Long-Term Trend Analysis of Precipitation and Air Temperature for Kentucky, United States
Abstract
:1. Introduction
1.1. Relationship between Climate Data and Hydrologic Studies
1.2. Trends in Air Temperature
1.3. Trends in Precipitation
1.4. Objective
2. Materials and Methods
2.1. Study Area Description
2.2. Dataset Description
2.3. Pre-Processing of Data
2.4. Trend Detection and Characterization
3. Results and Discussion
3.1. Precipitation
Station No. | Station | Elevation | Mean Annual Precipitation | Sen Slope |
---|---|---|---|---|
County | (m) | (mm) | (mm/year) | |
1 | Allen (2) | 189 | 1280 | 1.29 (−2.07–4.24) 1 |
2 | Allen (3) | 259 | 1324 | 0.57 (−2.33–3.83) |
3 | Ballard | 113 | 1268 | 2.06 (−1.90–5.73) |
4 | Bell (1) | 348 | 1274 | −1.05 (−3.84–1.93) |
5 | Bell (2) | 354 | 1297 | −0.64 (−3.54–2.64) |
6 | Boyd (1) | 171 | 1080 | 2.12 (−0.43–4.16) |
7 | Boyd (2) | 226 | 1085 | −1.01 (−4.29–2.45) |
8 | Boyle | 274 | 1207 | 2.02 (−1.01–5.06) |
9 | Breckinridge (1) | 116 | 1206 | 2.27 (−0.85–5.37) |
10 | Breckinridge (2) | 180 | 1218 | 1.61 (−1.19–4.44) |
11 | Breckinridge (3) | 218 | 1200 | 2.79 (−0.66–6.08) |
12 | Bullitt (1) | 168 | 1238 | 1.36 (−1.66–4.16) |
13 | Carlisle (2) | 125 | 1326 | 3.41 (−0.41–6.25) |
14 | Carlisle (3) | 107 | 1291 | 2.99 (−0.41–5.88) |
15 | Casey | 265 | 1336 | 0.29 (−3.11–2.93) |
16 | Christian (1) | 171 | 1272 | 1.80 (−1.57–4.71) |
17 | Christian (2) | 159 | 1276 | 1.68 (−1.70–4.70) |
18 | Clay (2) | 265 | 1281 | −0.25 (−3.65–3.21) |
19 | Clinton | 284 | 1319 | 0.17 (−2.78–3.72) |
20 | Cumberland | 183 | 1293 | −0.42 (−3.92–2.53) |
21 | Daviess (1) | 123 | 1162 | 0.98 (−1.82–4.10) |
22 | Daviess (2) | 122 | 1156 | 1.52 (−1.21–4.59) |
23 | Daviess (3) | 125 | 1153 | 1.62 (−1.28–4.46) |
24 | Edmonson (1) | 125 | 1301 | 1.35 (−1.47–4.27) |
25 | Edmonson (2) | 177 | 1321 | 0.85 (−2.32–4.18) |
26 | Edmonson (3) | 241 | 1299 | 1.09 (−1.76–3.85) |
27 | Fayette (1) | 294 | 1158 | 0.60 (−2.69–3.83) |
28 | Fayette (2) | 284 | 1152 | 1.34 (−1.60–4.67) |
29 | Franklin | 152 | 1111 | 1.33 (−0.85–5.07) |
30 | Garrard (1) | 335 | 1225 | −1.05 (−4.31–2.41) |
31 | Garrard (2) | 311 | 1083 | −0.34 (−2.8 –2.38) |
32 | Grant (1) | 288 | 1108 | 1.09 (−1.58–3.34) |
33 | Grant (2) | 287 | 1105 | 0.08 (−2.78–2.64) |
34 | Grant (3) | 287 | 1309 | 1.64 (−1.93–4.59) |
35 | Graves | 110 | 1301 | 0.68 (−2.75–3.80) |
36 | Grayson (2) | 143 | 1234 | 2.60 (−0.24–5.75) |
37 | Green (1) | 180 | 1314 | 0.06 (−3.27–3.44) |
38 | Green (2) | 213 | 1267 | 1.04 (−2.32–3.44) |
39 | Hancock | 128 | 1183 | 2.05 (−0.56–5.00) |
40 | Harrison (1) | 213 | 1119 | 0.97 (−1.73–3.29) |
41 | Harrison (2) | 220 | 1125 | 0.80 (−2.16–3.27) |
42 | Hopkins (2) | 134 | 1217 | 2.70 (−0.26–5.44) |
43 | Jackson | 381 | 1243 | 1.78 (−4.93–1.49) |
44 | Jefferson (1) | 223 | 1193 | 1.60 (−1.49–4.64) |
45 | Jefferson (2) | 141 | 1128 | 2.05 (−0.72–4.94) |
46 | Jessamine | 165 | 1199 | 0.64 (−2.41–3.41) |
47 | Knox | 302 | 1282 | −0.39 (−3.60–2.64) |
48 | Larue | 240 | 1260 | 0.37 (−2.88–3.74) |
49 | Laurel | 384 | 1230 | −0.81 (−3.90–2.79) |
50 | Madison | 326 | 1189 | −1.06 (−3.93–2.48) |
51 | Magoffin | 277 | 1124 | 0.35 (−2.24–3.08) |
52 | Owen | 293 | 1122 | 0.48 (−2.20–2.97) |
53 | Perry (2) | 366 | 1236 | −0.77 (−3.47–2.14) |
54 | Shelby | 223 | 1187 | 2.68 (−0.28–5.98) |
55 | Simpson | 220 | 1236 | 1.38 (−2.05–4.54) |
56 | Trigg | 116 | 1290 | 2.29 (−1.40–5.29) |
57 | Whitley (1) | 323 | 1254 | −0.47 (−3.47–2.81) |
58 | Wolfe | 308 | 1169 | 0.33 (−2.50–3.35) |
59 | Calloway | 161 | 1352 | 3.51 (0.10–7.06) 2 |
60 | Carlisle (1) | 110 | 1293 | 4.78 (0.73–8.42) |
3.2. Temperature
Station No. | Station | Elevation | Mean Annual Temperature | Sen Slope |
---|---|---|---|---|
County | (m) | (°C) | (°C/year) | |
1 | Allen (1) | 213 | 14.24 | 0.001 (−0.010–0.012)1 |
2 | Allen (3) | 259 | 14.30 | −0.001 (−0.140–0.010) |
3 | Ballard | 113 | 14.26 | 0.004 (−0.006–0.015) |
4 | Bell (1) | 348 | 12.84 | −0.008 (−0.017–0.004) |
5 | Bourbon | 247 | 12.57 | −0.002 (−0.012–0.009) |
6 | Breckinridge (1) | 116 | 13.18 | 0.009 (−0.006–0.019) |
7 | Breckinridge (2) | 180 | 13.37 | 0.009 (−0.003–0.023) |
8 | Breckinridge (3) | 218 | 13.33 | −0.002 (−0.016–0.008) |
9 | Carlisle (1) | 110 | 14.49 | −0.001 (−0.010–0.009) |
10 | Carlisle (2) | 125 | 14.44 | −0.001 (−0.011–0.009) |
11 | Carlisle (3) | 107 | 14.48 | 0.002 (−0.007–0.011) |
12 | Carroll | 137 | 13.11 | −0.001 (−0.009–0.011) |
13 | Casey | 265 | 13.34 | −0.008 (−0.018–0.003) |
14 | Christian (1) | 171 | 14.29 | 0.008 (−0.009–0.009) |
15 | Clay (2) | 265 | 13.06 | −0.002 (−0.008–0.012) |
16 | Clinton | 284 | 13.56 | −0.005 (−0.003–0.019) |
17 | Crittenden (1) | 110 | 14.07 | −0.005 (−0.015–0.006) |
18 | Crittenden (2) | 165 | 14.21 | 0.003 (−0.017–0.007) |
19 | Daviess (1) | 123 | 14.06 | 0.000 (−0.008–0.011) |
20 | Daviess (2) | 122 | 13.81 | 0.001 (−0.009–0.010) |
21 | Edmonson (3) | 241 | 13.28 | −0.001 (−0.015–0.011) |
22 | Fayette (1) | 294 | 12.93 | 0.007 (−0.004–0.018) |
23 | Fayette (2) | 284 | 12.69 | 0.009 (−0.002–0.020) |
24 | Fulton | 116 | 14.54 | −0.000 (−0.005–0.020) |
25 | Garrard (1) | 335 | 13.25 | 0.004 (−0.009–0.015) |
26 | Garrard (2) | 311 | 13.20 | 0.003 (−0.008–0.014) |
27 | Graves | 110 | 14.60 | 0.006 (−0.005–0.025) |
28 | Grayson (2) | 143 | 13.14 | −0.003 (−0.016–0.009) |
29 | Grayson (3) | 183 | 13.41 | 0.005 (−0.006–0.014) |
30 | Jessamine | 165 | 13.01 | 0.004 (−0.009–0.015) |
31 | Laurel | 384 | 13.07 | 0.001 (−0.007–0.013) |
32 | Madison | 326 | 13.84 | 0.002 (−0.007–0.012) |
33 | Perry (1) | 285 | 12.80 | 0.007 (−0.003–0.019) |
34 | Powell | 366 | 13.13 | 0.000 (−0.010–0.011) |
35 | Shelby | 223 | 12.22 | −0.011 (−0.025–0.006) |
36 | Simpson | 220 | 14.12 | 0.003 (−0.008–0.013) |
37 | Whitley (1) | 323 | 13.23 | −0.002 (−0.010–0.011) |
38 | Whitley (2) | 326 | 13.09 | −0.010 (−0.020–0.000) |
39 | Wolfe | 308 | 12.80 | −0.002 (−0.009–0.011) |
40 | Allen (2) | 189 | 13.97 | 0.021 (0.010–0.030) 2 |
41 | Calloway | 161 | 14.84 | 0.012 (0.001–0.020) |
42 | Jefferson (1) | 223 | 13.06 | 0.010 (0.001–0.019) |
4. Conclusions
Author Contributions
Conflicts of Interest
References
- Ficklin, D.L.; Stewart, I.T.; Maurer, E.P. Climate change impacts on streamflow and subbasin-scale hydrology in the Upper Colorado River Basin. PLoS ONE 2013, 8, e71297. [Google Scholar]
- Chattopadhyay, S.; Jha, M.K. Hydrological response due to projected climate variability in Haw River Watershed, North Carolina, USA. Hydrol. Sci. 2014. [Google Scholar] [CrossRef]
- Jin, X.; Sridhar, V. Impacts of climate change on hydrology and water resources in the Boise and Spokane River Basins. J. Am. Water Resour. Assoc. 2012, 48, 197–220. [Google Scholar] [CrossRef]
- Chattopadhyay, S.; Jha, M.K. Climate change impact on watershed hydrology: A comparison of three approaches. Am. J. Eng. Appl. Sci. 2014, 7, 122–128. [Google Scholar] [CrossRef]
- Modala, R. Assessing the Impact of Climate Change on Cotton Production in the Texas High Plains and Rolling Plains. Ph.D. Thesis, Texas A & M University, College Station, TX, USA, December 2014. [Google Scholar]
- Abdo, K.S.; Fiseha, B.M.; Rientjes, T.H.M.; Gieske, A.S.M.; Haile, A.T. Assessment of climate change impacts on the hydrology of Gilgel Abay catchment in Lake Tana Basin, Ethiopia. Hydrol. Processes 2009, 23, 3661–3669. [Google Scholar] [CrossRef]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Soil and Water Assessment Tool, Theoretical Documentation: Version 2005; USDA Agricultural Research Service and Texas A & M Black Land Research Centre: Temple, TX, USA, 2005. [Google Scholar]
- Brutsaert, W.; Parlange, M.B. Hydrologic cycle explains the evaporation paradox. Nature 1998, 396. [Google Scholar] [CrossRef]
- Solomon, S.; Qin, D.; Manning, M.; Marquis, M.; Averyt, K.; Tignor, M.M.B.; Miller, H.L., Jr.; Chen, Z. Climate Change 2007: The Physical Science Basis; Cambridge University Press: Cambridge, UK, 2007; p. 996. [Google Scholar]
- Prudhomme, C.; Dorte, J.; Svensson, C. Uncertainty and climate change impact on the flood regime of small UK catchments. J. Hydrol. 2003, 277, 1–23. [Google Scholar] [CrossRef]
- Minville, M.; Brissette, F.; Leconte, R. Uncertainty of the impact of climate change on the hydrology of a Nordic watershed. J. Hydrol. 2008, 358, 70–83. [Google Scholar] [CrossRef]
- Boyles, P.R.; Raman, S. Analysis of climate trends in North Carolina (1949–1998). Environ. Int. 2003, 29, 263–275. [Google Scholar] [CrossRef]
- Prat, O.P.; Nelson, B.R. Characteristics of annual, seasonal, and diurnal precipitation in the Southeastern United States derived from long-term remotely sensed data. Atmos. Res. 2013, 144, 4–20. [Google Scholar] [CrossRef]
- New, M.; Todd, M.; Hulme, M.; Jones, P. Precipitation measurements and trends in the twentieth century. Int. J. Climatol. 2001, 21, 1899–1922. [Google Scholar] [CrossRef]
- Small, D.; Islam, S.; Vogel, R.M. Trends in precipitation and streamflow in the eastern US: Paradox or perception? Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef]
- Mohsin, T.; Gough, W.A. Trend analysis of long-term temperature time series in the greater Toronto Area. Theor. Appl. Climatol. 2010, 101, 311–327. [Google Scholar] [CrossRef]
- Sayemuzzaman, M.; Mekonnen, A.; Jha, M.K. Diurnal temperature range trend over North Carolina and the associated mechanisms, United States. Atmos. Res. 2015, 160, 99–108. [Google Scholar] [CrossRef]
- Sayemuzzaman, M.; Jha, M.K.; Mekonnen, A.; Schimmel, K.A. Subseasonal climate variability for North Carolina, United States. Atmos. Res. 2014, 145–146, 69–79. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2013: The Physical Science Basis; Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, C., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK, 2013; p. 1535. [Google Scholar]
- Zhao, P.; Jones, P.; Cao, L.; Yan, Z.; Zha, S.; Zhu, Y.; Yu, Y.; Tang, G. Trend of surface air temperature in Eastern China and associated large-scale climate variability over the last 100 years. Am. Meteorol. Soc. 2014, 27, 4693–4703. [Google Scholar] [CrossRef]
- Ceppi, P.; Scherrer, S.C.; Fischer, A.M.; Appenzeller, C. Revisiting Swiss temperature trends 1959–2008. Int. J. Climatol. 2012, 32, 203–213. [Google Scholar] [CrossRef]
- Rio, D.S.; Herrero, L.; Pinto-Gomes, C.; Penas, A. Spatial analysis of mean temperature trends in Spain over the period 1961–2006. Glob. Platin. Chang. 2011, 78, 65–75. [Google Scholar]
- Degaetano, T.A.; Allen, J.R. Trends in twentieth-century temperature extremes across the United States. J. Clim. 2002, 15, 3188–3205. [Google Scholar] [CrossRef]
- Martinez, J.C.; Maleski, J.J.; Miller, F.M. Trends in precipitation and temperature in Florida, USA. J. Hydrol. 2012, 452–453, 259–281. [Google Scholar] [CrossRef]
- Karmeshu, N. Trend Detection in Annual Temperature & Precipitation Using the Mann Kendall Test—A Case Study to Assess Climate Change on Select States in the Northeastern United States. Master’s Thesis, University of Pennsylvania, Philadelphia, PA, USA, August 2012. [Google Scholar]
- Xu, Z.X.; Takeuchi, K.; Ishidaira, H.; Li, J.Y. Long-term trend analysis for precipitation in Asia Pacific Friend river basin. Hydrol. Processes 2005, 19, 3517–3532. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2001: The Scientific Basis; Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change; Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., van der Linden, P.J., Dai, X., Maskell, K., Johnson, C.A., Eds.; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Karl, T.R.; Knight, R.W. Secular trends of precipitation amount, frequency, and intensity in the United States. Am. Meteorol. Soc. 1998, 79, 231–241. [Google Scholar] [CrossRef]
- Philandras, C.M.; Nastos, P.T.; Kapsomenakis, J.; Douvis, K.C.; Tselioudis, C.S.; Zerefos, C.S. Long term precipitation trends and variability within the Mediterranean region. Nat. Hazards Earth Syst. Sci. 2011, 11, 3235–3250. [Google Scholar] [CrossRef]
- Abbaspour, K.C.; Faramarzi, M.; Ghasemi, S.S.; Hong, Y. Assessing the impact of climate change on water resources in Iran. Water Resour. Res. 2009, 45. [Google Scholar] [CrossRef]
- Bocheva, L.; Marinova, T.; Simeonov, P.; Gospodinov, I. Variability and trends of extreme precipitation events over Bulgaria (1961–2005). Atmos. Res. 2008. [Google Scholar] [CrossRef]
- Longobardi, A.; Villani, P. Trend Analysis of annual and seasonal rainfall time series in the Mediterranean area. Int. J. Climatol. 2009. [Google Scholar] [CrossRef]
- Jones, R.J.; Schwartz, S.J.; Ellis, N.K.; Hathaway, M.J.; Jawdy, M.C. Temporal variability of precipitation in the Upper Tennesse Valley. J. Hydrol. 2015, 3, 125–138. [Google Scholar]
- Kentucky Climate Center. 2014—Kentucky Weather Year in Review. Available online: http://kyclimate.org/ (accessed on 6 April 2015).
- United States Department of Agriculture, Agricultural Research Service. Available online: http://www.ars.usda.gov/Research/docs.htm?docid=19440 (accessed on 10 April 2015).
- Aguilar, E.; Auer, I.; Brunet, M.; Peterson, T.C.; Wieringa, J. Guidelines on Climate Metadata and Homogenization; World Meteorological Organization: Geneva, Switzerland, 2003. [Google Scholar]
- Costa, A.C.; Soares, A. Homogenization of climate data: Review and new perspectives using geostatistics. Math. Geosci. 2009, 41, 291–305. [Google Scholar] [CrossRef]
- Panofsky, H.A.; Brier, G.W. Some Applications of Statistics to Meteorology; Pennsylvania State University: State College, PA, USA, 1968; p. 224. [Google Scholar]
- Alamgir, M.; Shahid, S.; Hazarika, M.; Nashrullah, S.; Harun, S.; Shamsudin, S. Analysis of meteorological drought pattern during different climate and cropping season in Bangladesh. J. Am. Water Resour. Assoc. 2015, 51, 794–806. [Google Scholar] [CrossRef]
- Kalkstein, L.S.; Tan, G.R.; Skindlov, J.A. An evaluation of clustering procedures for use in synoptic climatological classification. J. Clim. Appl. Meteorol. 1987, 26, 717–730. [Google Scholar] [CrossRef]
- Unal, Y.; Kindap, T.; Karaca, M. Redefining the climate zones of Turkey using cluster analysis. Int. J. Climatol. 2003, 23, 1045–1055. [Google Scholar] [CrossRef]
- Gocic, M.; Trajkovic, S. Analysis of changes in meteorological variables using Mann–Kendall and Sen’s slope estimator statistical tests in Serbia. Glob. Planet. Chang. 2013, 100, 172–182. [Google Scholar] [CrossRef]
- Sayemuzzaman, M.; Jha, M.K. Seasonal and annual precipitation time series trend analysis in North Carolina, United States. Atmos. Res. 2014, 137, 183–194. [Google Scholar] [CrossRef]
- Douglas, E.B.; Vogel, R.M.; Knoll, C.N. Trends in floods and low flows in the United States: Impact of serial correlation. J. Hydrol. 2000, 240, 90–105. [Google Scholar] [CrossRef]
- Zhang, X.; Harvey, K.D.; Hogg, W.D.; Yuzyk, T.R. Trends in Canadian streamflow. Water Resour. Res. 2001, 37, 987–998. [Google Scholar] [CrossRef]
- Yue, S.; Pilon, P.; Phinney, B.; Cavadias, G. The influence of autocorrelation on the ability to detect trend in hydrological series. Hydrol. Processes 2002, 16, 1807–1829. [Google Scholar] [CrossRef]
- Matalas, N.C.; Sankarasubramanian, A. Effect of persistence on trend detection via regression. Water Resour. Res. 2003, 39. [Google Scholar] [CrossRef]
- Wang, H.S.; Schubert, M.S.; Junye, C.; Martin, H.; Arun, K.; Pegion, P. Attribution of the seasonality and regionality in climate trends over the United States during 1950–2000. J. Clim. 2009, 22, 2571–2590. [Google Scholar] [CrossRef]
- Sonali, P.; Nagesh, K.D. Review of trend detection methods and their application to detect temperature changes in India. J. Hydrol. 2013, 476, 212–227. [Google Scholar] [CrossRef]
- Jha, M.K.; Singh, A.K. Trend analysis of extreme runoff events in major river basins of Peninsular Malaysia. Int. J. Water 2013, 7, 142–158. [Google Scholar] [CrossRef]
- Jain, S.K.; Kumar, V.; Saharia, M. Analysis of rainfall and temperature trends in northeast India. Int. J. Clim. 2012. [Google Scholar] [CrossRef]
- Modarres, R.; Silva, V. Rainfall trends in arid & semi-arid regions of Iran. J. Arid Environ. 2007, 70, 344–355. [Google Scholar]
- Tabari, H.; Somee, B.S.; Zadeh, M.R. Testing for long-term trends in climatic variables in Iran. Atmos. Res. 2011, 100, 132–140. [Google Scholar] [CrossRef]
- Sayemuzzaman, M.; Jha, M.K.; Mekonnen, A. Spatio-temporal long-term (1950–2009) temperature trend analysis in North Carolina, United States. Theor. Appl. Climatol. 2014, 120, 159–171. [Google Scholar] [CrossRef]
- Mann, H.B. Non-parametric tests against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Measures; Charles Griffin: London, UK, 1975. [Google Scholar]
- Modarres, R.; Sarhadi, A. Rainfall trends analysis of Iran in the last half of the twentieth century. J. Geophys. Res. 2009, 114. [Google Scholar] [CrossRef]
- Hirsch, R.M.; Slack, J.R.; Smith, R.A. Techniques of trend analysis for monthly water quality data. Water Resour. Res. 1982, 18, 107–121. [Google Scholar] [CrossRef]
- Salmi, T.; Maatta, A.; Anttila, P.; Ruoho-Airola, T.; Amnell, T. Detecting Trends of Annual Values of Atmospheric Pollutants by the Mann-Kendall Test and Sen’s Slope Estimates—The Excel Template Application MAKESENS; Finnish Meteorological Institute: Helsinki, Finland, 2002. [Google Scholar]
- National Center for Environmental Information Database. Available online: http://www.ncdc.noaa.gov/cag/ (accessed on 6 September 2015).
- Hartmann, D.L.; Tank, A.M.G.K.; Rusticucci, M.; Alexander, L.V.; Bronnimann, S.; Charabi, Y.; Dentener, F.J.; Dlugokencky, E.J.; Easterling, D.R.; Kaplan, A.; et al. Observations: Atmosphere and surface. In Climate Change 2013: The Physical Science Basis; Cambridge University Press: Cambridge, UK, 2013; pp. 159–255. [Google Scholar]
- Li, X.; Hu, Z.; Jiang, X.; Li, Y.; Gao, Z.; Yang, S.; Zhu, J.; Jha, B. Trend and seasonality of land precipitation in observations and CMIP5 model simulations. Int. J. Climatol. 2015. [Google Scholar] [CrossRef]
- Wachter, J. A 10-Year Perspective of the Merger of Louisville and Jefferson County, KY: Louisville Metro Vaults from 65th to 18th Largest City in the Nation; The Abell Foundation: Baltimore, MD, USA, 2013. [Google Scholar]
- Portmann, W.R.; Solomon, S.; Hegerl, C.G. Spatial and seasonal patterns in climate change, temperatures, and precipitation across the United States. Proc. Natl. Acad. Sci. USA 2009, 106, 7324–7329. [Google Scholar] [CrossRef] [PubMed]
- Tebaldi, C.; Adams-Smith, D.; Heller, N. The Heat is On: US Temperature Trends; Climate Central: Princeton, NJ, USA, 2012. [Google Scholar]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chattopadhyay, S.; Edwards, D.R. Long-Term Trend Analysis of Precipitation and Air Temperature for Kentucky, United States. Climate 2016, 4, 10. https://doi.org/10.3390/cli4010010
Chattopadhyay S, Edwards DR. Long-Term Trend Analysis of Precipitation and Air Temperature for Kentucky, United States. Climate. 2016; 4(1):10. https://doi.org/10.3390/cli4010010
Chicago/Turabian StyleChattopadhyay, Somsubhra, and Dwayne R. Edwards. 2016. "Long-Term Trend Analysis of Precipitation and Air Temperature for Kentucky, United States" Climate 4, no. 1: 10. https://doi.org/10.3390/cli4010010
APA StyleChattopadhyay, S., & Edwards, D. R. (2016). Long-Term Trend Analysis of Precipitation and Air Temperature for Kentucky, United States. Climate, 4(1), 10. https://doi.org/10.3390/cli4010010