Climate and Human Health: Relations, Projections, and Future Implementations
Abstract
:- -
- “Studies on the cost of health damage of climate change tend to show significant costs due to mortality and morbidity attributable to climate change. Those costs, measured on a yearly basis, tend to increase with longer timeframes and under more severe climate change scenarios.
- -
- Studies on the cost, cost-effectiveness and/or benefits of health adaptation tend to show moderate costs and substantial benefits of adaptation in the short term with a marked increase in the long term.
- -
- The reviews of the literature commonly reflect the paucity of existing evidence, lack of comparability and gaps, but tend to confirm the general conclusions in the mentioned types of studies” [40].
Acknowledgments
Conflicts of Interest
References
- Wolf, T.; Lyne, K.; Sanchez Martinez, G.; Kendrovski, V. The health effects of climate change in the WHO European Region. Climate 2015. [Google Scholar] [CrossRef]
- Sustainable Development Goals. Available online: https://sustainabledevelopment.un.org/sdgs (accessed on 4 March 2016).
- World Health Organization; World Meteorological Organization. Atlas of Health and Climate; World Health Organization: Geneva, Switzerland, 2012; p. 64. [Google Scholar]
- Luber, G.; McGeehin, M. Climate change and extreme heat events. Am. J. Prev. Med. 2008, 35, 429–435. [Google Scholar] [CrossRef] [PubMed]
- Zacharias, S.; Koppe, C.; Mücke, H.-G. Influence of heat waves on ischemic heart diseases in Germany. Climate 2014, 2. [Google Scholar] [CrossRef]
- Zacharias, S.; Koppe, C.; Mücke, H.-G. Climate change effects on heat waves and future heat wave-associated IHD mortality in Germany. Climate 2015. [Google Scholar] [CrossRef]
- Hutter, H.P.; Moshammer, H.; Wallner, P.; Leitner, B.; Kundi, M. Heatwaves in Vienna: Effects on mortality. Wien. Klin. Wochenschr. 2007, 119, 223–227. [Google Scholar] [CrossRef] [PubMed]
- Kyselý, J.; Plavcová, E.; Davídkovová, H.; Kynčl, J. Comparison of hot and cold spell effects on cardiovascular mortality in individual population groups in the Czech Republic. Clim. Res. 2011, 49, 113–129. [Google Scholar] [CrossRef]
- Huynen, M.M.; Martens, P.; Schram, D.; Weijenberg, M.P.; Kunst, A.E. The impact of heat waves and cold spells on mortality rates in the Dutch population. Environ. Health Perspect. 2001, 109, 463–470. [Google Scholar] [CrossRef] [PubMed]
- Rocklov, J.; Barnett, A.G.; Woodward, A. On the estimation of heat-intensity and heat-duration effects in time series models of temperature-related mortality in Stockholm, Sweden. Environ. Health 2012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kyselý, J.; Plavcová, E. Declining impacts of hot spells on mortality in the Czech Republic, 1986–2009: Adaptation to climate change? Clim. Chang. 2012, 113, 437–453. [Google Scholar] [CrossRef]
- Kovats, R.S.; Hajat, S.; Wilkinson, P. Contrasting patterns of mortality and hospital admissions during hot weather and heat waves in Greater London, UK. Occup. Environ. Med. 2004, 61, 893–898. [Google Scholar] [CrossRef] [PubMed]
- Johnson, H.; Kovats, R.S.; McGregor, G.; Stedman, J.; Gibbs, M.; Walton, H.; Cook, L.; Black, E. The impact of the 2003 heat wave on mortality and hospital admissions in England. Health Stat. Q. 2005, 25, 6–11. [Google Scholar] [CrossRef] [PubMed]
- Williams, S.; Nitschke, M.; Weinstein, P.; Pisaniello, D.L.; Parton, K.A.; Bi, P. The impact of summer temperatures and heatwaves on mortality and morbidity in Perth, Australia 1994–2008. Environ. Int. 2012, 40, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Keggenhoff, I.; Elizbarashvili, M.; King, L. Heat wave events over Georgia since 1961: Climatology, changes and severity. Climate 2015. [Google Scholar] [CrossRef]
- Kharin, V.; Zwiers, F.W.; Zhang, X.; Hegerl, G.C. Changes in temperature and precipitation extremes in the IPCC ensemble of global coupled model simulations. J. Clim. 2007, 20, 1419–1444. [Google Scholar] [CrossRef]
- Perkins, S.E.; Alexander, L.A.; Nairn, J.R. Increasing frequency, intensity and duration of observed global heatwaves and warm spells. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef]
- IPCC. Climate change 2014: Impacts, adaptation, and vulnerability. Part A: Global and sectoral aspects. In Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 709–754. [Google Scholar]
- IPCC. Climate change 2014: Impacts, adaptation, and vulnerability. Part B: Regional aspects. In Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 1133–1436. [Google Scholar]
- Nairn, J.; Fawcett, R. Defining Heatwaves: Heatwave Defined as a Heat-Impact Event Servicing all Community and Business Sectors in Australia; CAWCR Technical Report No. 060; Centre for Australian Weather and Climate Research: Melbourne, Australia, 2013. [Google Scholar]
- Olabode, A.D. Urban Extreme Weather: A challenge for a healthy Living environment in Akure, Ondo State, Nigeria. Climate 2015. [Google Scholar] [CrossRef]
- Nakicenovic, N.; Alcamo, J.; Davis, G.; de Vries, B.; Fenhann, J.; Gaffin, S.; Gregory, K.; Gruebler, A.; Jung, T.Y.; Kram, T.; et al. Special Report on Emissions Scenarios, Working Group III, Intergovernmental Panel on Climate Change (IPCC); Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Wu, J.; Zhou, Y.; Gao, Y.; Fu, J.S.; Johnson, B.A.; Huang, C.; Kim, Y.-M.; Liu, Y. Estimation and uncertainty analysis of impacts of future heat waves on mortality in the eastern United States. Environ. Health Perspect. 2014, 122, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Hales, S.; Kovats, S.; Lloyd, S.; Campbell-Lendrum, D. Quantitative Risk Assessment of the Effects of Climate Change on Selected Causes of Death, 2030s and 2050s. Available online: http://www.who.int/globalchange/publications/quantitative-risk-assessment/en/ (assessed on 5 November 2014).
- Sheridan, S.C.; Allen, M.J.; Lee, C.C.; Kalkstein, L.S. Future heat vulnerability in California, Part II: Projecting future heat-related mortality. Clim. Chang. 2012, 115, 311–326. [Google Scholar] [CrossRef]
- Morabito, M.; Crisci, A.; Moriondo, M.; Profili, F.; Francesconi, P.; Trombi, G.; Orlandini, S. Air temperature-related human health outcomes: Current impact and estimations of future risks in Central Italy. Sci. Total Environ. 2012, 441, 28–40. [Google Scholar] [CrossRef] [PubMed]
- Petkova, E.P.; Bader, D.A.; Anderson, G.B.; Horton, R.M.; Knowlton, K.; Kinney, P.L. Heat-related mortality in a warming climate: Projections for 12 US cities. Int. J. Environ. Res. Public Health 2014, 11, 11371–11383. [Google Scholar] [CrossRef] [PubMed]
- Hart, J. Air temperature and death rates in the Continental U.S., 1968–2013. Climate 2015, 3, 435–441. [Google Scholar] [CrossRef]
- Hart, J. Air temperature and death rates in Texas, 1968–2013: A brief research note. Epidemiol. Rep. 2015. accepted. [Google Scholar] [CrossRef]
- Engler, S.; Werner, J.P. Processes prior and during the early 18th Century Irish famines—Weather extremes and migration. Climate 2015, 3, 1035–1056. [Google Scholar] [CrossRef]
- Wu, X.; Lu, Y.; Zhou, S.; Chen, L.; Xu, B. Impact of climate change on human infectious diseases: Empirical evidence and human adaptation. Environ. Int. 2016, 86, 14–23. [Google Scholar] [CrossRef] [PubMed]
- Altizer, S.; Ostfeld, R.S.; Johnson, P.T.J.; Kutz, S.; Harvell, C.D. Climate change and infectious diseases: From evidence to a predictive framework. Science 2013, 341, 514–519. [Google Scholar] [CrossRef] [PubMed]
- Bouzid, M.; Colón-González, F.J.; Lung, T.; Lake, I.R.; Hunter, P.R. Climate change and the emergence of vector-borne diseases in Europe: Case study of dengue fever. BMC Public Health 2014, 14. [Google Scholar] [CrossRef] [PubMed]
- Epstein, P.R. Climate change and emerging infectious diseases. Microbes Infect. 2001, 3, 747–754. [Google Scholar] [CrossRef]
- Epstein, P.R.; Diaz, H.F.; Elias, S.; Grabherr, G.; Graham, N.E.; Martens, W.J.; Mosley-Thompson, E.; Susskind, J. Biological and physical signs of climate change: Focus on mosquito-borne diseases. Bull. Am. Meteorol. Soc. 1998, 79, 409–417. [Google Scholar] [CrossRef]
- Ostfeld, R.S.; Brunner, J.L. Climate change and Ixodes tick-borne diseases of humans. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2015, 370. [Google Scholar] [CrossRef] [PubMed]
- Rodó, X.; Pascual, M.; Doblas-Reyes, F.J.; Gershunov, A.; Stone, D.A.; Giorgi, F.; Hudson, P.J.; Kinter, J.; Rodríguez-Arias, M.-À.; Stenseth, N.C. Climate change and infectious diseases: Can we meet the needs for better prediction? Clim. Chang. 2013, 118, 625–640. [Google Scholar] [CrossRef]
- Akin, S.-M.; Martens, P. A survey of Dutch expert opinion on climatic drivers of infectious disease risk in Western Europe. Climate 2014. [Google Scholar] [CrossRef]
- Stoutenborough, J.W.; Kirkpatrick, K.J.; Field, M.J.; Vedlitz, A. What butterfly effect? The contextual differences in public perceptions of the health risk posed by climate change. Climate 2015, 3, 668–688. [Google Scholar] [CrossRef]
- Sanchez Martinez, G.; Williams, E.; Yu, S.S. The economics of health damage and adaptation to climate change in Europe: A review of the conventional and grey literature. Climate 2015, 3, 522–541. [Google Scholar] [CrossRef]
- Fagence, M.; Kevan, S. Migration, recreation and tourism: Human responses to climate differences. In Advances in Bioclimatology; Auliciems, A., Ed.; Springer: Berlin, Germany, 1997; pp. 133–160. [Google Scholar]
- Scott, D.; de Freitas, C.; Matzarakis, A. Adaptation in the tourism and recreation sector. In Biometeorology for Adaptation to Climate Variability and Change; Ebi, K., Burton, I., McGregor, G., Eds.; Springer: Dordrecht, The Netherlands, 2009; pp. 171–194. [Google Scholar]
- Scott, D.; McBoyle, G.; Schwartzentruber, M. Climate change and the distribution of climatic resources for tourism in North America. Clim. Res. 2004, 27, 105–117. [Google Scholar] [CrossRef]
- Pezzoli, A.; Bellasio, R. Analysis of wind data for sports performance design: A case study for sailing Sports. Sports 2014, 2. [Google Scholar] [CrossRef]
- Brocherie, F.; Girard, O.; Millet, G.P. Emerging environmental and weather challenges in outdoor sports. Climate 2015, 3. [Google Scholar] [CrossRef]
- Bahr, R.; Reeser, J.C. New guidelines are needed to manage heat stress in elite sports—The federation internationale de volleyball (FIVB) heat stress monitoring programme. Br. J. Sports Med. 2012, 46, 805–809. [Google Scholar] [CrossRef] [PubMed]
- Pappenberger, F.; Jendritzky, G.; Staiger, H.; Dutra, E.; Di Giuseppe, F.; Richardson, D.S.; Cloke, H.L. Global forecasting of thermal health hazards: The skill of probabilistic predictions of the Universal Thermal Climate Index (UTCI). Int. J. Biometeorol. 2015, 59. [Google Scholar] [CrossRef] [PubMed]
- Blazejczyk, K.; Epstein, Y.; Jendritzky, G.; Staiger, H.; Tinz, B. Comparison of UTCI to selected thermal indices. Int. J. Biometeorol. 2012, 56. [Google Scholar] [CrossRef] [PubMed]
- Psikuta, A.; Fiala, D.; Laschewski, G.; Jendritzky, G.; Richards, M.; Blazejczyk, K.; Mekjavic, I.; Rintamaki, H.; de Dear, R.; Havenith, G. Validation of the Fiala multi-node thermophysiological model for UTCI application. Int. J. Biometeorol. 2012, 56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pezzoli, A.; Santos Dávila, J.L.; D’Elia, E. Climate and Human Health: Relations, Projections, and Future Implementations. Climate 2016, 4, 18. https://doi.org/10.3390/cli4020018
Pezzoli A, Santos Dávila JL, D’Elia E. Climate and Human Health: Relations, Projections, and Future Implementations. Climate. 2016; 4(2):18. https://doi.org/10.3390/cli4020018
Chicago/Turabian StylePezzoli, Alessandro, José Luis Santos Dávila, and Eleonora D’Elia. 2016. "Climate and Human Health: Relations, Projections, and Future Implementations" Climate 4, no. 2: 18. https://doi.org/10.3390/cli4020018
APA StylePezzoli, A., Santos Dávila, J. L., & D’Elia, E. (2016). Climate and Human Health: Relations, Projections, and Future Implementations. Climate, 4(2), 18. https://doi.org/10.3390/cli4020018