Centered Log-Ratio (clr) Transformation and Robust Principal Component Analysis of Long-Term NDVI Data Reveal Vegetation Activity Linked to Climate Processes
Abstract
:1. Introduction
2. Methods and Data
2.1. Study Area
2.1.1. Satellite Data
2.1.2. Sub-Watershed Data
2.2. Data Analysis
2.2.1. Data Preparation—NDVI Data Extraction
2.2.2. Centered Log-Ratio (clr) Transformation and Robust Principal Component Analysis (PCA)
3. Results and Discussion
3.1. Drought Events Impacting Vegetation Condition
3.2. El Niño Southern Oscillation (ENSO)
3.2.1. El Niño—Extremely High Rainfall Events
3.2.2. La Niña Events—Cool Processes
3.3. Normal/Neutral Conditions
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Richards, J.A. Remote Sensing Digital Image Analysis, 5th ed.; Springer-Verlag: Berlin, Germany, 2013. [Google Scholar]
- Goodchild, M.; Haining, R.; Wise, S. Integrating GIS and spatial data analysis: Problems and possibilities. Int. J. Geogr. Info. Syst. 1992, 6, 407–423. [Google Scholar] [CrossRef]
- Tucker, C.J.; Pinzon, J.E.; Brown, M.E.; Slayback, D.; Pak, E.W.; Mahoney, R.; Vermote, E.; El Saleous, N. An extended AVHRR 8-km NDVI data set compatible with MODIS and SPOT vegetation NDVI data. Int. J. Remote Sens. 2006, 26, 4485–4498. [Google Scholar] [CrossRef]
- Lhermitte, S.; Verbesselt, J.; Verstraaten, W.W.; Coppin, P. A comparison of time series similarity measures for classification and change detection of ecosystems dynamics. Int. Remote Sens. Environ. 2011, 115, 3129–3152. [Google Scholar] [CrossRef]
- Eastman, R.J. IDRISI Selva Guide to GIS and Remote Sensing; Clarklabs, Clark University: Worcester, MA, USA, 2012; p. 322. [Google Scholar]
- Omkar, S.N.; Sivaranjani, V.; Senthilnath, J.; Mukherjee, S. Classification of hyperspectral data. Int. J. Aero. Innov. 2010, 2, 157–163. [Google Scholar] [CrossRef]
- Hyvarinen, A.; Oja, E. Independent component analysis: Algorithms and applications. Neural Netw. 2000, 13, 411–430. [Google Scholar] [CrossRef] [PubMed]
- Forkel, M.; Carvalhais, N.; Verbesselt, J.; Mahecha, M.D.; Neigh, C.S.R.; Reichstein, M. Trend change detection in NDVI time series: Effects of inter-annual variability and methodology. Remote Sens. 2013, 5, 2113–2144. [Google Scholar] [CrossRef]
- Sellers, P.J. Canopy reflectance, photosynthesis and transpiration. Int. J. Remote Sens. 1985, 6, 1335–1372. [Google Scholar] [CrossRef]
- Mennis, J. Exploring relationships between ENSO and vegetation vigour in the south-east USA using AVHRR data. Int. J. Remote Sens. 2001, 22, 3077–3092. [Google Scholar] [CrossRef]
- Pettorelli, N.; Vik, J.O.; Mysterud, A.; Gaillard, J.M.; Tucker, C.J.; Stenseth, N.C. Using the satellite-derived NDVI to assessecological responses to environmental change. Trends Ecol. Evol. 2005, 20, 503–510. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Kou, X.; Xiong, Y.; Mou, P.; Wu, J.; Ge, J. Temporal and spatial patterns of NDVI and their relationship to precipitation in the Loess Plateau of China. Int. J. Remote Sens. 2010, 31, 1943–1958. [Google Scholar]
- NASA-Earth Observatory (NASA-EO). Measuring vegetation (NDVI & EVI). Available online: http://earthobservatory.nasa.gov/Features/MeasuringVegetation/measuring_vegetation_2.php (accessed on 16 December 2014).
- Aitchison, J. The Statistical Analysis of Compositional Data; Chapman and Hall: London, UK, 1986. [Google Scholar]
- Aitchison, J.; Greenacre, M. Biplots of compositional data. Appl. Stat. 2009, 51, 375–392. [Google Scholar]
- Filzmoser, P.; Hron, K.; Reimann, C. Principal component analysis for compositional data with outliers. Environmetrics 2009, 20, 621–632. [Google Scholar] [CrossRef]
- Hron, K.; Jelinkov, M.; Filzmoser, P.; Kreuziger, R.; Bednar, P.; Bartak, P. Statistical analysis of wines using a robust compositional biplot. Talanta 2012, 90, 46–50. [Google Scholar] [CrossRef] [PubMed]
- Egozcue, J.J.; Pawlowsky-Glahn, V.; Mateu-Figueraz, G.; Barceló-Vidal, C. Isometric logratio transformations for compositional data analysis. Math. Geosci. 2003, 35, 279–300. [Google Scholar]
- Filzmoser, P.; Hron, K. Outlier detection for compositional data using robust methods. Math. Geosci. 2008, 40, 233–248. [Google Scholar] [CrossRef]
- Funk, C. A Climate Trend Analysis of Kenya—August 2010. Available online: http://pubs.usgs.gov/fs/2010/3074/ (accessed on 12 June 2014).
- Collier, P.; Conway, G.; Venables, T. Climate change and Africa. Oxf. Rev. Econ. Policy 2008, 24, 337–353. [Google Scholar] [CrossRef]
- Hope, K.R. Climate change and poverty in Africa. Int. J. Sustain. Dev. World Ecol. 2009, 16, 451–461. [Google Scholar] [CrossRef]
- Cooper, P.; Dimes, J.; Rao, K.; Shapiro, B.; Shiferaw, B.; Twomlow, S. Coping better with current climatic variability in the rain-fed arming systems of sub-Saharan Africa: An essential first step in adapting to future climate change? Agric. Ecosyst. Environ. 2008, 126, 24–35. [Google Scholar] [CrossRef] [Green Version]
- Durack, P.J.; Wijffels, S.E.; Matear, R.J. Ocean salinities reveal strong global water cycle intensification during 1950 to 2000. Science 2012, 336, 455–458. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, S.E. The nature of rainfall variability over Africa on time scales of decades to millenia. Glob. Planet Chang. 2000, 26, 137–158. [Google Scholar] [CrossRef]
- Morton, J.; Barton, D. Destocking as a Drought Mitigation Measure: Clarifying rationales and answering critiques. Disasters. 2002, 26, 213–228. [Google Scholar]
- Thornton, P.K.; Jones, P.G.; Ericksen, P.J.; Challinor, A.J. Agriculture and food systems in sub-Saharan Africa in a 4 °C+ world. Philos. Trans. R. Soc. A 2011, 369, 117–136. [Google Scholar] [CrossRef]
- Muller, C.; Cramer, W.; Hare, W.L.; Lotze-Campen, H. Climate change risks for African agriculture. Proc. Natl. Acad. Sci. USA 2010, 108, 4313–4315. [Google Scholar] [CrossRef]
- López-Carr, D.; Pricope, N.G.; Aukema, J.E.; Jankowska, M.M.; Funk, C.; Husak, G.; Michaelsen, J. A spatial analysis of population dynamics and climate change in Africa: Potential vulnerability hot spots emerge where precipitation declines and demographic pressures coincide. Popul. Environ. 2014, 35, 323–339. [Google Scholar] [CrossRef]
- Justus, F.; Yu, D. Spatial distribution of greenhouse commercial horticulture in Kenya and the role of demographic, infrastructure and topo-edaphic factors. ISPRS Int. J. Geo-Inf. 2014, 3, 274–296. [Google Scholar] [CrossRef]
- Ulrich, A.; Speranza, C.I.; Roden, P.; Kiteme, B.; Wiesmann, U.; Nüsser, M. Small-scale farming in semi-arid areas: Livelihood dynamics between 1997 and 2010 in Laikipia, Kenya. J. Rur. Stud. 2012, 28, 241–251. [Google Scholar] [CrossRef]
- Sayer, J.; Cassman, K.G. Agricultural innovation to protect the environment. Proc. Natl. Acad. Sci. USA 2013, 110, 8345–8348. [Google Scholar] [CrossRef] [PubMed]
- Tilman, D.; Balzer, C.; Hill, J.; Befort, B.L. Global food demand and the sustainable intensification of agriculture. Proc. Natl. Acad. Sci. USA 2011, 108, 20260–20264. [Google Scholar] [CrossRef]
- Brondizio, E.S.; Moran, E.F. Human dimensions of climate change: The vulnerability of small farmers in the Amazon. Philos. Trans. R. Soc. B 2008, 363, 1803–1809. [Google Scholar] [CrossRef]
- Kareri, R. Some aspects of the geography of Kenya. In Proceedings of the 2010 Indiana University-Perdue University Indianapolis (IUPUI) Fulbright Hays Group Projects Symposium, Eldoret, Kenya, 9 July–3 August 2010.
- Notter, B. Rainfall-Runoff Modeling of Meso-Scale Catchments in the Upper Ewaso Ng’iro Basin, Kenya. Master’s Thesis, University of Berne, Bern, Switzerland, 2003. [Google Scholar]
- Beck, H.E.; McVicar, T.R.; van Dijk, A.I.J.M.; Schellekens, J.; de Jeu, R.A.M.; Bruijnzeel, L.A. Global evaluation of four AVHRRNDVI data sets: Intercomparison and assessment against Landsat imagery. Remote Sens. Environ. 2011, 115, 2547–2563. [Google Scholar] [CrossRef]
- Slayback, D.A.; Pinzon, J.E.; Los, S.O.; Tucker, C.J. Northern hemisphere photosynthetic trends 1982–99. Glob. Chang. Biol. 2013, 9, 1–15. [Google Scholar] [CrossRef]
- Samanta, A.; Ganguly, S.; Hashimoto, H.; Devadiga, S.; Vermote, E.; Knyazikhin, Y.; Nemani, R.R.; Myneni, R.B. Amazon forests did not green-up during the 2005 drought. Geophys. Res. Lett. 2010, 37, L05401. [Google Scholar] [CrossRef]
- World Resources Institute. Download Kenya GIS Data. Available online: http://www.wri.org (accessed on 12 September 2014).
- Albaladejo, J.P.; Fernandez, J.M.; Soto, J.A. Dealing with distances and transformations for fuzzy C-means clustering of compositional data. J. Classif. 2012, 29, 144–169. [Google Scholar] [CrossRef]
- Bannari, A.; Morin, D.; Bonn, F.; Huete, A.R. A review of vegetation indices. Remote Sens. Rev. 1995, 13, 95–120. [Google Scholar] [CrossRef]
- Thió-Henestrosa, S.; Martín-Fernández, J.A. Detailed guide to CoDaPack: A freeware compositional software. In Compositional Data Analysis in the Geosciences: From Theory to Practice; Buccianti, A., Mateu-Figueras, G., Pawlowsky-Glahn, V., Eds.; Geological Society: London, UK, 2006; Volume 264, pp. 101–118. [Google Scholar]
- Templ, M.; Hron, K.; Filzmoser, P. Robcompositions: Robust Estimation for Compositional Data. Manual and Package, Version 1.3.3. Available online: http://cran.r-project.org/package=robCompositions (accessed on 16 December 2014).
- Smith, P.G. Automated log-ratio analysis of compositional data: Software suited to analysis of habitat preference from radiotracking data. Bat Res. News 2004, 45, 16. [Google Scholar]
- Smith, P.G. Compos Analysis Version 6.3 User’s Guide; Smith Ecology Ltd.: Abergavenny, UK, 2010. [Google Scholar]
- Jessica, E.; Tierney, J.E.; Smerdon, K.J.; Anchukaitis, R.S. Multidecadal variability in East African hydroclimate controlled by the Indian Ocean. Nature 2013, 493. [Google Scholar] [CrossRef] [PubMed]
- Williams, C.A.; Hanan, N.P. ENSO and IOD teleconnections for African ecosystems: Evidence of destructive interference between climate oscillations. Biogeosciences 2011, 8, 27–40. [Google Scholar] [CrossRef]
- Nicholson, S.E.; Davenport, M.L.; Malo, A.R. A comparison of the vegetation response to rainfall in the Sahel and East Africa, using normalized difference vegetation index from NOAA AVHRR. Clim. Chang. 1990, 17, 209–241. [Google Scholar] [CrossRef]
- Anyamba, A.; Tucker, C.J.; Eastman, J.R. NDVI anomaly patterns over Africa during the 1997/98 ENSO warm event. Int. J. Remote Sens. 2001, 22, 1847–1859. [Google Scholar] [CrossRef]
- Luo, J.J.; Zhang, R.; Behera, S.K.; Masumoto, Y.; Jin, F.F.; Lukas, R.; Yamagata, T. Interaction between El Niño and extreme Indian Ocean Dipole. J. Clim. 2010, 23, 726–742. [Google Scholar] [CrossRef]
- Huho, J.M.; Mugalavai, E.M. The effects of droughts on food security in Kenya. Int. J. Clim. Chang.: Impacts Resp. 2010, 2, 61–72. [Google Scholar]
- International Development Research Center (IDRC). Reducing Vulnerability among Pastoralists in Northern Kenya. Climate Change Adaptation in Africa Program 2009–10 Annual Report; IDRC: Ottawa, ON, Canada, 2010. [Google Scholar]
- Longley, C.; Wekesa, M. Improving Drought Response in Pastoral Areas of Kenya; Lessons and recommendations. Available online: http://www.odi.org/sites/odi.org.uk/files/odi-assets/publications-opinionfiles/5299.pdf (accessed on 25 September 2014).
- Shisanya, C.A. The 1983–1984 drought in Kenya. J. East. Afric. Res. Dev. 1990, 20, 127–148. [Google Scholar]
- Williams, C.A.; Hanan, N.P.; Baker, I.; Collatz, G.J.; Berry, J.; Denning, A.S. Interannual variability of photosynthesis across Africa and its attribution. J. Geophys. Res. 2008, 113, G04015. [Google Scholar]
- Redmon, L.A. Effects of Drought on Plant Growth. Available online: http://hays.agrilife.org/files/2011/08/May20111_3.pdf (accessed online 25 September 2014).
- Grünewald, F.; Robins, K.; Odicoh, A.; Nicholson, N. Real Time Evaluation of the Drought Response in the Horn of Africa. Available online: http://www.alnap.org/resource/3444.aspx (Accessed on 7 January 2015).
- Annamalai, H.; Xie, S.P.; McCreary, J.P.; Murtugudde, R. Impact of Indian Ocean sea surface temperature on developing El Niño. J. Clim. 2005, 18, 302–319. [Google Scholar] [CrossRef]
- Anyamba, A.; Eastman, J.R. Interannual variability of NDVI over Africa and its relation to El Nino Southern Oscillation. Int. J. Remote Sens. 1996, 17, 2533–2548. [Google Scholar] [CrossRef]
- McNaughton, S.J.; Sala, O.E.; Oesterheld, M. Ecosystem-level pattern of pri-mary productivity and herbivory in terrestrial habitats. Nature 1989, 341, 142–144. [Google Scholar] [CrossRef] [PubMed]
- Lyon, B.; DeWitt, D. A recent and abrupt decline in the East African long rains. Geophys. Res. Lett. 2012, 39, L02702. [Google Scholar] [CrossRef]
- Nicholson, S.E.; Kim, J. The relationship of the El Niño Southern Oscillation to African rainfall. Int. J. Climatol. 1997, 17, 117–135. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faith, M.K. Centered Log-Ratio (clr) Transformation and Robust Principal Component Analysis of Long-Term NDVI Data Reveal Vegetation Activity Linked to Climate Processes. Climate 2015, 3, 135-149. https://doi.org/10.3390/cli3010135
Faith MK. Centered Log-Ratio (clr) Transformation and Robust Principal Component Analysis of Long-Term NDVI Data Reveal Vegetation Activity Linked to Climate Processes. Climate. 2015; 3(1):135-149. https://doi.org/10.3390/cli3010135
Chicago/Turabian StyleFaith, Muriithi K. 2015. "Centered Log-Ratio (clr) Transformation and Robust Principal Component Analysis of Long-Term NDVI Data Reveal Vegetation Activity Linked to Climate Processes" Climate 3, no. 1: 135-149. https://doi.org/10.3390/cli3010135
APA StyleFaith, M. K. (2015). Centered Log-Ratio (clr) Transformation and Robust Principal Component Analysis of Long-Term NDVI Data Reveal Vegetation Activity Linked to Climate Processes. Climate, 3(1), 135-149. https://doi.org/10.3390/cli3010135