Projecting Climate Change Impacts on Benin’s Cereal Production by 2050: A SARIMA and PLS-SEM Analysis of FAO Data
Abstract
:1. Introduction
2. Conceptual and Empirical Framework on Climate Change and Agricultural Policies in Benin
2.1. Concept of Climate Change or Climate Variability
2.2. Impact of Agricultural Policies and Climate Change Adaptation Strategies
3. Methodology
3.1. Choice of Study Framework
3.2. Data Used
3.3. Analysis Method
- Y is a matrix of n discovered by m answered as variables (harvested area, yield, and total production for each crop);
- X is a matrix of n observations by p predictor variables (design) (mean annual temperature and precipitation);
- B is a matrix of p-by-m regression coefficients, and E is described as the error term of the model, which is used in the same dimension as Y;
- The relationships between each latent variable and its manifest indicators represent the “external models” (Equation (2)), while the relationships between the latent variables are called the “internal models” (Equation (3)).
4. Results
4.1. Impacts of Climate Change on Cereal Production and Projections for 2050
4.1.1. Dynamics of Precipitation and Average Annual Temperatures from 1990 to 2020
4.1.2. Dynamics of Production Indicators (Harvested Area, Yield, Total Production) for Cereal Crops (Maize, Sorghum, and Rice) from 1990 to 2020
4.1.3. Evaluation of the Influence of Climatic Factors on Cereal Production Indicators Using the Partial Least Squares Method (PLS-SEM)
- Evaluation of the measurement model
- Evaluation of the structural model
4.2. Prediction
4.2.1. Autocorrelation Function (ACF)
4.2.2. Forecasts of Area, Yield, and Total Production of Cereal Crops
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rosegrant, M.W.; Zhu, T.; Msangi, S.; Sulser, T. Global scenarios for biofuels: Impacts and implications. Rev. Agric. Econ. 2008, 30, 495–505. [Google Scholar] [CrossRef]
- Sultan, B.; Defrance, D.; Iizumi, T. Evidence of crop production losses in West Africa due to historical global warming in two crop models. Sci. Rep. 2019, 9, 12834. [Google Scholar] [CrossRef]
- Toromade, A.S.; Soyombo, D.A.; Kupa, E.; Ijomah, T.I. Reviewing the impact of climate change on global food security: Challenges and solutions. Int. J. Appl. Res. Soc. Sci. 2024, 6, 1403–1416. [Google Scholar] [CrossRef]
- Agani, A.O.; Zannou, A.; Floquet, A.; Biaou, G. Impact économique des changements climatiques sur les revenus agricoles à Matéri au Bénin. Afr. Sci. 2024, 24, 122–139. [Google Scholar]
- Akpo, C.Y. Impact des semences améliorées sur la productivité du maïs au Bénin. In African Economic Research Consortium, a Final Report Submitted to AERC, Biannual Research Workshop; African Economic Research Consortium: Nairobi, Kenya, 2020; pp. 1–26. [Google Scholar]
- Adjovi, N.R.A.; Agboton, A.A.G.; Quenum, F.; Miassi, Y.E.S.; Dossa, F.K.; Adedemi, O. Variation climatique et production vivrière au Sud-Bénin: Cas de la commune de Bohicon. Afr. Sci. Rev. Int. Sci. Technol. 2018, 15, 32–43. [Google Scholar]
- Abdul-Jalil, S.; Kinkpe, A.T.; Elnour, Z.; Grethe, H.; Aballo, C.S.; Acakpo, C.C.; Kperou, B.O.; Hounnou, G.E.; Luckmann, J.; Thom, F.; et al. Impacts des Changements Climatiques sur l’agriculture et l’ensemble de l’économie du Bénin avec Différentiation des Pôles de Développement Agricole (PDA). 2023, pp. 1–14. Available online: https://www.agrar.hu-berlin.de/de/institut/departments/daoe/ihe/Veroeff/1-policy-brief_cc-impacts-on-agriculture_benin.pdf (accessed on 12 January 2025).
- Faye, A.; Ndiaye, M.; Ndiaye, A. L’impact des changements climatiques sur les rendements des principales cultures céréalières au Sénégal. Rev. Int. Econ. Lang. Française 2018, 3, 291–306. [Google Scholar] [CrossRef]
- Ahossin, R.; Cossi, W.G.; Ibouraïma, Y.A.B.I. Perceptions paysannes des risques agro-climatiques et stratégies endogènes d’adaptation dans la commune de Zogbodomey au Sud-Bénin. Espace Géographique Société Marocaine 2022, 1, 75–92. [Google Scholar]
- Rosenstock, T.S.; Lamanna, C.; Namoi, N.; Arslan, A.; Richards, M. What Is the Evidence Base for Climate-Smart Agriculture in East and Southern Africa? A Systematic Map. In The Climate-Smart Agriculture Papers; Springer Open: Berlin/Heidelberg, Germany, 2019; pp. 141–151. [Google Scholar]
- Abaje, I.B.; Sawa, B.A.; Iguisi, E.O.; Ibrahim, A.A. Assessment of rural communities’ adaptive capacity to climate change in Kaduna State, Nigeria. J. Environ. Earth Sci. 2015, 5, 14–23. [Google Scholar]
- Abdul-Razak, M.; Kruse, S. The adaptive capacity of smallholder farmers to climate change in the Northern Region of Ghana. Clim. Risk Manag. 2017, 17, 104–122. [Google Scholar] [CrossRef]
- Chepkoech, W.; Mungai, N.W.; Stöber, S.; Lotze-Campen, H. Understanding adaptive capacity of smallholder African indigenous vegetable farmers to climate change in Kenya. Clim. Risk Manag. 2020, 27, 100204. [Google Scholar] [CrossRef]
- Cunha, D.A.D.; Coelho, A.B.; Féres, J.G.; Braga, M.J. Effects of climate change on irrigation adoption in Brazil. Acta Sci. Agron. 2014, 36, 1–9. [Google Scholar] [CrossRef]
- Mashizha, T.M. Adapting to climate change: Reflections of peasant farmers in Mashonaland West Province of Zimbabwe. Jàmbá J. Disaster Risk Stud. 2019, 11, 8. [Google Scholar] [CrossRef]
- Notenbaert, A.; Karanja, S.N.; Herrero, M.; Felisberto, M.; Moyo, S. Derivation of a household-level vulnerability index for empirically testing measures of adaptive capacity and vulnerability. Reg. Environ. Chang. 2013, 13, 459–470. [Google Scholar] [CrossRef]
- Osumanu, I.K.; Aniah, P.; Yelfaanibe, A. Determinants of adaptive capacity to climate change among smallholder rural households in the Bongo District, Ghana. Ghana J. Dev. Stud. 2017, 14, 142–162. [Google Scholar] [CrossRef]
- Adegbola, Y.P.; Ahoyo-Adjovi, N.R.; Hessavi, P.; Kouton-Bognon, B.; Montcho, D.; Mensah, S.E. Impact of Climate Change Adaptation Strategies on Farm Yields and Income in Benin. FARA Res. Results 2017, 1, 58. [Google Scholar]
- Akpa, A.F.; Amegnaglo, C.J.; Chabossou, A.F. Climate change adaptation strategies and technical efficiency of maize producers in Benin, West Africa. Int. J. Product. Perform. Manag. 2024, 73, 1071–1087. [Google Scholar] [CrossRef]
- Fadina, A.M.R.; Barjolle, D. Farmers’ adaptation strategies to climate change and their implications in the Zou Department of South Benin. Environments 2018, 5, 15. [Google Scholar] [CrossRef]
- Kosmowski, F.; Lalou, R. The Association of Monetary, Multidimensional and Traditional Poverty with Climate Change Adaptive Capacities in Northern Benin. In Climate Change Adaptation in Africa: Fostering Resilience and Capacity to Adapt; Springer: Berlin/Heidelberg, Germany, 2017; pp. 727–746. [Google Scholar]
- Lokonon, B.O.K. Farmers’ vulnerability to climate shocks: Insights from the Niger basin of Benin. Clim. Dev. 2019, 11, 585–596. [Google Scholar] [CrossRef]
- Soglo, Y.Y.; Nonvide, G.M.A. Climate change perceptions and responsive strategies in Benin: The case of maize farmers. Clim. Chang. 2019, 155, 245–256. [Google Scholar] [CrossRef]
- CCNUCC. Convention Cadre des Nations Unies Sur Les Changements Climatiques; Organisation des Nations Unies: New York, NY, USA, 1992. [Google Scholar]
- Ismahene, N.; Hamimid Chahinez, B. Quelles Stratégies D’adaptation des Cultures Face Aux Changements Climatiques en Zone Méditerranéenne? Ph.D. Thesis, Université Mohamed El Bachir El Ibrahimi B.B.A. Algeria. 2020; pp. 1–46. Available online: https://dspace.univ-bba.dz:443/xmlui/handle/123456789/324 (accessed on 2 October 2024).
- Simonet, G. Le concept d’adaptation: Polysémie interdisciplinaire et implication pour les changements climatiques. Nat. Sci. Soc. 2009, 17, 392–401. [Google Scholar] [CrossRef]
- Smit, B.; Wandel, J. Adaptation, adaptive capacity and vulnerability. Glob. Environ. Chang. 2006, 16, 282–292. [Google Scholar] [CrossRef]
- Lambert, D.; Rezsöhazy, R. How the Snake Gets Legs. In Essay on the Astonishing Plasticity of Life; Flammarion: Paris, France, 2005. [Google Scholar]
- Chia, E.; Petit, M.; Brossier, J. Théorie du comportement adaptatif et agriculture familiale. In L’agriculture en Famille: Travailler, Réinventer, Transmettre; EDP Sciences: Montpelier, France, 2014; pp. 81–100. [Google Scholar]
- Ayedegue, L.U.; Issaka, K.; Yabi, J.A.; en Agroéconomie, T. Typologie et déterminants des stratégies d’adaptation aux changements climatiques en riziculture au Nord et Centre du Bénin. Eur. Sci. J. 2020, 16, 206–234. [Google Scholar] [CrossRef]
- Chuku, C.; Okoye, C. Increasing resilience and reducing vulnerability in sub-Saharan African agriculture: Strategies for risk coping and management. Afr. J. Agric. Res. 2009, 4, 1524–1535. [Google Scholar]
- Gbedomon, R.C.; Houngbo, S.; Thoto, S.F. Profil de l’agriculture numérique et de l’adaptation aux changements climatiques: Cas du Bénin. In Rapport de Recherche; Centre Africain pour le Développement Équitable: Abomey-Calavi, Benin, 2023; pp. 1–108. [Google Scholar]
- Direction Générale de l’Environnement et du Climat (DGEC). Plan National D’adaptation Aux Changements Climatiques du Bénin; Ministère du Cadre de Vie et du Développement Durable: Cotonou, Benin, 2022; pp. 1–175. Available online: https://unfccc.int/sites/default/files/resource/PNA_BENIN_2022_0.pdf#:~:text=Objectifs%20du%20Plan%20National%20d%E2%80%99Adaptation (accessed on 13 October 2024).
- Tovihoudji, G.P. Improving Maize Productivity in Northern Benin Through Localized Placement of Amendments and Fertilizers. Ph.D. Thesis, Université d’Abomey Calavi, Cotonou, Benin, 2018. [Google Scholar]
- Grami, D.; Ben Rejeb, J. L’impact des changements climatiques sur le rendement de la céréaliculture dans la Région du Nord-Ouest de la Tunisie (Béja). New Médit 2015, 4, 38–41. [Google Scholar]
- Dahan, K.S.; Dibi N’Da, H.; Assi Kaudjihis, C. Evaluation des superficies forestières brûlées de 2001 à 2019 dans le département de Toumodi, au centre de la Côte d’Ivoire. Rev. AFN Maroc N 2021, 29, 30. [Google Scholar]
- OCDE. Production Végétale (Indicateur), 2023. Available online: http://doi.org/10.1787/5631370e-fr (accessed on 20 November 2024).
- Sakli, L. Modélisation et Evaluation des Vulnérabilités et des Risques Dans Les Chaînes Logistiques. Ph.D. Thesis, Université d’Aix Marseille, École Doctorale mathématiques-informatique UFR Sciences, Laboratoire des sciences de l’information et des systèmes, Marseille, France, 2016. Volume 729. pp. 1–214. [Google Scholar]
- Ghafourian, K.; Kabirifar, K.; Mahdiyar, A.; Yazdani, M.; Ismail, S.; Tam, V.W. A synthesis of express analytic hierarchy process (EAHP) and partial least squares-structural equations modeling (PLS-SEM) for sustainable construction and demolition waste management assessment: The case of Malaysia. Recycling 2021, 6, 73. [Google Scholar] [CrossRef]
- Sarstedt, M.; Ringle, C.M.; Hair, J.F. Partial least squares structural equation modeling. In Handbook of Market Research; Springer International Publishing: Cham, Switzerland, 2021; pp. 587–632. [Google Scholar] [CrossRef]
- Hair, J.F.; Risher, J.J.; Sarstedt, M.; Ringle, C.M. When to use and how to report the results of PLS-SEM. Eur. Bus. Rev. 2019, 31, 2–24. [Google Scholar] [CrossRef]
- Henseler, J.; Hubona, G.; Ray, P.A. Using PLS path modeling in new technology research: Updated guidelines. Ind. Manag. Data Syst. 2016, 116, 2–20. [Google Scholar] [CrossRef]
- Zaouali, N.; Khefacha, I. Estimation de L’insecurite Routiere en Tunisie: Un Modele SARIMA (Modeling Road Accident in Tunisia: A SARIMA Approach). 2017. Available online: https://www.ssrn.com/abstract=3549441 (accessed on 12 January 2025). [CrossRef]
- Charpentier, A. Cours de Séries Temporelles: Théorie et Applications. Ph.D. Thesis, Université Paris Dauphine, Paris, France, 2006; pp. 1–178. [Google Scholar]
- Bouktif, S.; Fiaz, A.; Ouni, A.; Serhani, M.A. Optimal deep learning lstm model for electric load forecasting using feature selection and genetic algorithm: Comparison with machine learning approaches. Energies 2018, 11, 1636. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2014: Impacts, Adaptation and Vulnerability. IPCCWGIIAR5 Technical Summary. 2014. Available online: https://www.ipcc.ch/site/assets/uploads/2018/02/WGIIAR5-TS_FINAL.pdf (accessed on 3 October 2024).
- Badameli, A.; Dubreuil, V. Diagnostic du Changement Climatique au Togo à Travers L’évolution de la Température Entre 1961 et 2010. In Proceedings of the XXVIIIe Colloque de l’Association Internationale de Climatologie, Liège, Belgique, 1–4 July 2015; pp. 421–426. [Google Scholar]
- Issa, M.-S.; Zakari, S.; Yabi, I.; Afouda, F. Vulnérabilité de la production agricole face à l’instabilité intra-saisonnière des pluies dans le Département du Borgou au Bénin. Rev. Géographie Lab. Leïdi 2017, 15, 211–227. [Google Scholar]
- Djenontin, S.N.I. Vulnérabilité des Ressources en eau Face Aux Changements Climatiques et Stratégies Endogènes de Gestion Développées Dans le Secteur Agricole: Cas des Communes de Banikoara et Malanville (Bénin). Report. Université de Parakou, Parakou, Bénin, 2010. Available online: https://idl-bnc-idrc.dspacedirect.org/handle/10625/45795 (accessed on 5 October 2024).
- Dedjan, Y.J. Changements Climatiques et Evolution des Périodes de Semis des Principales Cultures Dans L’ALIBORI: Cas des Communes de Malanville et de Banikoara, Bénin. Ph.D. Thesis, Université de Parakou, Parakou, Bénin, 2010. [Google Scholar]
- Yegbemey, R.N.; Yabi, J.A.; Aïhounton, G.B.; Paraïso, A. Modélisation simultanée de la perception et de l’adaptation au changement climatique: Cas des producteurs de maïs du Nord Bénin (Afrique de l’Ouest). Cah. Agric. 2014, 23, 177–187. [Google Scholar] [CrossRef]
- Dayou, E.D.; Zokpodo, B.K.; Montcho, M.; Ajav, E.A.; Bamgboye, I.A.; Kakai RL, G. Current Agricultural and Environmental Policies in Benin Republic. Sustain. Agric. Res. 2020, 9, 87. [Google Scholar] [CrossRef]
- Edoun, G.; Mongbo, R. Les formes socioculturelles de la malnutrition des enfants de moins de cinq ans dans la commune de Karimama au Nord du Bénin. Eur. Sci. J. 2020, 16, 73–97. [Google Scholar]
- Danso-Abbeam, G.; Bosiako, J.A.; Ehiakpor, D.S.; Mabe, F.N. Adoption of improved maize variety among farm households in the northern region of Ghana. Cogent Econ. Financ. 2017, 5, 1416896. [Google Scholar] [CrossRef]
- Avande, L.F.; Aboubacary, L.I.; Hinnou, L.C. Strategies d’adaptation des riziculteurs aux effets des changements climatiques dans la Commune de Malanville au Benin. Agron. Afr. 2022, 34, 387–402. [Google Scholar]
- Vodounou, J.B.K.; Onibon Doubogan, Y. Agriculture paysanne et stratégies d’adaptation au changement climatique au NordBénin. Cybergeo Eur. J. Geogr. 2016, 794, 1–26. [Google Scholar] [CrossRef]
- Niang, A.; Becker, M.; Ewert, F.; Tanaka, A.; Dieng, I.; Saito, K. Yield variation of rainfed rice as affected by field water availability and N fertilizer use in central Benin. Nutr. Cycl. Agroecosyst. 2018, 110, 293–305. [Google Scholar] [CrossRef]
- Wabi, M.A. Risques agro-météorologiques et production du riz pluvial (Oryza spp.) au Bénin (Afrique de l’Ouest). Sci. Vie Terre Agron. 2021, 9, 1–12. [Google Scholar]
- Houssou, I.P.A.; Adjovi, I.N.R.A.; Dansou, I.V.; Hounyevou-Klotoe, I.A.; Hotegni BA, B.; Mensah, I.G.A. Guide pratique de production du riz blanc au Bénin: Aspect post-récolte. Fiche Tech. Dépôt Légal 2016, 3, 8529. [Google Scholar]
- Yai, E.D.; Biaou, F.C.; Biaou, G. Optimisation du Warrantage: Un cadre d’analyse conceptuel appliqué au Benin. Les Cah. Cread 2022, 38, 139–162. [Google Scholar] [CrossRef]
- FAOSTAT. Maize Production in Benin. 2024. Available online: http://www.fao.org/faostat/fr/#data (accessed on 4 September 2024).
- Cairns, J.E.; Hellin, J.; Sonder, K.; Araus, J.L.; MacRobert, J.F.; Thierfelder, C.; Prasanna, B.M. Adapting maize production to climate change in sub-Saharan Africa. Food Secur. 2013, 5, 345–360. [Google Scholar] [CrossRef]
- Hellin, J.; Shiferaw, B.; Cairns, J.E.; Reynolds, M.; Ortiz-Monasterio, I.; Bänziger, M.; Sonder, K.; La Rovere, R. Climate change and food security in the developing world: Potential of maize and wheat research to expand options for adaptation and mitigation. J. Dev. Agric. Econ. 2012, 4, 311–321. [Google Scholar]
- Schlenker, W.; Lobell, D.B. Robust negative impacts of climate change on African agriculture. Environ. Res. Lett. 2010, 5, 014010. [Google Scholar] [CrossRef]
- Bernstein, L.; Pachauri, R.K.; Reisinger, A.; Groupe D’experts Intergouvernemental sur L’évolution du Climat; Équipe de Rédaction Principale; Groupe D’experts Intergouvernemental sur L’évolution du Climat. Changements Climatiques 2007: Rapport de Synthèse: Un Rapport du Groupe D’experts Intergouvernemental sur L’évolution du Climat. 2013. Available online: http://books.scholarsportal.info/viewdoc.html?id=/ebooks/ebooks0/gibsoncppc/2014-01-22/1/10785011 (accessed on 5 October 2024).
- Dossa, K.F.; Miassi, Y.E. Exploring the nexus of climate variability, population dynamics, and maize production in Togo: Implications for global warming and food security. Farming Syst. 2023, 1, 100053. [Google Scholar] [CrossRef]
- Diallo, S.; MBagnick, F.; Hassan, B.N. La variabilité pluviométrique et ses impacts sur les rendements et les surfaces cultivées dans le bassin arachidier de la région de Thiès (Sénégal). VertigO-La Rev. Électronique Sci. L’environnement 2022, 23, 1–20. [Google Scholar]
- Iwédiga, B.D.; Batawila, K.; Wala, K.; Hounkpè, K.; Gbogbo, A.K.; Akpavi, S.; Tatoni, T.; Akpagana, K. Exploitation agricole des berges: Une stratégie d’adaptation aux changements climatiques destructrice des forets galleries dans la plaine de l’Oti. Afr. Sociol. Rev. Rev. Afr. Sociol. 2012, 16, 77–99. [Google Scholar]
- Jacquemot, P. De L’insécurité à la Souveraineté Alimentaire en Afrique: Mégatendances, Forces Motrices, Leviers D’action. Ph.D. Thesis, University Mohammed VI Polytechnic’s Post, Benguerir, Morocco, 2023. [Google Scholar]
- Jalloh, A.; Nelson, G.C.; Thomas, T.S.; Zougmoré, R.B.; Roy-Macauley, H. (Eds.) West African Agriculture and Climate Change: A Comprehensive Analysis; International Food Policy Research Institute: Washington, WA, USA, 2013. [Google Scholar]
- Hair, J.F.; Ringle, C.M.; Sarstedt, M. PLS-SEM: Indeed a silver bullet. J. Mark. Theory Pract. 2011, 19, 139–152. [Google Scholar] [CrossRef]
- Juhel, J. Modèles structuraux et inférence causale. In Différences et Variabilités en Psychologie; Presses universitaires de Rennes: Rennes, France, 2015; pp. 309–352. [Google Scholar]
Variables | Description | Sources | Year |
---|---|---|---|
Climate factors | |||
Precipitation | Mean annual precipitation and mean monthly precipitation were collected (mm). | Association of Birth Control Services (ASECNA) | 1990–2020 |
Temperature | The monthly average temperature was collected (°C). | Association of Birth Control Services (ASECNA) | 1990–2020 |
Production indicators for corn, rice, and sorghum | |||
Area harvested (ha) | Annual area harvested by crop | FAO | 1990–2020 |
Yield (kg/ha) | Average annual yield per crop | FAO | 1990–2020 |
Total production (t) | Total quantity of product harvested per crop | FAO | 1990–2020 |
Criteria | Acceptance Thresholds | References |
---|---|---|
Measurement model | ||
Path Coefficients | ≥0.7 | [39,41] |
Cronbach’s Alpha (CA) | ≥0.6 | |
Composite Reliability (rhoC) | ≥0.6 | |
Average Variance Extracted (AVE) | ≥0.5 | |
Structural model | ||
Variation in inflation factor (VIF) | <5 | [39,41] |
Coefficient of determination (R2) | ≥0.5 | [39,41] |
Variables | Indicators | Coefficients | Cronbach Alpha (CA) | Composite Reliability (RhoC) | AVE | Number of Indicators Deleted |
---|---|---|---|---|---|---|
Climate | Precipitation (mm) | −0.578 | −0.727 | 0.146 | 0.609 | 0 |
Temperature (°C) | 0.942 | |||||
Corn | Area harvested (ha) | 0.941 | 0.898 | 0.937 | 0.834 | 0 |
Yield (kg/ha) | 0.792 | |||||
Production (t) | 0.994 | |||||
Rice | Area harvested (ha) | 0.974 | 0.959 | 0.974 | 0.925 | 0 |
Yield (kg/ha) | 0.928 | |||||
Production (t) | 0.983 | |||||
Sorghum | Yield (kg/ha) | 0.437 | 0.518 | 0.476 | 0.392 | 2 (Area and Production) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dossa, K.F.; Bissonnette, J.-F.; Barrette, N.; Bah, I.; Miassi, Y.E. Projecting Climate Change Impacts on Benin’s Cereal Production by 2050: A SARIMA and PLS-SEM Analysis of FAO Data. Climate 2025, 13, 19. https://doi.org/10.3390/cli13010019
Dossa KF, Bissonnette J-F, Barrette N, Bah I, Miassi YE. Projecting Climate Change Impacts on Benin’s Cereal Production by 2050: A SARIMA and PLS-SEM Analysis of FAO Data. Climate. 2025; 13(1):19. https://doi.org/10.3390/cli13010019
Chicago/Turabian StyleDossa, Kossivi Fabrice, Jean-François Bissonnette, Nathalie Barrette, Idiatou Bah, and Yann Emmanuel Miassi. 2025. "Projecting Climate Change Impacts on Benin’s Cereal Production by 2050: A SARIMA and PLS-SEM Analysis of FAO Data" Climate 13, no. 1: 19. https://doi.org/10.3390/cli13010019
APA StyleDossa, K. F., Bissonnette, J.-F., Barrette, N., Bah, I., & Miassi, Y. E. (2025). Projecting Climate Change Impacts on Benin’s Cereal Production by 2050: A SARIMA and PLS-SEM Analysis of FAO Data. Climate, 13(1), 19. https://doi.org/10.3390/cli13010019