Future Climate of Colombo Downscaled with SDSM-Neural Network
Abstract
:1. Introduction
2. Materials and Methods
2.1. Downscaling Overview
2.2. Study Area and Data
3. Results
3.1. SDSM Downscaling
3.2. TDNN Downscaling
3.3. Final Results
4. Discussion
Acknowledgments
Author Contributions
Conflicts of Interest
References
- IPCC Summary for Policymakers. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; pp. 1–33. [Google Scholar]
- Northon, K. NASA, NOAA Data Show 2016 Warmest Year on Record Globally. Available online: https://www.nasa.gov/press-release/nasa-noaa-data-show-2016-warmest-year-on-record-globally (accessed on 5 March 2017).
- Zorita, E.; von Storch, H. The Analog Method as a Simple Statistical Downscaling Technique: Comparison with More Complicated Methods. J. Clim. 1999, 12, 2474–2489. [Google Scholar] [CrossRef]
- Maraun, D.; Wetterhall, F.; Chandler, R.E.; Kendon, E.J.; Widmann, M.; Brienen, S.; Rust, H.W.; Sauter, T.; Themeßl, M.; Venema, V.K.C.; et al. Precipitation downscaling under climate change: Recent developments to bridge the gap between dynamical models and the end user. Rev. Geophys. 2010, 48, 1–38. [Google Scholar] [CrossRef]
- Mearns, L.O.; Bogardi, I.; Giorgi, F.; Matyasovszky, I.; Palecki, M. Comparison of climate change scenarios generated from regional climate model experiments and statistical downscaling. J. Geophys. Res. 1999, 104, 6603. [Google Scholar] [CrossRef]
- Murphy, J. An evaluation of statistical and dynamical techniques for downscaling local climate. J. Clim. 1999, 12, 2256–2284. [Google Scholar] [CrossRef]
- Dibike, Y.B.; Coulibaly, P. Temporal neural networks for downscaling climate variability and extremes. Neural Netw. 2006, 3, 1636–1641. [Google Scholar] [CrossRef] [PubMed]
- Silverman, D.; Dracup, J.A. Artificial Neural Networks and Long-Range Precipitation Prediction in California. J. Appl. Meteorol. 2000, 39, 57–66. [Google Scholar] [CrossRef]
- Mendes, D.; Marengo, J.A. Temporal downscaling: A comparison between artificial neural network and autocorrelation techniques over the Amazon Basin in present and future climate change scenarios. Theor. Appl. Climatol. 2010, 100, 413–421. [Google Scholar] [CrossRef]
- Maier, H.; Dandy, G. Neural Networks for the production and forecasting of water resource Environmental modelling and software variables: A review and modelling issues and application. Environ. Model. Softw. 2000, 15, 101–124. [Google Scholar] [CrossRef]
- Hsieh, W.W.; Tang, B. Applying neural network models to prediction and data ananysis in meteorology and oceanography. Bull. Am. Meteorol. Soc. 1998, 79, 1855–1870. [Google Scholar] [CrossRef]
- Abhishek, K.; Singh, M.P.; Ghosh, S.; Anand, A. Weather Forecasting Model using Artificial Neural Network. Procedia Technol. 2012, 4, 311–318. [Google Scholar] [CrossRef]
- Shrivastava, G.; Karmakar, S.; Kumar Kowar, M.; Guhathakurta, P. Application of Artificial Neural Networks in Weather Forecasting: A Comprehensive Literature Review. Int. J. Comput. Appl. 2012, 51, 17–29. [Google Scholar] [CrossRef]
- Cannon, A.J.; McKendry, I.G. A graphical sensitivity analysis for statistical climate models: Application to Indian monsoon rainfall prediction by artificial neural networks and multiple linear regression models. Int. J. Climatol. 2002, 22, 1687–1708. [Google Scholar] [CrossRef]
- Liu, Z.; Peng, C.; Xiang, W.; Tian, D.; Deng, X.; Zhao, M. Application of artificial neural networks in global climate change and ecological research: An overview. Chin. Sci. Bull. 2010, 55, 3853–3863. [Google Scholar] [CrossRef]
- Von Storch, H.; Hewitson, B.; Mearns, L. Review of Empirical Downscaling Techniques. In Regional Climate Development under Global Warming; General Technical Report; RegClim: Torbjørnrud, Norway, 2000; pp. 29–46. [Google Scholar]
- Walter, A.; Schonwiese, C.D. Nonlinear statistical attribution and detection of anthropogenic climate change using a simulated annealing algorithm. Theor. Appl. Climatol. 2003, 76, 1–12. [Google Scholar] [CrossRef]
- Nayak, D.; Mahapatra, A.; Mishra, P. A survey on rainfall prediction using artificial neural network. Int. J. Comput. Appl. 2013, 72, 32–40. [Google Scholar]
- Hewitson, B.C.; Crane, R.G. Climate downscaling: Techniques and application. Clim. Res. 1996, 7, 85–95. [Google Scholar] [CrossRef]
- Wilby, R.L.; Wigley, T.M.L. Downscaling general circulation model output: A review of methods and limitations. Prog. Phys. Geogr. 1997, 21, 530–548. [Google Scholar] [CrossRef]
- Wilby, R.L.; Dawson, C.W. SDSM 4.2—A Decision Support Tool for the Assessment of Regional Climate Change Impacts User Manual. Available online: http://co-public.lboro.ac.uk/cocwd/SDSM/SDSMManual.pdf (accessed on 1 February 2017).
- Tryhorn, L.; Degaetano, A. A comparison of techniques for downscaling extreme precipitation over the Northeastern United States. Int. J. Climatol. 2011, 31, 1975–1989. [Google Scholar] [CrossRef]
- Tang, J.; Niu, X.; Wang, S.; Gao, H.; Wang, X.; Wu, J. Statistical downscaling and dynamical downscaling of regional climate in China: Present climate evaluations and future climate projections. J. Geophys. Res. Atmos. 2016, 121, 2110–2129. [Google Scholar] [CrossRef]
- Mahmood, R.; Babel, M.S. Future changes in extreme temperature events using the statistical downscaling model (SDSM) in the trans-boundary region of the Jhelum river basin. Weather Clim. Extrem. 2014, 5, 56–66. [Google Scholar] [CrossRef]
- Hassan, Z.; Shamsudin, S.; Harun, S. Application of SDSM and LARS-WG for simulating and downscaling of rainfall and temperature. Theor. Appl. Climatol. 2014, 116, 243–257. [Google Scholar] [CrossRef]
- Principe, J.C.; Euliano, N.R.; Lefebvre, W.C. Neural and Adaptive Systems: Fundamentals through Simulations; John Wiley & Sons, Inc.: New York, NY, USA, 2000. [Google Scholar]
- Yatagai, A.; Kamiguchi, K.; Arakawa, O.; Hamada, A.; Yasutomi, N.; Kitoh, A. Aphrodite constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges. Bull. Am. Meteorol. Soc. 2012, 93, 1401–1415. [Google Scholar] [CrossRef]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR 40 year reanalysis project. Bull. Am. Meteorol. Soc. 1996, 77, 437–471. [Google Scholar] [CrossRef]
- Taylor, K.E.; Stouffer, R.J.; Meehl, G.A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 2012, 93, 485–498. [Google Scholar] [CrossRef]
- Wilby, R.L.; Charles, S.P.; Zorita, E.; Timbal, B.; Whetton, P.; Mearns, L.O. Guidelines for Use of Climate Scenarios Developed from Statistical Downscaling Methods. Analysis 2004, 27, 1–27. [Google Scholar]
- Cavazos, T.; Hewitson, B.C. Performance of NCEP–NCAR reanalysis variables in statistical downscaling of daily precipitation. Clim. Res. 2005, 28, 95–107. [Google Scholar]
- Timbal, B. Southwest Australia past and future rainfall trends. Clim. Res. 2004, 26, 233–249. [Google Scholar] [CrossRef]
- Boucher, O.; Randall, D.; Artaxo, P.; Bretherton, C.; Feingold, G.; Forster, P.; Kerminen, V.-M.; Kondo, Y.; Liao, H.; Lohmann, U.; et al. Clouds and aerosols. In Climate Change 2013: The Physical Science Basis; Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; pp. 571–658. [Google Scholar]
SN | Name | Description |
---|---|---|
1 | mslp | mean sea level pressure |
2 | p1_f | surface air flow strength |
3 | p1_u | surface zonal velocity component |
4 | p1_v | surface meridional velocity component |
5 | p1_z | surface vorticity |
6 | p1_th | surface wind direction |
7 | p1_zh | surface divergence |
8 | p5_f | 500 hPa air flow strength |
9 | p5_u | 500 hPa zonal velocity component |
10 | p5_v | 500 hPa meridional velocity component |
11 | p5_z | 500 hPa vorticity |
12 | p5_th | 500 hPa wind direction |
13 | p5_zh | 500 hPa divergence |
14 | p8_f | 850 hPa air flow strength |
15 | p8_u | 850 hPa zonal velocity component |
16 | p8_v | 850 hPa meridional velocity component |
17 | p8_z | 850 hPa vorticity |
18 | p8_th | 850 hPa wind direction |
19 | p8_zh | 850 hPa divergence |
20 | p500 | 500 hPa geopotential height |
21 | p850 | 850 hPa geopotential height |
22 | prcp | surface precipitation |
23 | s500 | specific humidity at 500 hPa height |
24 | s850 | specific humidity at 850 hPa height |
25 | shum | surface specific humidity |
26 | temp | surface mean temperature |
Variable | Model | Winter | Spring | Summer | Autumn | Annual |
---|---|---|---|---|---|---|
Av. temp (°C) | SDSM | 0.04 | 0.21 | 0.2 | 0.16 | 0.16 |
TDNN | −0.09 | 0.11 | 0.3 | 0.27 | 0.15 | |
Rainfall (mm) | SDSM | −0.5 | −1.09 | −0.68 | −1.31 | −0.89 |
TDNN | −0.17 | −0.09 | 0.08 | −1.07 | −0.31 |
Variable | Model | Winter | Spring | Summer | Autumn | Annual |
---|---|---|---|---|---|---|
Av. temp (°C) | SDSM | 0.321 | 0.495 | 0.312 | 0.383 | 0.223 |
TDNN | 0.34 | 0.467 | 0.398 | 0.418 | 0.22 | |
Rainfall (mm) | SDSM | 1.735 | 3.465 | 2.304 | 3.275 | 1.193 |
TDNN | 1.49 | 3.027 | 2.225 | 3.266 | 0.722 |
Variable | RCP | Models | 2020’s | 2050’s | 2080’s |
---|---|---|---|---|---|
Av. temp. (°C) | 4.5 | SDSM | 0.14 | 0.91 | 1.24 |
TDNN | 0.15 | 0.99 | 1.39 | ||
8.5 | SDSM | 0.14 | 1.39 | 2.83 | |
TDNN | 0.14 | 1.54 | 3.03 | ||
Rainfall (%) | 4.5 | SDSM | 0.7 | 10 | 13 |
TDNN | 0.3 | 20 | 29 | ||
8.5 | SDSM | 5 | 14 | 33 | |
TDNN | 4 | 11 | 63 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dorji, S.; Herath, S.; Mishra, B.K. Future Climate of Colombo Downscaled with SDSM-Neural Network. Climate 2017, 5, 24. https://doi.org/10.3390/cli5010024
Dorji S, Herath S, Mishra BK. Future Climate of Colombo Downscaled with SDSM-Neural Network. Climate. 2017; 5(1):24. https://doi.org/10.3390/cli5010024
Chicago/Turabian StyleDorji, Singay, Srikantha Herath, and Binaya Kumar Mishra. 2017. "Future Climate of Colombo Downscaled with SDSM-Neural Network" Climate 5, no. 1: 24. https://doi.org/10.3390/cli5010024
APA StyleDorji, S., Herath, S., & Mishra, B. K. (2017). Future Climate of Colombo Downscaled with SDSM-Neural Network. Climate, 5(1), 24. https://doi.org/10.3390/cli5010024