | 18.18 | 46.12 | 58.55 | 640 | 167 | 193 |
Canonical Function | R2 | Fa | DF1 | DF2 | p-Value |
---|---|---|---|---|---|
1 | 0.9828 | 9.74 | 152 | 481.21 | <0.0001 |
2 | 0.9472 | 6.20 | 126 | 430.55 | <0.0001 |
3 | 0.8675 | 4.16 | 102 | 377.57 | <0.0001 |
4 | 0.7108 | 3.00 | 80 | 322.04 | <0.0001 |
5 | 0.6250 | 2.49 | 60 | 263.76 | <0.0001 |
6 | 0.5667 | 2.10 | 42 | 202.49 | 0.0004 |
7 | 0.5459 | 1.68 | 26 | 138 | 0.0300 |
8 | 0.2541 | 0.91 | 12 | 70 | 0.5381 |
Variables | Canonical Pair |
---|---|
Group I | |
Abiotic factors | |
Leaf area index (LAI) | 0.2740 |
Visible sky fraction (VSF) | −0.5823 |
Photosynthetically active radiation (PAR) | −0.8019 |
Soil moisture (SM) | 0.7173 |
Soil temperature—0 cm (ST0cm) | −0.7750 |
Soil temperature—20 cm (ST20cm) | −0.8065 |
Air temperature (Tair) | −0.3253 |
Rainfall (Rain) | 0.8939 |
Group II | |
Gas exchange | |
Net assimilation rate of CO2 (A) | 0.5874 |
Stomatal conductance (gs) | 0.6334 |
Transpiration rate (E) | 0.5084 |
Internal concentration of CO2 (Ci) | 0.6707 |
Instantaneous water use efficiency (WUE) | 0.1051 |
Instantaneous carboxylation efficiency (iCE) | 0.4465 |
Chlorophyll content | |
Chlorophyll a (Chl a) | 0.4761 |
Chlorophyll b (Chl b) | 0.4445 |
Total chlorophyll (T chl) | 0.4956 |
Chlorophyll a/b ratio (Chl a/Chl b) | −0.3999 |
Chlorophyll a fluorescence | |
Initial fluorescence (F0) | −0.9179 |
Maximum fluorescence (Fm) | 0.6240 |
Variable fluorescence (Fv) | 0.7087 |
Maximum quantum yield of PSII (Fv/Fm) | 0.9073 |
Morphofunctional attributes and water relations | |
Leaf mass per unit area (LMA) | −0.6198 |
Succulence (SUC) | −0.4930 |
Leaf thickness (Thi) | −0.3254 |
Leaf density (Den) | −0.7536 |
Relative water content (RWC) | 0.9171 |
Leaf moisture (LM) | 0.9156 |
Electrolyte leakage (EL) | 0.2955 |
Wilk’s lambda | 0.00002970 |
Cumulative variance (%) | 65.78 |
R2 | 0.9828 |
Significance | ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ribeiro, J.E.d.S.; Coêlho, E.d.S.; Figueiredo, F.R.A.; Pereira, W.E.; Dias, T.J.; Melo, M.F.; Silveira, L.M.d.; Barros Júnior, A.P.; Albuquerque, M.B.d. Seasonal Ecophysiological Dynamics of Erythroxylum pauferrense in an Open Ombrophilous Forest of the Brazilian Atlantic Forest. Climate 2024, 12, 128. https://doi.org/10.3390/cli12090128
Ribeiro JEdS, Coêlho EdS, Figueiredo FRA, Pereira WE, Dias TJ, Melo MF, Silveira LMd, Barros Júnior AP, Albuquerque MBd. Seasonal Ecophysiological Dynamics of Erythroxylum pauferrense in an Open Ombrophilous Forest of the Brazilian Atlantic Forest. Climate. 2024; 12(9):128. https://doi.org/10.3390/cli12090128
Chicago/Turabian StyleRibeiro, João Everthon da Silva, Ester dos Santos Coêlho, Francisco Romário Andrade Figueiredo, Walter Esfrain Pereira, Thiago Jardelino Dias, Marlenildo Ferreira Melo, Lindomar Maria da Silveira, Aurélio Paes Barros Júnior, and Manoel Bandeira de Albuquerque. 2024. "Seasonal Ecophysiological Dynamics of Erythroxylum pauferrense in an Open Ombrophilous Forest of the Brazilian Atlantic Forest" Climate 12, no. 9: 128. https://doi.org/10.3390/cli12090128
APA StyleRibeiro, J. E. d. S., Coêlho, E. d. S., Figueiredo, F. R. A., Pereira, W. E., Dias, T. J., Melo, M. F., Silveira, L. M. d., Barros Júnior, A. P., & Albuquerque, M. B. d. (2024). Seasonal Ecophysiological Dynamics of Erythroxylum pauferrense in an Open Ombrophilous Forest of the Brazilian Atlantic Forest. Climate, 12(9), 128. https://doi.org/10.3390/cli12090128