Comparative Risk Assessment to Inform Adaptation Priorities for the Natural Environment: Observations from the First UK Climate Change Risk Assessment
Abstract
:1. Introduction
Climate Sensitivity of the Natural Environment
2. Terminology
3. Methodology for the UK CCRA
- (i)
- the magnitude of the risk (environmental, social and economic consequences), including the potential for irreversible impacts;
- (ii)
- overall likelihood of the risk occurring before the 2080s;
- (iii)
- the urgency with which adaptation decisions need to be made, assessed in terms of whether actions are required to be implemented in the next few years (high score), or in the next 20 years (medium), or in the longer term to the 2080s (low) or beyond (negligible).
Environmental (Area of Priority Habitat Lost in Ha) | Economic (Monetary Costs in £) | Social (Number of People Seriously Affected) | |
---|---|---|---|
High | >5000 | >100 million | 105–106 |
Medium | 500–5000 | 10–100 million | 103–104 |
Low | <500 | <10 million | 102–103 |
- (i)
- Population needs/demands (high/low)
- (ii)
- Global stability (high/low)
- (iii)
- Distribution of wealth (even/uneven)
- (iv)
- Consumer driver values and wealth (sustainable/unsustainable)
- (v)
- Level of Government decision making (local/national)
- (vi)
- Land use change/management (high/low Government input).
4. Results of the Risk Assessment
4.1. Risk Identification and Characterisation
Type of Change | Specific Risks | Quality of Evidence * | Score ** |
---|---|---|---|
RANGE SHIFTS | Species unable to track changing climate space | Robust | 72 (0.72, 1, 1) |
Species unable to find suitable microclimate | Medium | 22 (0.5, 0.66, 66) | |
SEASONAL SHIFTS | Disruption to annual migration patterns | Medium | 51 (0.77, 1, 0.66) |
SPECIES INTERACTIONS | Generalists favoured over specialists | Medium | 41 (0.62, 1, 0.66) |
Asynchrony—breeding cycle & food supply | Limited | 34 (0.51, 1, 0.66) | |
Competition between C3 and C4plants | Limited | 7 (0.33, 0.66, 0.33) | |
Changing growth/survival rates | Limited | 37 (0.56, 1, 0.66) | |
Changing interactions between trophic levels | Limited | 16 (0.72, 0.66, 0.33) | |
Changes in community genetic diversity | Limited | 12 (0.56, 0.66, 0.33) | |
ECOSYSTEM FUNCTIONING | Reduced primary productivity | Limited | 22 (0.66, 1, 0.33) |
Loss of soil organic carbon | Limited | 59 (0.89, 1, 0.66) | |
Faster decomposition and nutrient cycling | Limited | 22 (0.66, 1, 0.33) | |
PHYSICAL PROCESSES | Loss of habitats to coastal evolution | Robust | 83 (0.83, 1, 1) |
Loss of habitats to fluvial floodplain evolution | Medium | 13 (0.61, 0.66, 0.33) | |
Disruption of water thermal regime & stratification | Medium | 44 (0.66, 0.66, 1) | |
Loss of snow cover | Robust | 18 (0.56, 1, 0.33) | |
High flow impacts on aquatic ecosystems | Medium | 24 (0.56, 0.66, 0.66) | |
Low flow impacts on aquatic ecosystems | Medium | 61 (0.61, 1, 1) | |
Saline intrusion | Medium | 7 (0.33, 0.66, 0.33) | |
Increased soil moisture deficits and drying | Medium | 88 (0.88, 1, 1) | |
Increased soil erosion | Medium | 24 (0.56, 0.66, 0.66) | |
Increased waterlogging | Medium | 40 (0.61, 1, 0.66) | |
PESTS & DISEASE | Increased risk from existing pests and diseases | Medium | 77 (0.77, 1, 1) |
Risks from novel pathogens | Limited | 8 (0.77, 0.33, 0.33) | |
EXTREME EVENTS | Tree loss during windstorms | Limited | 5 (0.44, 0.33, 0.33) |
Major coastal flood/reconfiguration | Medium | 58 (0.88, 0.66, 1) | |
Major fluvial flood | Medium | 33 (0.5, 1, 0.66) | |
Major drought events | Limited | 72 (0.72, 1, 1) | |
Large-scale wildfire | Medium | 44 (0.66, 1, 0.66) | |
INDIRECT RISKS | Agricultural expansion/intensification | Medium | 55 (0.83, 1, 0.66) |
Agricultural abandonment | Limited | 24 (0.56, 0.66, 0.66) | |
Water quality/pollution risk | Medium | 83 (0.83, 1, 1) | |
Atmospheric deposition of pollutants | Limited | 24 (0.56, 0.66, 0.66) | |
Climate change mitigation measures | Limited | 66 (0.66, 1, 1) | |
Reduced environmental flows due to increased societal water demand | Medium | 83 (0.83, 1, 1) |
4.2. Evaluation and Screening for Priority Risks
Risk | Confidence * | Risk Class ** | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
2020s *** | 2050s | 2080s | ||||||||
Lower | Central | Upper | Lower | Central | Upper | Lower | Central | Upper | ||
Species unable to track changing climate space | H | 2 | 2 | 3 | 2 | 3 | 3 | 2 | 3 | 3 |
Disruption to migration patterns | M | 1 | 2 | 2 | 2 | 2 | 3 | 2 | 3 | 3 |
Increased soil moisture deficits and drying | M | 1 | 2 | 2 | 1 | 2 | 3 | 2 | 3 | 3 |
Large-scale wildfire | M | 1 | 1 | 2 | 1 | 2 | 3 | 2 | 2 | 3 |
Disruption to water thermal regime/stratification | M | 1 | 2 | 2 | 2 | 2 | 3 | 2 | 3 | 3 |
Low flow risks | M | 1 | 2 | 2 | 2 | 2 | 3 | 2 | 3 | 3 |
Risks from water quality and pollution | M | 1 | 2 | 2 | 1 | 2 | 3 | 1 | 2 | 3 |
Loss of habitats to coastal evolution | H | 1 | 2 | 2 | 1 | 2 | 3 | 2 | 3 | 3 |
Major coastal flood/reconfiguration | L | 1 | 2 | 3 | 2 | 2 | 3 | 2 | 3 | 3 |
Generalists favoured over specialists | L | 1 | 2 | 2 | 2 | 2 | 3 | 2 | 3 | 3 |
Loss of soil organic carbon | L | 1 | 2 | 2 | 1 | 2 | 3 | 1 | 3 | 3 |
Increased risk from invasive species, pests & diseases | L | 1 | 2 | 2 | 2 | 2 | 3 | 2 | 3 | 3 |
Risks from climate mitigation measures | L | ? | ? | ? | ? | ? | ? | ? | ? | ? |
Risk | Population Needs/Demands | Global Stability | Wealth Distribution | Consumer Values | Gov. Decision Making | Land Use Change/Management |
---|---|---|---|---|---|---|
Increased soil moisture deficits and drying | ✔ | ✔ | ✔ | |||
Loss of habitats to coastal evolution (including extreme events & reconfiguration) | ✔ | ✔ | ✔ | ✔ | ✔ | |
Risks from invasives, pests and diseases | ✔✔ | ✔ | ✔✔ | ✔ | ✔ | |
Species unable to track changing climate space | ✔ | ✔ | ✔ | ✔ or ✔✔ | ||
Indirect risks from climate mitigation schemes | ✔ | ✔ | ✔ | ✔ | ✔✔ | ✔✔ |
Loss of soil organic carbon | ✔ | ✔ | ✔ | ✔ or ✔✔ | ||
Disruption tospecies migration | ✔ | ✔ | ✔ | ✔ | ✔ | |
Disruption to water thermal regime/stratification | ✔ | ✔ | ✔ | ✔ | ||
Generalists benefiting at the expense of specialists | ✔ | ✔ | ✔ or ✔✔ | |||
Large-scale wildfire risk | ✔ | ✔ | ✔ | ✔ | ✔✔ | |
Risks from water quality & pollution | ✔ | ✔ | ✔ | ✔✔ | ||
Low flow risks including droughts and indirect effects | ✔ | ✔ | ✔ | ✔ | ✔ or ✔✔ |
Strategy | Rationale | Implementation Level |
---|---|---|
Habitat networks | Improve connectivity and reduce habitat fragmentation | Early stages; most advanced for woodland habitats |
Buffer zones | To establish sympathetic land uses around isolated habitats (e.g., wetland or ancient woodland) | Early stages; some schemes piloted by NGO conservation bodies |
Landscape/habitat diversification | To enhance the variety of ecological niches that species can exploit to adapt to changing conditions | Early stages |
Climate refugia | Protection of biodiversity hotspots and centres of endemism | Suitable locations postulated, but not formally recognised at present |
“Rewilding” schemes | Restoration of the natural landscape through minimal intervention | Several schemes underway |
Managed retreat of coastal zone | Either by active intervention (e.g., breaching of sea-walls) or by minimal management to allow inland migration of coastal habitats in response to sea-level rise. | Several schemes underway; all small scale |
Ecological restoration | Habitat recreation such as in riparian “corridors”, intertidal zone, grasslands, woodlands and bog. Biodiversity linked to wider societal benefits e.g., flood/erosion control, C storage, water quality, landscape amenity, recreation. | A traditional nature conservation strategy implemented at local level |
Greenspace and Bluespace planning | Particularly in urban or regeneration areas to develop larger-scale spatial planning of water features and habitats | Actively incorporated into some planning strategies at local/region level |
Translocation | Deliberate species movement to more suitable locations for those species with restricted habitats or low dispersal ability | Several trial schemes underway for species identified as high vulnerability (e.g., relict arctic fish); also transplanting of seed |
5. Discussion
Issue | Research Requirement |
---|---|
Species distributions and interactions | Improved modelling beyond current bioclimate envelope models which can have significant limitations for some species. |
Atmospheric pollution | Understanding interactions with climate change regarding critical loads |
Freshwater ecosystems | Upscaling from site to region/national level. Interactions between water temperature, water quality and water quantity |
Soils | Better understanding of the dynamics of soil biodiversity, organic matter and nutrient cycling as key components of ecosystem functioning |
CO2 interactions | Better understanding of how CO2 enrichment interacts with climate variables in ecosystem responses |
Natural adaptive capacity | Improved understanding of phenotype plasticity and genetic adaptability across species (e.g., Donnelly et al., 2012). This has particular relevance to the viability of translocation schemes |
Biophysical processes | Integration of ecological, geomorphological and hydrological processes and their impacts on habitats |
Migration routes | Risk assessment of pathways and key stopover sites |
Protected area networks | Risk assessment of networks to identify critical links and to identify strategic enhancements |
Landscape-scale initiatives | Tools to evaluate habitat connectivity and landscape permeability, across multiple time periods, including land use change scenarios |
In situ adaptation options | Analysis of scope for increasing the resilience of species within their existing range, including increased habitat heterogeneity, refugia, and use of aspect (notably cooler north-facing slopes) |
Risk metrics and threshold analysis | Identification of key thresholds for irreversible species population declines (e.g., [101]) |
Economic valuation | Improved techniques to value the full range of benefits from biodiversity and ecosystems (including cultural interactions), and to incorporate resilience |
Adaptation/mitigation | Opportunities to build synergies between climate change mitigation and adaptation strategies |
6. Conclusions
Acknowledgments
Conflicts of Interest
References
- Levin, K.; Cashore, B.; Bernstein, S.; Auld, G. Overcoming the tragedy of super wicked problems: Constraining our future selves to ameliorate global climate change. Policy Sci. 2012, 45, 123–152. [Google Scholar] [CrossRef]
- Hulme, M. Reducing the future to climate: A story of climate determinism and reductionism. Osiris 2011, 26, 245–266. [Google Scholar] [CrossRef]
- Dilling, L.; Lemos, M.C. Creating usable science: Opportunities and constraints for climate knowledge use and their implications for science policy. Glob. Environ. Chang. 2011, 21, 680–689. [Google Scholar] [CrossRef]
- Lindzen, R.S. Climate physics, feedbacks, and reductionism (and when does reductionism go too far?). Eur. Phys. J. Plus 2012, 127. [Google Scholar] [CrossRef]
- Lemos, M.C.; Kirchhoff, C.J.; Ramprasad, V. Narrowing the climate information usability gap. Nat. Clim. Chang. 2012, 2, 789–794. [Google Scholar] [CrossRef]
- Kiem, A.S.; Austin, E.K. Disconnect between science and end-users as a barrier to climate change adaptation. Clim. Res. 2013, 58, 29–41. [Google Scholar] [CrossRef]
- Sarewitz, D.; Pielke, R.A., Jr. The neglected heart of science policy: Reconciling supply of and demand for science. Environ. Sci. Policy 2007, 10, 5–16. [Google Scholar] [CrossRef]
- Van der Sluijs, J.P.; Petersen, A.C.; Janssen, P.H.M. Exploring the quality of evidence for complex and contested policy decisions. Environ. Res. Lett. 2008, 3. [Google Scholar] [CrossRef]
- Ungar, S. Knowledge, ignorance and the popular culture: Climate change versus the ozone hole. Public Underst. Sci. 2000, 9, 297–312. [Google Scholar] [CrossRef]
- Meinke, H.; Nelson, R.; Kokic, P.; Stone, R.; Selvaraju, R.; Baethgen, W. Actionable climate knowledge: From analysis to synthesis. Clim. Res. 2006, 33, 101–110. [Google Scholar] [CrossRef]
- Swart, R.; Biesbroek, R.; Capela Lourenço, T. Science of adaptation to climate change and science for adaptation. Front. Environ. Sci. 2014, 2. [Google Scholar] [CrossRef]
- Morgan, M.G.; Henrion, M. Uncertainty: A Guide to Dealing with Uncertainty in Risk and Policy Analysis; Cambridge University Press: Cambridge, UK, 1992. [Google Scholar]
- Linkov, I.; Satterstrom, F.K.; Kiker, G.; Batchelor, C.; Bridges, T.; Ferguson, E. From comparative risk assessment to multi-criteria decision analysis and adaptive management: Recent developments and applications. Environ. Int. 2006, 32, 1072–1093. [Google Scholar] [CrossRef] [PubMed]
- Assmuth, T.; Hildén, M. The significance of information frameworks in integrated risk assessment and management. Environ. Sci. Policy 2008, 11, 71–86. [Google Scholar] [CrossRef]
- Pullin, A.S.; Knight, T.M.; Watkinson, A.R. Linking reductionist science and holistic policy using systematic reviews: Unpacking environmental policy questions to construct an evidence-based framework. J. Appl. Ecol. 2009, 46, 970–975. [Google Scholar] [CrossRef]
- Willows, R.; Connell, R. Climate Adaptation: Risk, Uncertainty and Decision Making; UK Climate Impacts Programme: Oxford, UK, 2003. [Google Scholar]
- Carter, T.R.; Jones, R.N.; Lu, X.; Bhadwal, S.; Conde, C.; Mearns, L.O.; O’Neill, B.C.; Rounsevell, M.; Zurek, M.B. New assessment methods and the characterisation of future conditions. In Climate Change 2007: Impacts, Adaptation and Vulnerability; Parry, M.L., Canziani, O.F., Palutikof, J.P., van der Linden, P.J., Hanson, C.E., Eds.; Cambridge University Press: Cambridge, UK, 2007; pp. 133–171. [Google Scholar]
- Jones, R.N.; Preston, B.L. Adaptation and risk management. WIREs Clim. Chang. 2011, 2. [Google Scholar] [CrossRef]
- Zebisch, M.; Grothmann, T.; Schröter, D.; Hasse, C.; Fritsch, U.; Cramer, W. Klimawandel in Deutschland. Vulnerabilität und Anpassunsstrategien klimasensitiver Systeme; German Federal Environment Agency: Dessau, Germany, 2005. [Google Scholar]
- Balas, M.; Essl, F.; Federer, A.; Formayer, H.; Prutsch, A.; Uhl, M. Klimaänderungsszenarian und Vulnerabilität; Federal Environment Agency: Vienna, Austria, 2010. [Google Scholar]
- Holthausen, N.; Perch-Nielsen, S.; Locher, P.; de Haan van der Weg, P.; Pütz, M.; Bründl, M. Pilotprojekt Analyse Klimabedingter Risiken und Chancen in der Schweiz, Schlussbericht; Bundesanstalt für Umwelt: Bern, Switzerland, 2011. [Google Scholar]
- De Bruin, K.; Delink, R.B.; Ruijs, A.; Bolwidt, L.; van Buuren, A.; Graveland, J.; de Groot, R.S.; Kuikman, P.J.; Reinhard, S.; Roetter, R.P.; et al. Adapting to climate change in the Netherlands: An inventory of climate adaptation options and ranking of alternatives. Clim. Chang. 2009, 95, 23–45. [Google Scholar] [CrossRef] [Green Version]
- Biesbroek, G.; Swart, R.; Carter, T.; Cowan, C.; Henrichs, T.; Mela, H.; Morecroft, M.; Rey, D. Europe Adapts to Climate Change: Comparing National Adaptation Strategies; Partnership for European Environmental Research (PEER): Helsinki, Finland, 2009. [Google Scholar]
- De Bremond, A.; Engle, N.L. Adaptation policies to increase terrestrial ecosystem resilience: Potential utility of a multicriteria approach. Mitig. Adapt. Strateg. Glob. Chang. 2014, 19, 331–354. [Google Scholar] [CrossRef]
- Defra. UK Climate Change Risk Assessment: Government Report; Defra: London, UK, 2012. [Google Scholar]
- UK Cabinet Office Strategy Unit. Risk: Improving Government’s Capability to Handle Risk and Uncertainty; Cabinet Office Strategy Unit: London, UK, 2002. [Google Scholar]
- Brown, I.; Ridder, B.; Alumbaugh, P.; Barnett, C.; Brooks, A.; Duffy, L.; Webbon, C.; Nash, E.; Townend, I.; Black, H.; et al. Biodiversity and Ecosystem Services: UK CCRA Sector Report; Defra: London, UK, 2012. [Google Scholar]
- Willis, K.J.; Bailey, R.M.; Bhagwat, S.A.; Birks, H.J.B. Biodiversity baselines, thresholds and resilience: Testing predictions and assumptions using palaeoecological data. Trends Ecol. Evol. 2010, 25, 583–591. [Google Scholar] [CrossRef] [PubMed]
- Bellard, C.; Bertelsmeier, C.; Leadley, P.; Thuiller, W.; Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 2012, 15, 365–377. [Google Scholar] [CrossRef] [PubMed]
- Visser, M.E. Keeping up with a warming world; assessing the rate of adaptation to climate change. Proc. Biol. Sci. 2008, 275, 649–659. [Google Scholar] [CrossRef] [PubMed]
- Lawton, J.H.; Brotherton, P.N.M.; Brown, V.K.; Elphick, C.; Fitter, A.H.; Forshaw, J.; Haddow, R.W.; Hilborne, S.; Leafe, R.N.; Mace, G.M.; et al. Making Space for Nature: A Review of England’s Wildlife Sites and Ecological Network; Defra: London, UK, 2010. [Google Scholar]
- Britton, A.; Beale, C.M.; Towers, W.; Lewison, R. Biodiversity gains and losses: Evidence for homogenisation of Scottish alpine vegetation. Biol. Conserv. 2009, 142, 1728–1739. [Google Scholar] [CrossRef]
- Hambler, C.; Henderson, P.A.; Speight, M.R. Extinction rates, extinction-prone habitats, and indicator groups in Britain and at larger scales. Biol. Conserv. 2011, 144, 713–721. [Google Scholar] [CrossRef]
- UK NEA. The UK National Ecosystem Assessment: Synthesis of the Key Findings; UNEP-WCMC: Cambridge, UK, 2011. [Google Scholar]
- Thomas, C.D.; Hill, J.K.; Anderson, B.J.; Bailey, S.; Beale, C.M.; Bradbury, R.B.; Bulman, C.R.; Crick, H.Q.; Eigenbrod, F.; Griffiths, H.M.; et al. A framework for assessing threats and benefits to species responding to climate change. Methods Ecol. Evol. 2010, 2, 125–142. [Google Scholar] [CrossRef]
- Essl, F.; Nehring, S.; Klingenstein, F.; Milasowszky, N.; Nowack, C.; Rabitsch, W. Review of risk assessment systems of IAS in Europe and introducing the German-Austrian Black List Information System (GABLIS). J. Nat. Conserv. 2011, 19, 339–350. [Google Scholar] [CrossRef]
- Gallopin, G. Linkages between vulnerability, resilience and adaptive capacity. Glob. Environ. Chang. 2006, 16, 293–303. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC) Working Group 2. Glossary. Available online: https://ipcc-wg2.gov/AR5/images/uploads/WGIIAR5-Glossary_FGD.pdf (accessed on 12 October 15).
- Intergovernmental Panel on Climate Change (IPCC). Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Costa, L; Kropp, J.P. Linking operations and definitions of vulnerability: Lessons from case studies in climate-change and risk-hazard context. Sustain. Sci. 2013, 8, 1–9. [Google Scholar]
- Wallingford, H.R. The UK Climate Change Risk Assessment 2012: Evidence Report; Defra: London, UK, 2012. [Google Scholar]
- Petticrew, M.; McCartney, G. Using systematic reviews to separate scientific from policy debate relevant to climate change. Am. J. Prev. Med. 2011, 40, 576–578. [Google Scholar] [CrossRef] [PubMed]
- Berrang-Ford, L.; Pearce, T.; Ford, J.D. Systematic review approaches for climate change adaptation research. Reg. Environ. Chang. 2015, 15, 755–769. [Google Scholar] [CrossRef]
- Mastrandrea, M.D.; Field, C.B.; Stocker, T.F.; Edenhofer, O.; Ebi, K.L.; Frame, D.J.; Held, H.; Kriegler, E.; Mach, K.J.; Matschoss, P.R.; et al. Guidance Note for Lead Authors of the IPCC Fifth Assessment Report on Consistent Treatment of Uncertainties; Intergovernmental Panel on Climate Change (IPCC): Geneva, Switzerland, 2010. [Google Scholar]
- Met Office. UK Climate Change Projections 2009 (UKCP09); UK Met Office: Exeter, UK, 2009. [Google Scholar]
- UK Biodiversity Action Plan. Available online: http://jncc.defra.gov.uk/page-5705 (accessed on 15 May 2015).
- Brown, I.; Berry, P.; Everard, M.; Firbank, L.; Harrison, P.; Lundy, L.; Quine, C.; Rowan, J.; Wade, R.; Watts, K. Identifying robust response options to manage environmental change using an Ecosystem Approach: A stress-testing case study for the UK. Environ. Sci. Policy 2015, 52, 74–88. [Google Scholar] [CrossRef]
- Alexander Ballard Ltd. The PACT Framework. Available online: https://www.weadapt.org/knowledge-base/climate.../module-pact (accessed on 12 October 15).
- Straile, D.; Stenseth, N.S. The North Atlantic Oscillation and ecology: Links between historical time-series, and lessons regarding future climate warming. Clim. Res. 2007, 34, 259–262. [Google Scholar] [CrossRef]
- Menzel, A.; Sparks, T.H.; Estrella, N.; Koch, E.; Aasa, A.; Ahas, R.; Alm-Kübler, K.; Bissolli, P.; Braslavská, O.; Briede, A.; et al. European phenological response to climate change matches the warming pattern. Glob. Chang. Biol. 2006, 12, 1969–1976. [Google Scholar] [CrossRef]
- Hickling, R.; Roy, D.B.; Hill, J.K.; Fox, R.; Thomas, C. The distribution of a wide range of taxonomic groups are expanding polewards. Glob. Chang. Biol. 2006, 12, 450–455. [Google Scholar] [CrossRef]
- Chen, I.-C.; Hill, J.K.; Ohlemüller, R.; Roy, D.B.; Thomas, C.D. Rapid range shifts of species associated with high levels of climate warming. Science 2011, 333, 1024–1026. [Google Scholar] [CrossRef] [PubMed]
- Thomas, C.D.; Franco, A.; Hill, J.K. Range retractions and extinction in the face of climate warming. Trends Ecol. Evol. 2006, 21, 415–416. [Google Scholar] [CrossRef] [PubMed]
- Menéndez, R.; González Megías, A.; Hill, J.K.; Braschler, B.; Willis, S.G.; Collingham, Y.; Fox, R.; Roy, D.B.; Thomas, C.D. Species richness changes lag behind climate change. Proc. Biol. Sci. 2006, 273, 1465–1470. [Google Scholar] [CrossRef] [PubMed]
- Devictor, V.; van Swaay, C.; Brereton, T.; Brotons, L.; Chamberlain, D.; Heliölä, J.; Herrando, S.; Julliard, R.; Kuussaari, M.; Lindström, Å.; et al. Differences in the climatic debts of birds and butterflies at a continental scale. Nat. Clim. Chang. 2012, 2, 121–124. [Google Scholar] [CrossRef]
- Thomas, C.D.; Robinson, R.A.; Crick, H.Q.P.; Learmonth, J.A.; Maclean, I.M.D.; Bairlein, F.; Forchhammer, M.C.; Francis, C.M.; Gill, J.A.; Godley, B.J.; et al. Travelling through a warming world—Climate change and migratory species. Endanger. Species Res. 2009, 7, 87–99. [Google Scholar]
- Visser, M.E.; Perdeck, A.C.; van Balen, J.H.; Both, C. Climate change leads to decreasing bird migration distances. Glob. Chang. Biol. 2009, 15, 1859–1865. [Google Scholar] [CrossRef]
- Davies, Z.G.; Wilson, R.J.; Coles, S.; Thomas, C.D. Changing habitat associations of a thermally constrained species, the silver spotted skipper butterfly, in response to climate warming. J. Anim. Ecol. 2006, 75, 247–256. [Google Scholar] [CrossRef] [PubMed]
- Donnelly, A.; Caffarra, A.; Kelleher, C.T.; O’Neill, B.F.; Diskin, E.; Pletsers, A.; Proctor, H.; Stirnemann, R.; O’Halloran, J.; Peñuelas, J.; et al. Surviving in a warmer world: Environmental and genetic responses. Clim. Res. 2012, 53, 245–262. [Google Scholar] [CrossRef]
- Visser, M.E.; Holleman, L.J.M.; Gienapp, P. Shifts in caterpillar biomass phenology due to climate change and its impact on the breeding biology of an insectivorous bird. Oecologia 2006, 147, 164–172. [Google Scholar] [CrossRef] [PubMed]
- Thackeray, S.J.; Sparks, T.H.; Frederiksen, M.; Burthe, S.; Bacon, P.J.; Bell, J.R.; Botham, M.S.; Brereton, T.M.; Bright, P.W.; Carvalho, L.; et al. Trophic level asynchrony in rates of phenological change for marine, freshwater and terrestrial environments. Glob. Chang. Biol. 2010, 16, 3304–3013. [Google Scholar] [CrossRef]
- Kirby, K.J.; Smart, S.M.; Black, H.I.J.; Bunce, R.G.; Corney, P.M.; Smithers, R.J. Long Term Ecological Change in British Woodlands (1971–2001); English Nature: Peterborough, UK, 2005. [Google Scholar]
- Thuiller, A.C.; Araújo, M.B.; Berry, P.M. Predicting global change impacts on plant species’ distributions: Future challenges. Perspect. Plant Ecol. Evol. Syst. 2008, 9, 137–152. [Google Scholar] [CrossRef]
- Ciais, P.; Reichstein, M.; Viovy, N.; Granier, A.; Ogée, J.; Allard, V.; Aubinet, M.; Buchmann, N.; Bernhofer, C.; Carrara, A.; et al. Europe-wide reduction in primary productivity caused by heat and drought in 2003. Nature 2005, 437, 529–533. [Google Scholar] [CrossRef] [PubMed]
- Sowerby, A.; Emmett, B.A.; Tietema, A. Contrasting effects of repeated summer drought on soil carbon efflux in hydric and mesic heathland soils. Glob. Chang. Biol. 2008, 14, 2388–2404. [Google Scholar] [CrossRef]
- Bellamy, P.H.; Loveland, P.J.; Bradley, R.I.; Lark, R.M.; Kirk, D. Carbon losses from all soils across England and Wales. Nature 2005, 437, 245–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barraclough, D.; Smith, P.; Worrall, F.; Black, H.I.J.; Bhogal, A. Is there an impact of climate change on soil carbon contents in England and Wales? Eur. J. Soil Sci. 2015, 66, 451–462. [Google Scholar] [CrossRef] [Green Version]
- Schils, R.; Kuikman, P.; Liski, J.; van Oijen, M.; Smith, P.; Webb, J.; Hiederer, R. Review of Existing Information on the Interrelations between Soil and Climate Change (ClimSoil): Final Report; European Commission: Brussels, Belgium, 2008. [Google Scholar]
- Boardman, J. Soil erosion in Britain: Updating the record. Agriculture 2013, 3, 418–442. [Google Scholar] [CrossRef]
- Watts, G.; Battarbee, R.W.; Bloomfield, J.P.; Crossman, J.; Daccache, A.; Durance, I.; Elliott, J.A.; Garner, G.; Hannaford, J.; Hannah, D.M.; et al. Climate change and water in the UK—Past changes and future prospects. Prog. Phys. Geogr. 2015, 39, 6–28. [Google Scholar] [CrossRef] [Green Version]
- Doody, J.P. ‘Coastal squeeze’—An historical perspective. J. Coast. Conserv. 2004, 10, 129–138. [Google Scholar] [CrossRef]
- Hulme, P.E. Biological invasions in Europe: Drivers, pressures, states, impacts and responses. In Biodiversity under Threat; Hester, R., Harrison, R.M., Eds.; Issues in Environmental Science and Technology, No. 25; Royal Society of Chemistry: Cambridge, UK, 2007; pp. 56–80. [Google Scholar]
- Akin, S.-M.; Martens, P. A Survey of Dutch Expert Opinion on Climatic Drivers of Infectious Disease Risk in Western Europe. Climate 2014, 2, 310–328. [Google Scholar] [CrossRef]
- Albertson, K.; Aylen, J.; Cavan, G.; McMorrow, J. Climate change and the future occurrence of moorland wildfires in the Peak District of the UK. Clim. Res. 2010, 45, 105–118. [Google Scholar] [CrossRef]
- Brown, I.; Towers, W.; Rivington, M.; Black, H. Influence of climate change on agricultural land-use potential: Adapting and updating the land capability system for Scotland. Clim. Res. 2008, 37, 43–57. [Google Scholar] [CrossRef]
- Brown, I.; Poggio, L.; Gimona, A.; Castellazzi, M. Climate change, drought risk and land capability for agriculture: Implications for land use in Scotland. Reg. Environ. Chang. 2011, 11, 503–518. [Google Scholar] [CrossRef]
- De Vries, W.; Wamelink, G.W.; van Dobben, H.; Kros, J.; Reinds, G.J.; Mol-Dijkstra, J.P.; Smart, S.M.; Evans, C.D.; Rowe, E.C.; Belyazid, S.; et al. Use of dynamic soil-vegetation models to assess impacts of nitrogen deposition on plant species composition: An overview. Ecol. Appl. 2010, 20, 60–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicholls, R.J.; Townend, I.H.; Bradbury, A.P.; Ramsbottom, D.; Day, S.A. Planning for long-term coastal change: Experiences from England and Wales. Ocean Eng. 2013, 71, 3–16. [Google Scholar] [CrossRef]
- Burch, S.; Berry, P.; Sanders, M. Embedding climate change adaptation in biodiversity conservation: A case study of England. Environ. Sci. Policy 2014, 37, 79–90. [Google Scholar] [CrossRef]
- Van Teeffelen, A.; Meller, L.; van Minnen, J.; Vermaat, J.; Cabeza, M. How climate proof is the European Union’s biodiversity policy? Reg. Environ. Chang. 2015, 15, 997–1010. [Google Scholar] [CrossRef]
- Truitt, A.M.; Granek, E.F.; Duveneck, M.J.; Goldsmith, K.A.; Jordan, M.P.; Yazzie, K.C. What is novel about novel ecosystems: Managing change in an ever-changing world. Environ. Manag. 2015, 55, 1217–1226. [Google Scholar] [CrossRef] [PubMed]
- Martinez, G.S.; Williams, E.; Yu, S.S. The economics of health damage and adaptation to climate change in Europe: A review of the conventional and grey literature. Climate 2015, 3, 522–541. [Google Scholar] [CrossRef]
- Grinnell, F. Rethinking our approach to risk. Nature 2015, 522, 257. [Google Scholar] [CrossRef] [PubMed]
- Dessai, S.; Hulme, M. Assessing the robustness of adaptation decisions to climate change uncertainties: A case-study on water resources management in the East of England. Glob. Environ. Chang. 2007, 17, 59–72. [Google Scholar] [CrossRef]
- Lindner, M.; Maroschek, M.; Netherer, S.; Kremer, A.; Barbati, A.; Garcia-Gonzalo, J.; Seidl, R.; Delzon, S.; Corona, P.; Kolström, M.; et al. Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. Forest Ecol. Manag. 2010, 259, 698–709. [Google Scholar] [CrossRef]
- Elmqvist, T.; Folke, C.; Nyström, M.; Peterson, G.; Bengtsson, J.; Walker, B.; Norberg, J. Response diversity, ecosystem change, and resilience. Front. Ecol. Environ. 2003, 1, 488–494. [Google Scholar] [CrossRef]
- Hill, J.K.; Thomas, C.D.; Fox, R.; Telfer, M.G.; Willis, S.G.; Asher, J.; Huntley, B. Responses of butterflies to twentieth century climate warming: Implications for future ranges. Proc. Biol. Sci. 2002, 269, 2163–2171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heller, N.E.; Zavaleta, E.S. Biodiversity management in the face of climate change: A review of 22 years of recommendations. Biol. Conserv. 2009, 142, 14–32. [Google Scholar] [CrossRef]
- Keith, D.A.; Martin, T.G.; Mcdonald-Madden, E.; Walters, C. Uncertainty and adaptive management for biodiversity conservation. Biol. Conserv. 2011, 144, 1175–1178. [Google Scholar] [CrossRef]
- Morecroft, M.D.; Crick, H.Q.P.; Duffield, S.J.; Macgregor, N.A. Resilience to climate change: Translating principles into practice. J. Appl. Ecol. 2012, 49, 547–551. [Google Scholar] [CrossRef]
- Hodgson, J.A.; Thomas, C.D.; Wintle, B.A.; Moilanen, A. Climate change, connectivity and conservation decision making: Back to basics. J. Appl. Ecol. 2009, 46, 964–969. [Google Scholar] [CrossRef]
- Lempert, R.J.; Collins, M.T. Managing the risk of uncertain threshold responses: Comparison of robust, optimum, and precautionary approaches. Risk Anal. 2007, 27, 1009–1026. [Google Scholar] [CrossRef] [PubMed]
- Cliquet, A.; Backes, C.; Harris, J.; Howsam, P. Adaptation to climate change: Legal challenges for protected areas. Utrecht Law Rev. 2009, 5, 158–175. [Google Scholar] [CrossRef]
- Grasso, M.; Markowitz, E.M. The moral complexity of climate change and the need for a multidisciplinary perspective on climate ethics. Clim. Chang. 2015, 130, 327–334. [Google Scholar] [CrossRef]
- Pethick, J. Estuarine and tidal wetland restoration in the United Kingdom: Policy and practice. Restor. Ecol. 2002, 10, 431–437. [Google Scholar] [CrossRef]
- Minteer, B.A.; Collins, J.P. Move it or lose it? The ecological ethics of relocating species under climate change. Ecol. Appl. 2010, 20, 1801–1804. [Google Scholar] [CrossRef] [PubMed]
- Theurillat, J.-P.; Guisan, A. Potential impact of climate change on vegetation in the European Alps: A review. Clim. Chang. 2001, 50, 77–109. [Google Scholar] [CrossRef]
- Adger, W.N.; Dessai, S.; Goulden, M.; Hulme, M.; Lorenzoni, I.; Nelson, D.R.; Naess, L.O.; Wolf, J.; Wreford, A. Are there social limits to adaptation to climate change? Clim. Chang. 2009, 93, 335–354. [Google Scholar] [CrossRef]
- Thomas, C.D. Anthropocene Park? No alternative. Trends Ecol. Evol. 2011, 2, 497–498. [Google Scholar] [CrossRef]
- Slovic, P. The Perception of Risk; Earthscan: London, UK, 2008. [Google Scholar]
- Drake, J.M.; Griffin, B.D. Early warning signals of extinction in deteriorating environments. Nature 2010, 467, 456–459. [Google Scholar] [CrossRef] [PubMed]
- Sutherland, W.J. Predicting the ecological consequences of environmental change: A review of the methods. J. Appl. Ecol. 2006, 43, 599–616. [Google Scholar] [CrossRef]
- Wiens, J.A.; Stralberg, D.; Jongsomjit, D.; Howell, C.A.; Snyder, M.A. Niches, models, and climate change: Assessing the assumptions and uncertainties. Proc. Natl. Acad. Sci. USA 2009, 106, 19729–19736. [Google Scholar] [CrossRef] [PubMed]
- Dawson, T.P.; Jackson, S.T.; House, J.I.; Prentice, I.C.; Mace, G.M. Beyond predictions: Biodiversity conservation in a changing climate. Science 2011, 332, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Pacifi, M.; Foden, W.B.; Visconti, P.; Watson, J.; Butchart, S.; Kovacs, K.; Scheffers, B.; Hole, D.; Martin, T.; Akçakaya, H.; et al. Assessing species vulnerability to climate change. Nat. Clim. Chang. 2015, 5, 215–225. [Google Scholar] [CrossRef] [Green Version]
- The Economics of Ecosystems & Biodiversity (TEEB). The Economics of Ecosystems and Biodiversity: Ecological and Economic Foundations; Earthscan: London, UK, 2010. [Google Scholar]
- Van der Sluijs, J.P. Uncertainty and dissent in climate risk assessment: A post-normal perspective. Nat. Cult. 2012, 7, 174–195. [Google Scholar] [CrossRef]
- Sexton, D.M.H.; Murphy, J.M. Multivariate prediction using imperfect climate models part II: Robustness of methodological choices and consequences for climate sensitivity. Clim. Dyn. 2012, 38, 2543–2558. [Google Scholar] [CrossRef]
- Hallegatte, S. Strategies to adapt to an uncertain climate change. Glob. Environ. Chang. 2009, 19, 240–247. [Google Scholar] [CrossRef]
- Driscoll, D.; Felton, A.; Gibbons, P.; Felton, A.M.; Munro, N.T.; Lindenmayer, D.B. Priorities in policy and management when existing biodiversity stressors interact with climate-change. Clim. Chang. 2012, 111, 533–557. [Google Scholar] [CrossRef]
© 2015 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brown, I. Comparative Risk Assessment to Inform Adaptation Priorities for the Natural Environment: Observations from the First UK Climate Change Risk Assessment. Climate 2015, 3, 937-963. https://doi.org/10.3390/cli3040937
Brown I. Comparative Risk Assessment to Inform Adaptation Priorities for the Natural Environment: Observations from the First UK Climate Change Risk Assessment. Climate. 2015; 3(4):937-963. https://doi.org/10.3390/cli3040937
Chicago/Turabian StyleBrown, Iain. 2015. "Comparative Risk Assessment to Inform Adaptation Priorities for the Natural Environment: Observations from the First UK Climate Change Risk Assessment" Climate 3, no. 4: 937-963. https://doi.org/10.3390/cli3040937
APA StyleBrown, I. (2015). Comparative Risk Assessment to Inform Adaptation Priorities for the Natural Environment: Observations from the First UK Climate Change Risk Assessment. Climate, 3(4), 937-963. https://doi.org/10.3390/cli3040937