Linkage between Water Level Dynamics and Climate Variability: The Case of Lake Hawassa Hydrology and ENSO Phenomena
Abstract
:1. Introduction
- To analyze the long-term trends (variation over-time) and sequential regime shifts (variation across-time) for lake level, rainfall, streamflow, and potential evapotranspiration;
- To compare significant change points of the above hydro-climatic variables with the timing and intensity of North Pacific climate shifts/ El Niño/ La Niña occurrences; and
- To analyze the coherence between data series of Niño3.4 Index (N3.4) and Lake Hawassa water level.
2. Methodology
2.1. Description of the Study Area
2.2. Data Availability
2.3. Detection of Long-Terms Trends Using Mann-Kendall Test
2.4. Sequential Regime Shift Detection Using Regime Shift Index (RSI)
2.5. Estimation of Coherence between ENSO Index and Lake Level Variability
3. Results and Discussion
3.1. Result of Trend Analysis
3.2. Results of Sequential Regime Shift Analysis
3.2.1. Lake Level Variability
3.2.2. Rainfall Variability
3.2.3. Variability in Streamflow
3.2.4. Variability in Potential Evapotranspiration (ET)
3.2.5. Land Use/Cover Change as a Potential Anthropogenic Factor in Affecting the Lake Hydrology
3.2.6. Interaction of Geomorphological Processes with Lake Hydrology
3.3. Results of Coherence Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A. SynThesis of RSI Output
Av.Lake Depth (m) | RSI | Mean | Weighed | Length | p | Outliers | |
---|---|---|---|---|---|---|---|
1970 | 19.64 | 0.00 | 19.70 | 19.68 | 8 | ||
1971 | 19.83 | 0.00 | 19.70 | 19.68 | 8 | ||
1972 | 20.26 | 0.00 | 19.70 | 19.68 | 8 | 0.76 | |
1973 | 19.92 | 0.00 | 19.70 | 19.68 | 8 | ||
1974 | 19.53 | 0.00 | 19.70 | 19.68 | 8 | ||
1975 | 19.37 | 0.00 | 19.70 | 19.68 | 8 | ||
1976 | 19.36 | 0.00 | 19.70 | 19.68 | 8 | ||
1977 | 19.67 | 0.00 | 19.70 | 19.68 | 8 | ||
1978 | 20.40 | 0.63 | 20.12 | 20.10 | 9 | 0.02 | |
1979 | 20.74 | 0.00 | 20.12 | 20.10 | 9 | 0.68 | |
1980 | 20.33 | 0.00 | 20.12 | 20.10 | 9 | ||
1981 | 19.86 | 0.00 | 20.12 | 20.10 | 9 | ||
1982 | 19.72 | 0.00 | 20.12 | 20.10 | 9 | ||
1983 | 20.15 | 0.00 | 20.12 | 20.10 | 9 | ||
1984 | 20.22 | 0.00 | 20.12 | 20.10 | 9 | ||
1985 | 19.77 | 0.00 | 20.12 | 20.10 | 9 | ||
1986 | 19.90 | 0.00 | 20.12 | 20.10 | 9 | ||
1987 | 20.27 | 0.88 | 20.43 | 20.43 | 6 | 0.06 | |
1988 | 20.32 | 0.00 | 20.43 | 20.43 | 6 | ||
1989 | 20.71 | 0.00 | 20.43 | 20.43 | 6 | ||
1990 | 20.78 | 0.00 | 20.43 | 20.43 | 6 | ||
1991 | 20.33 | 0.00 | 20.43 | 20.43 | 6 | ||
1992 | 20.17 | 0.00 | 20.43 | 20.43 | 6 | ||
1993 | 20.72 | 1.10 | 21.20 | 21.16 | 10 | 0.001 | |
1994 | 20.70 | 0.00 | 21.20 | 21.16 | 10 | 0.95 | |
1995 | 20.53 | 0.00 | 21.20 | 21.16 | 10 | 0.69 | |
1996 | 20.92 | 0.00 | 21.20 | 21.16 | 10 | ||
1997 | 21.33 | 0.00 | 21.20 | 21.16 | 10 | ||
1998 | 21.98 | 0.00 | 21.20 | 21.16 | 10 | 0.53 | |
1999 | 21.90 | 0.00 | 21.20 | 21.16 | 10 | 0.59 | |
2000 | 21.25 | 0.00 | 21.20 | 21.16 | 10 | ||
2001 | 21.31 | 0.00 | 21.20 | 21.16 | 10 | ||
2002 | 21.37 | 0.00 | 21.20 | 21.16 | 10 | ||
2003 | 20.87 | −0.29 | 21.00 | 20.99 | 8 | 0.34 | |
2004 | 20.58 | 0.00 | 21.00 | 20.99 | 8 | ||
2005 | 20.56 | 0.00 | 21.00 | 20.99 | 8 | ||
2006 | 20.72 | 0.00 | 21.00 | 20.99 | 8 | ||
2007 | 21.46 | 0.00 | 21.00 | 20.99 | 8 | 0.93 | |
2008 | 21.47 | 0.00 | 21.00 | 20.99 | 8 | 0.92 | |
2009 | 21.19 | 0.00 | 21.00 | 20.99 | 8 | ||
2010 | 21.16 | 0.00 | 21.00 | 20.99 | 8 |
References
- Lenters, J.D.; Kratz, T.K.; Bowser, C.J. Effects of climate variability on lake evaporation: Results from a long-term energy budget study of Sparkling Lake, Northern Wisconsin (USA). J. Hydrol. 2005, 308, 168–195. [Google Scholar] [CrossRef]
- Limgis. Winter School on Essentials in Limnology and Geographic Information System (GIS). 2001. Available online: http://wgbis.ces.iisc.ernet.in/energy/finance/New/limgis.html (accessed on 5 February 2013).
- Lamb, H.H. Climate in the 1960s. Geogr. J. 1966, 132, 183–212. [Google Scholar] [CrossRef]
- Flohn, H. East African rains of 1961/1962 and the abrupt change of the White Nile Discharge. Palaeoecol. Afr. 1987, 18, 3–18. [Google Scholar]
- Nicholson, S.E. Environmental change within the historical period. In The Physical Geography of Africa; Goudie, A.S., Adams, W.M., Orme, A., Eds.; Oxford University Press: Oxford, UK, 1995. [Google Scholar]
- Arnell, N.; Bates, B.; Lang, H.; Magnusson, J.J.; Mulholland, P. Climate Change 1995: Impacts, Adaptations and Mitigations of Climate Change: Scientific Technical Analyses; Cambridge Univ. Press: Cambridge, UK, 1996. [Google Scholar]
- Bergonzini, L. Bilanshydriques de lacs (Kivu, Tanganyika, Rukwa and Nyassa) du riftest-africain Mus. R. Afr. Centr. Tervuren Ann. Sc. Geol. 1998, 103, 1–183. [Google Scholar]
- Goerner, A.; Jolie, E.; Gloaguen, R. Non-climatic growth of the saline Lake Beseka, Main Ethiopian Rift. J. Arid Environ. 2009, 73, 287–295. [Google Scholar] [CrossRef]
- Belay, E.A. Growing lake with growing problems: Integrated Hydrogeological Investigation on Lake Beseka, Ethiopia. Ph.D. Thesis, Rheinischen Friedrich-Wilhelms-Universität, Bonn, Germany, 2009. [Google Scholar]
- Gebreegziabher, Y. Assessment of the Water Balance of Lake Awassa Catchment, Ethiopia. Master’s Thesis, International Institute for Geo-information Science and Earth Observation, Enschede, The Netherlands, 2004. [Google Scholar]
- WWDSE (Water Works Design and Supervision Enterprise). The Study of Lake Awassa Level Rise; Southern Nations Nationalities and Peoples Regional State; Water, Mines and Energy Resources Development Bureau: Addis Ababa, Ethiopia, 2001. [Google Scholar]
- WRDB (Water Resources Development Bureau). Study of Pollution of Lakes and Rivers; AG Consulting Hydrogeologists and Engineers Plc: Addis Ababa, Ethiopia, 2007. [Google Scholar]
- Ayenew, T. Environmental implications of changes in the levels of lakes in the Ethiopian Rift since 1970. Reg. Environ. Chang. 2004, 4, 192–204. [Google Scholar] [CrossRef]
- Deganovsky, A.M.; Getahun, B.A. Water balance and level regime of Ethiopian lakes as integral indicators of climate change. In Proceedings of the 12th World Lake Conference (Taal2007), Jaipur, India, 28 October–2 November 2008.
- Ayenew, T.; Gebreegziabher, Y. Application of a spreadsheet hydrological model for computing the long-term water balance of Lake Awassa, Ethiopia. Hydrol. Sci. J. 2006, 51, 418–431. [Google Scholar] [CrossRef]
- Gebremichael, H. Modeling and Forcasting Hawassa Lake Level Fluctuation. Master’s Thesis, Addis Ababa University, Addis Ababa, Ethiopia, 2007. [Google Scholar]
- Shewangizaw, D. Assessing the Effect of Land Use Changes on the Hydraulic Regime of Lake Hawassa. Master’s Thesis, Addis Ababa University, Addis Ababa, Ethiopia, 2010. [Google Scholar]
- Wagesho, N.; Goel, N.K.; Jain, M.K. Investigation of non-stationarity in hydro-climatic variables at Rift Valley Lakes Basin of Ethiopia. J. Hydrol. 2012, 444, 113–133. [Google Scholar] [CrossRef]
- Wallace, J.M.; Gutzler, D.S. Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Weather Rev. 1981, 109, 784–812. [Google Scholar] [CrossRef]
- MoWR. The Federal Democratic Republic of Ethiopia-Ministry of Water Resources: Rift Valley Lakes Basin Integrated Resources Development Master Plan Study Project. Phase 3 Report: Lake Hawassa Sub-basin Integrated Watershed Management Feasibility Study. Part 1 and 2; Halcrow Group Limited and Generation Integrated Rural Development (GIRD) Consultants: Addis Ababa, Ethiopia, 2010. [Google Scholar]
- Belete, M.D.; Diekkrüger, B.; Roehrig, J. Characterization of the water level variability of the main Ethiopian Rift Valley Lakes. Hydrology 2015, 3, 1. [Google Scholar] [CrossRef]
- Legesse, D.; Vallet-Coulomb, C.; Gasse, F. Hydrological response of a catchment to climate and land use changes in Tropical Africa: Case study South Central Ethiopia. J. Hydrol. 2003, 275, 67–85. [Google Scholar] [CrossRef]
- Legesse, D.; Vallet-Coulomb, C.; Gasse, F. Analysis of the hydrological response of a tropical terminal lake, Lake Abiyata (Main Ethiopian Rift Valley) to changes in climate and human activities. Hydrol. Process 2004, 18, 487–504. [Google Scholar] [CrossRef]
- Dessie, N. Hydrogeological Investigation of Lake Hawassa Catchment. Master’s Thesis, Addis Ababa University, Addis Ababa, Ethiopia, 1995. [Google Scholar]
- Thomson, R.E.; Emery, W.J. Time-Series Analysis Methods: Data Analysis Methods in Physical Oceanography, 2nd ed.; Elsevier Science: Amsterdam, The Netherlands, 2001. [Google Scholar]
- Mann, H.B. Non-parametric tests against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Measures; Charles Griffin: London, UK, 1975. [Google Scholar]
- Tabari, H.; Marofi, S. Changes of pan evaporation in the West of Iran. Water Resour. Manag. 2011, 25, 97–111. [Google Scholar] [CrossRef]
- Tabari, H.; Somee, B.S.; Zadeh, M.R. Testing for long-term trends in climatic variables in Iran. Atmos. Res. 2011, 100, 132–140. [Google Scholar] [CrossRef]
- Steele, J.H. Regime shifts in fisheries management. Fish Res. 1996, 25, 19–23. [Google Scholar] [CrossRef]
- Hare, S.R.; Mantua, N.J. Empirical evidence for North Pacific regime shifts in 1977 and 1989. Prog. Ocean. 2000, 47, 103–145. [Google Scholar] [CrossRef]
- Overland, J.E.; Percival, D.B.; Mofjeld, H.O. Regime shifts and red noise in the North Pacific. Deep Sea Research. Part I. Oceanogr. Res. Pap. 2006, 53, 582–588. [Google Scholar] [CrossRef]
- Rodionov, S.N. A sequential algorithm for testing climate regime shifts. Geophys. Res. Lett. 2004, 31, L09204. [Google Scholar] [CrossRef]
- Rodionov, S.N. A brief overview of the regime shift detection methods. In Large-Scale Disturbances (Regime Shifts) and Recovery in Aquatic Ecosystems: Challenges for Management toward Sustainability; Velikova, V., Chipev, N., Eds.; UNESCO-ROSTE/BAS Workshop on Regime Shifts: Varna, Bulgaria, 2005. [Google Scholar]
- TSOA (Texas State Auditor’s Office). Data Analysis: Analyzing Data—Trend Analysis-2; Methodology Manual rev. 5/95; Texas State Auditor’s Office: Austin, TX, USA, 1995. [Google Scholar]
- Breaker, L.C. A closer look at regime shifts based on coastal observations along the eastern boundary of the North Pacific. Cont. Shelf Res. 2007, 27, 2250–2277. [Google Scholar] [CrossRef]
- Biltoft, C.A.; Eric, R.P. Spectral coherence and the statistical significance of turbulent flux computations. J. Atmos. Ocean. Technol. 2009, 26, 403–409. [Google Scholar] [CrossRef]
- Hernando, O.; Bellegem, S.V. Coherence Analysis of Non-Stationary Time Series: A Linear Filtering Point of View; UCL—EUEN/CORE—Center for Operations Research and Econometrics: Louvain, Belgium, 2006. [Google Scholar]
- Koopmans, L.H. The Spectral Analysis of Time Series; Academic Press: New York, NY, USA, 1974. [Google Scholar]
- Bendant, J.S.; Piersol, A.G. Random Data Analysis and Measurement Procedures, 2nd ed.; Wiley: New York, NY, USA, 1986. [Google Scholar]
- Jenkins, G.M.; Watts, D.G. Spectral Analysis and Its Applications; Holden Day: San Francisco, CA, USA, 1968. [Google Scholar]
- Bloomfield, P. Fourier Analysis of Time Series: An Introduction; Wiley: New York, NY, USA, 1976. [Google Scholar]
- Korecha, D.; Barnston, A.G. Predictability of June-September rainfall in Ethiopia. Am. Meteorol. Soc. Mon. Weather Rev. 2007, 135, 628–650. [Google Scholar] [CrossRef]
- Babu, A. The impact of Pacific sea surface temperature on the Ethiopian rainfall. In Presented at Workshop on High-Impact Weather Predictability Information System for Africa and AMMA-THORPEX Forecasters’ Handbook, Trieste, Italy, 5–8 October 2009.
- Barnston, A.G.; Chelliah, M.; Goldenberg, S.B. Documentation of a highly ENSO-related SST region in the equatorial Pacific. Atmos.-Ocean 1997, 35, 367–383. [Google Scholar]
- GEOS. Notes on Time Series Analysis; University of Arizona: Tucson, AZ, USA, 2013. [Google Scholar]
- Namdar-Ghanbari, R.; Bravo, H.R.; Magnuson, J.J.; Hyzer, W.G.; Benson, B.J. Coherence between lake ice cover, local climate and teleconnections (Lake Mendota, Wisconsin). J. Hydrol. 2009, 374, 282–293. [Google Scholar] [CrossRef]
- Belete, A. Climate Change Impact on Lake Abaya Water Level. Master’s Thesis, Addis Ababa University, Addis Ababa, Ethiopia, 2009. [Google Scholar]
- Mercier, F.; Cazenave, A.; Maheu, C. Inter-annual lake level fluctuations (1993–1999) in Africa from Topex/Poseidon: Connections with ocean-atmosphere interactions over the Indian Ocean. Glob. Planet. Chang. 2002, 32, 141–163. [Google Scholar] [CrossRef]
- Tereshchenko, I.; Filonov, A.; Gallegos, A.; Monzo´n, C.; Rodrı´guez, R. 1997–98 and the hydrometeorological variability of Chapala, a shallow tropical lake in Mexico. J. Hydrol. 2002, 264, 133–146. [Google Scholar] [CrossRef]
- Strub, P.T.; James, C. Altimeter-derived surface circulation in the large-scale NE Pacific Gyres.: Part 2: 1997–1998 anomalies. Prog. Ocean. 2002, 53, 185–214. [Google Scholar] [CrossRef]
- Marucci, S.D. The Impact of Southern Oscillation Phenomenon on the Panama Canal and Its Markets. In Proceedings of the International Association of Maritime Economists Annual Conference, Panama City, Panama, 13–15 November 2002.
- Sponberg, K. Navigating the Numbers of Climatological Impact. Compendium of Climatological Impacts; University Corporation for Atmospheric Research 1, National Oceanic and Atmospheric Administration, Office of Global Programs: Boulder, CO, USA, 1999. [Google Scholar]
- Miller, A.J.; Cayan, D.R.; Barnett, T.P.; Graham, N.E.; Oberhuber, J.M. The 1976–77 climate shift of the Pacific Ocean. Oceanography 1994, 7, 21–26. [Google Scholar] [CrossRef]
- Yletyinen, J.; Blenckner, T.; Biggs, R. North Pacific Ocean. In Regime Shifts Database; Stockholm Resilience Centre Stockholm University: Stockholm, Sweden, 2012; Available online: http://www.regimeshifts.org/about/item/406-north-pacific-ocean (accessed on 10 January 2013).
- Swanson, K.L.; Tsonis, A.A. Has the climate recently shifted? Geophys. Res. Lett. 2009, 36, L06711. [Google Scholar] [CrossRef]
- Peterson, W.T.; Schwing, F.B. A new climate regime in Northeast Pacific Ecosystems. Geophys. Res. Lett. 2003, 30, 1–4. [Google Scholar] [CrossRef]
- Niebauer, H.J. Variability in Bering Sea ice cover as affected by a “regime shift” in the North Pacific in the period 1947–96. J. Geophys. Res. 1998, 103, 27717–27737. [Google Scholar] [CrossRef]
- Penman, H.L. Natural evaporation from open water, bare soil, and grass. Proc. R. Soc. Lond. A 1948, 193, 120–146. [Google Scholar] [CrossRef]
- Monteith, J.L. Evaporation and environment. In Symposium of the Society for Experimental Biology, the State and Movement of Water in Living Organisms; Fogg, G.E., Ed.; Academic Press Inc.: New York, NY, USA, 1965; pp. 205–234. [Google Scholar]
- Uhlenbrook, S. Climate and man-made changes and their impacts on catchments. In Proceedings of the Joint Conference of APLU and ICA, Prague, Czech, 23–26 June 2009.
- Hörmann, G.; Horn, A.; Fohrer, N. The evaluation of land-use options in mesoscale catchments–prospects and limitations of eco-hydrological models. Ecol. Model. 2005, 187, 3–14. [Google Scholar] [CrossRef]
- Li, Z.; Liu, W.Z.; Zhang, X.C.; Zheng, F.L. Impacts of land use change and climate variability on hydrology in an agricultural catchment on the Loess Plateau of China. J. Hydrol. 2009, 377, 35–42. [Google Scholar] [CrossRef]
- Elfert, S.S.; Bormann, H. Simulated impact of past and possible future land use changes on the hydrological response of the Northern German lowland ‘Hunte’ catchment. J. Hydrol. 2010, 383, 245–255. [Google Scholar] [CrossRef]
- Archer, D. Scale effects on the hydrological impact of upland afforestation and drainage using indices of flow variability: The River Irthing, England. Hydrol. Earth Syst. Sci. 2003, 7, 325–338. [Google Scholar] [CrossRef]
- Kulakowski, D.; Bebi, P.; Rixen, C. The interacting effects of land use change, climate change and suppression of natural disturbances on landscape forest structure in the Swiss Alps. Oikos 2011, 120, 216–225. [Google Scholar] [CrossRef]
- Abrha, L. Assessing the Impact of Land Use and Land Cover Change on Ground Water Recharge Using RS and GIS: A Case of Awassa Catchment, South Ethiopia. Master’s Thesis, Addis Ababa University, Addis Ababa, Ethiopia, 2007. [Google Scholar]
- Yirgu, G.; Paola, D.; Kebede, G.M.; Hagos, F.; Teferi, M.A.; Tilahun, G.; Gemetesa, N. Study Report on Ground Fracturing in the Muleti Area, Awasa Zuria Woreda; Addis Ababa University: Addis Ababa, Ethiopia; SNNPR Professional Paper: Hawassa, Ethiopia, 1997. [Google Scholar]
- Ayenew, T. Water management problems in the Ethiopian rift: Challenges for development. J. Afr. Earth Sci. 2007, 48, 222–236. [Google Scholar] [CrossRef]
- Namdar-Ghanbari, R.; Bravo, H.R. Coherence between atmospheric teleconnections, Great Lakes water levels and regional climate. Adv. Water Resour. 2008, 31, 1284–1298. [Google Scholar] [CrossRef]
- Szesztay, K. Water balance and water level fluctuation of lakes. Hydrol. Sci.-Bull. 1974, 19, 73–84. [Google Scholar] [CrossRef]
- Chen, D.; Mark, A.C.; Alexey, K.; Stephen, E.Z.; Daji, H. Predictability of Niño over the past 148 years. Nature 2004, 428, 733–736. [Google Scholar] [CrossRef] [PubMed]
- Goddard, L.; Dilley, M. Catastrophe or opportunity. J. Clim. 2005, 18, 651–665. [Google Scholar] [CrossRef]
Data Type | Temporal Scale | Period | Sources |
---|---|---|---|
Lake level records | Daily | 1970–2010 | Ministry of Water Resources |
Streamflow | » | 1980–2006 | » |
Rainfall | » | 1972–2010 | Meteorological Agency |
Temperature | » | 1986–2006 | » |
Wind speed | » | 1986–2006 | » |
Relative humidity | » | 1986–2006 | » |
Sun-shine hours | » | 1986–2006 | » |
Agriculture | Grass Land | Bush Land | Shrubby Wood Land | Urban Area | |
---|---|---|---|---|---|
1973 | 323.3 | 15.5 | 165.9 | 704.7 | 6 |
1986 | 466.2 | 59.5 | 180.3 | 548.6 | 8 |
2000 | 565.9 | 68.7 | 145.6 | 448.2 | 13 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belete, M.D.; Diekkrüger, B.; Roehrig, J. Linkage between Water Level Dynamics and Climate Variability: The Case of Lake Hawassa Hydrology and ENSO Phenomena. Climate 2017, 5, 21. https://doi.org/10.3390/cli5010021
Belete MD, Diekkrüger B, Roehrig J. Linkage between Water Level Dynamics and Climate Variability: The Case of Lake Hawassa Hydrology and ENSO Phenomena. Climate. 2017; 5(1):21. https://doi.org/10.3390/cli5010021
Chicago/Turabian StyleBelete, Mulugeta Dadi, Bernd Diekkrüger, and Jackson Roehrig. 2017. "Linkage between Water Level Dynamics and Climate Variability: The Case of Lake Hawassa Hydrology and ENSO Phenomena" Climate 5, no. 1: 21. https://doi.org/10.3390/cli5010021
APA StyleBelete, M. D., Diekkrüger, B., & Roehrig, J. (2017). Linkage between Water Level Dynamics and Climate Variability: The Case of Lake Hawassa Hydrology and ENSO Phenomena. Climate, 5(1), 21. https://doi.org/10.3390/cli5010021