The Uncertain Role of Biogenic VOC for Boundary-Layer Ozone Concentration: Example Investigation of Emissions from Two Forest Types with a Box Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Box Model
2.2. Forest Inventories
2.3. Emissions
2.4. Secondary Organic Aerosol Treatment
2.5. Simulations
3. Results
3.1. Match with Observations
3.2. Effect of BVOCs
3.3. Alsatian Vosges Forest vs. Black Forest: Effects of BVOC Mixtures
3.3.1. Effect of Isoprene and Monoterpenes
3.3.2. Implications for Organic Aerosol Particles
3.3.3. Implications for OH, HO2 and Nitrogen Species
3.4. Effects of Temperature
3.5. Effect of Reducing Input Information
4. Discussion
- Isoprene emission controlled forests like those in Alsace (especially the Vosges) leads to more intense tropospheric ozone formation during summer, than forests with both, i.e., monoterpene and isoprene emissions such as those in the Black Forest, if identical environmental conditions are assumed. This is caused by different oxidation product characteristics and SOA formation and is especially true for the transition from higher to lower NOx concentrations, limiting the ozone production at the background site observation.
- The difference in formation intensifies with increasing temperatures and was found for other areas too. Churkina et al. [61] and Curci et al. [62] found a significant link between biogenic emission, summer temperatures and ground level ozone concentrations at urban [61] and remote areas [62]. Depending on the species mixture and resulting emission strengths tropospheric—i.e., ground level—ozone was found to increase notably.
- The particle formation rates from biogenic sources will remarkably intensify in cases where additional pollution does not reduce the lifetime of novel particles to a substantial extent. Additionally, a substantial local variability is to be expected, depending on tree species distribution and corresponding BVOC (mono- and sesquiterpene) emissions and varying environmental conditions [58].
- The production of SOA mass and volume differs depending on the BVOC emissions. High isoprene emissions will have different effects than high monoterpene emission rates as the oxidation degree is expected to be reduced (OH reduction) and the volatility of the products and potential SOA precursors will rise.
- Among the environmental factors influencing plant BVOC emission, water availability in the soil might be particularly important, especially when considering climate predictions [63]. The expected reduced summer precipitation, for example, in Southern and Central Europe, might considerably lower soil water availability in the future. The forecasted higher air temperatures will enhance this trend because of stimulated soil water evaporation. In a very first reaction towards drought, plants close their stomata to avoid loss of water by transpiration. Consequently, the cooling effect of transpiration is reduced leading to increased leaf temperatures, which might enhance leaf-internal VOC production [64]. Since CO2 enters the leaves via the stomata, drought affects photosynthesis, causing lowered rates of C fixation. The effects of drought stress on tree BVOC emissions are complex and are still not fully understood, since many factors—such as plant species and provenance, duration and severity of the stress, and also the nature and biosynthetic pathway of the volatile compound—seem to play an important role. Because drought stress often co-occurs with elevated air temperatures, the combined effect of both factors also has to be taken into account. Several studies have indicated that moderately reduced soil water availability does not affect or rather slightly stimulates isoprenoid emissions [65,66,67]. In contrast, strongly reduced water availability affects the biosynthesis of isoprenoids, thereby decreasing their emissions [66,67,68,69,70,71,72,73]. This effect is most likely due to the reduced availability of the substrate of the relevant biosynthetic pathways due to strongly impaired photosynthesis. In contrast, emission of stress-induced compounds, such as sesquiterpenes or green leaf volatiles (products of the lipoxygenase reaction) can increase in response to drought stress [65,72]. The results of our simulations could be affected by better considering the influence of drought and heat on BVOC emission, which most likely strongly depends on individual tree species’ drought sensitivity. There is certainly a lack of knowledge on the impacts of abiotic and biotic stressors, which should be resolved in order to realistically explain the capacity of ecosystems to cope with climate changes and to understand individual climate feedback process strengths.
- This box model study had the advantage of investigating processes more deeply and with a higher time resolution than regional models. However, the attribution of future changes and the feedback’s most accurate 3D-regional model simulations would be favourable, although they could cause some other notable shortcomings such as reduced chemistry schemes, input information and averages for a mixed type forest! Benefits may arise for not-very-short-lived chemical species (>30 min). But challenges may arise for highly variable processes such as OH and particle formation.
5. Conclusions
- a chemical scheme with sufficient details, i.e., with respect to isoprene and monoterpenes: peroxy radical and major products chemistry;
- an incorporation of SOA formation and evaporation allowing a continuous equilibration between gas- and particle-phases and not a one directional description;
- Inclusion of more detailed individual forest species characteristics, i.e., emissions and stress tolerance such as temperature coefficient and drought tolerance. Calculation of organic particle formations in number and mass clearly benefits from consideration of a detailed description of de novo production and emission from storage pools.
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Lelieveld, J.; Evans, J.S.; Fnais, M.; Giannadaki, D.; Pozzer, A. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 2015, 525, 367–371. [Google Scholar] [CrossRef] [PubMed]
- Matyssek, R.; Innes, J.L. Ozone—A risk factor for trees and forests in Europe? Water Air Soil Pollut. 1999, 116, 199–226. [Google Scholar] [CrossRef]
- Pretzsch, H.; Dieler, J.; Matyssek, R.; Wipfler, P. Tree and stand growth of mature Norway spruce and European beech under longterm ozone fumigation. Environ. Pollut. 2010, 158, 1061–1070. [Google Scholar] [CrossRef] [PubMed]
- Augustaitis, A.; Kliučius, A.; Marozas, V.; Pilkauskas, M.; Augustaitiene, I.; Vitas, A.; Staszewski, T.; Jansons, A.; Dreimanis, A. Sensitivity of European beech trees to unfavorable environmental factors on the edge and outside of their distribution range in northeastern Europe. iForest 2014, 9, 259–269. [Google Scholar] [CrossRef]
- Novak, K.; Schaub, M.; Fuhrer, J.; Skelly, J.M.; Frey, B.; Kräuchi, N. Ozone effects on visible foliar injury and growth of Fagus sylvatica and Viburnum lantana seedlings grown in monoculture origin mixture. Environ. Exp. Bot. 2008, 62, 212–220. [Google Scholar] [CrossRef]
- De Vries, W.; Dobbertin, M.H.; Solberg, S.; van Dobben, H.F.; Schaub, M. Impacts of acid deposition, ozone exposure and weather conditions on forest ecosystems in Europe: An overview. Plant Soil 2014, 380, 1–45. [Google Scholar] [CrossRef]
- Loreto, F.; Velikova, V. Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes. Plant Physiol. 2001, 127, 1781–1787. [Google Scholar] [CrossRef] [PubMed]
- Bergmann, E.; Bender, J.; Weigel, H.J. Impact of tropospheric ozone on terrestrial biodiversity: A literature analysis to identify ozone sensitive taxa. J. Appl. Bot. Food Qual. 2017, 90, 83–105. [Google Scholar] [CrossRef]
- Jud, W.; Fischer, L.; Canaval, E.; Wohlfahrt, G.; Tissier, A.; Hansel, A. Plant surface reactions: An opportunistic ozone defence mechanism impacting atmospheric chemistry. Atmos. Chem. Phys. 2016, 16, 277–292. [Google Scholar] [CrossRef]
- Bourtsoukidis, E.; Bonn, B.; Dittmann, A.; Hakola, H.; Hellen, H. Ozone stress as a driving force of sesquiterpene emissions: A suggested parameterization. Biogeosciences 2012, 9, 4337–4352. [Google Scholar] [CrossRef]
- Giron-Calva, P.S.; Li, T.; Blande, J.D. Volatile-Mediated Interactions between Cabbage Plants in the Field and the Impact of Ozone Pollution. J. Chem. Ecol. 2017, 43, 339–350. [Google Scholar] [CrossRef] [PubMed]
- Jenkin, M.E.; Young, J.C.; Rickard, A.R. The MCM v3.3.1 degradation scheme for isoprene. Atmos. Chem. Phys. 2015, 15, 11433–11459. [Google Scholar] [CrossRef]
- Jenkin, M.E. Modelling the formation and composition of secondary organic aerosol from α- and β-pinene ozonolysis using MCM v3. Atmos. Chem. Phys. 2004, 4, 1741–1757. [Google Scholar] [CrossRef]
- Jacobson, M.Z. Fundamentals of Atmospheric Modeling, 2nd ed.; Cambridge University Press: Cambridge, UK, 2005; p. 828. ISBN 978-0521548656. [Google Scholar]
- Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 2nd ed.; J. Wiley & Sons: Hoboken, NJ, USA, 2006; p. 1232. ISBN 978-0471720188. [Google Scholar]
- Calfapietra, C.; Fares, S.; Loreto, F. Volatile organic compounds from Italian vegetation and their interaction with ozone. Environ. Pollut. 2009, 157, 1478–1486. [Google Scholar] [CrossRef] [PubMed]
- Fiore, A.M.; Levy, H., II; Jaffe, D.A. North American isoprene influence on intercontinental ozone pollution. Atmos. Chem. Phys. 2011, 11, 1697–1710. [Google Scholar] [CrossRef]
- Paoletti, E.; De Marco, A.; Beddows, D.C.S.; Harrison, R.M.; Manning, W.J. Ozone levels in European and USA cities are increasing more than at rural sites, while peak values are decreasing. Environ. Pollut. 2014, 192, 295–299. [Google Scholar] [CrossRef] [PubMed]
- Sicard, P.; Serra, R.; Rossello, P. Spatiotemporal trends in ground-level ozone concentrations and metrics in France over the time period 1999–2012. Environ. Res. 2015, 149, 122–144. [Google Scholar] [CrossRef] [PubMed]
- Sicard, P.; Augustaitis, A.; Belyazid, S.; Calfapietra, C.; de Marco, A.; Fenn, M.; Bytnerowicz, A.; Grulke, N.; He, S.; Matyssek, R.; et al. Global topics and novel approaches in the study of air pollution, climate change and forest ecosystems. Environ. Pollut. 2016, 213, 977–987. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, A.H.; Galbally, I.E. Known and Unexplored Organic Constituents in the Earth's Atmosphere. Environ. Sci. Technol. 2007, 41, 1514–1521. [Google Scholar] [CrossRef] [PubMed]
- Jenkin, M.E.; Saunders, S.M.; Pilling, M.J. The tropospheric degradation of volatile organic compounds: A protocol for mechanism development. Atmos. Environ. 1997, 31, 81–104. [Google Scholar] [CrossRef]
- Bloss, C.; Wagner, V.; Jenkin, M.E.; Volkamer, R.; Bloss, W.J.; Lee, J.D.; Heard, D.E.; Wirtz, K.; Martin-Reviejo, M.; Rea, G.; et al. Development of a detailed chemical mechanism (MCMv3.1) for the atmospheric oxidation of aromatic hydrocarbons. Atmos. Chem. Phys. 2005, 5, 641–664. [Google Scholar] [CrossRef]
- Saunders, S.M.; Jenkin, M.E.; Derwent, R.G.; Pilling, M.J. Protocol for the development of the Master Chemical Mechanism, MCM v3 (Part A): Tropospheric degradation of nonaromatic volatile organic compounds. Atmos. Chem. Phys. 2003, 3, 161–180. [Google Scholar] [CrossRef]
- Jenkin, M.E.; Wyche, K.P.; Evans, C.J.; Carr, T.; Monks, P.S.; Alfarra, M.R.; Barley, M.H.; McFiggans, G.B.; Young, J.C.; Rickard, A.R. Development and chamber evaluation of the MCM v3.2 degradation scheme for β-caryophyllene. Atmos. Chem. Phys. 2012, 12, 5275–5308. [Google Scholar] [CrossRef] [Green Version]
- Stockwell, W.R.; Middleton, P.; Chang, J.S.; Tang, X. The second generation regional Acid Deposition Model chemical mechanism for regional air quality modeling. J. Geophys. Res. 1990, 95, 16343–16367. [Google Scholar] [CrossRef]
- Stockwell, W.R.; Kirchner, F.; Kuhn, M.; Seefeld, S. A new mechanism for regional atmospheric chemistry modeling. J. Geophys. Res. 1997, 102, 25847–25879. [Google Scholar] [CrossRef]
- Knote, C.; Tuccella, P.; Curci, G.; Emmons, L.; Orlando, J.J.; Madronich, S.; Baró, R.; Jimenez-Guerrero, P.; Luecken, D.; Hogrefe, C.; et al. Influence of the choice of gas-phase mechanism on predictions of key gaseous pollutants during the AQMEII phase-2 intercomparison. Atmos. Environ. 2015, 115, 553–568. [Google Scholar] [CrossRef]
- Mazzuca, G.M.; Ren, X.; Loughner, C.P.; Estes, M.; Crawford, J.H.; Pickering, K.E.; Weinheimer, A.J.; Dickerson, R.R. Ozone production and its sensitivity to NOx and VOCs: Results from the DISCOVER-AQ field experiment, Houston 2013. Atmos. Chem. Phys. 2016, 16, 14463–14474. [Google Scholar] [CrossRef]
- Kuik, F.; Lauer, A.; Churkina, G.; Denier van der Gon, H.A.C.; Fenner, D.; Mar, K.A.; Butler, T.M. Air quality modelling in the Berlin–Brandenburg region using WRF-Chem v3.7.1: Sensitivity to resolution of model grid and input data. Geosci. Model Dev. 2016, 9, 4339–4363. [Google Scholar] [CrossRef]
- Butler, T.; Lawrence, M.; Taraborrelli, D.; Lelieveld, J. Multi-day ozone production potential of volatile organic compounds calculated with a tagging approach. Atmos. Environ. 2011, 45, 4082–4090. [Google Scholar] [CrossRef]
- Bonn, B.; von Schneidemesser, E.; Butler, T.; Churkina, G.; Ehlers, C.; Grote, R.; Klemp, D.; Nothard, R.; Schäfer, K.; von Stülpnagel, A.; et al. Impact of vegetative emissions on urban ozone and biogenic secondary organic aerosol: Box model study for Berlin, Germany. J. Clean. Prod. 2017. submitted. [Google Scholar]
- Atkinson, R.; Baulch, D.L.; Cox, R.A.; Crowley, J.N.; Hampson, R.F.; Hynes, R.G.; Jenkin, M.E.; Rossi, M.J.; Troe, J. IUPAC Subcommittee Evaluated kinetic and photochemical data for atmospheric chemistry: Volume II—Gas phase reactions of organic species. Atmos. Chem. Phys. 2006, 6, 3625–4055. [Google Scholar] [CrossRef]
- Pankow, J.F. An absorption-model of the gas aerosol partitioning involved in the formation of secondary organic aerosol. Atmos. Environ. 1994, 28, 189–193. [Google Scholar] [CrossRef]
- Birmili, W.; Weinhold, K.; Rasch, F.; Sonntag, A.; Sun, J.; Merkel, M.; Wiedensohler, A.; Bastian, S.; Schladitz, A.M.; Löschau, G.; et al. Long-term observations of tropospheric particle number size distributions and equivalent black carbon mass concentrations in the German Ultrafine Aerosol Network (GUAN). Earth Syst. Sci. Data 2016, 8, 355–382. [Google Scholar] [CrossRef]
- Prank, M.; Sofiev, M.; Tsyro, S.; Hendriks, C.; Semeena, V.; Francis, X.V.; Butler, T.; Denier van der Gon, H.; Friedrich, R.; Hendricks, J.; et al. Evaluation of the performance of four chemical transport models in predicting the aerosol chemical composition in Europe in 2005. Atmos. Chem. Phys. 2016, 16, 6041–6070. [Google Scholar] [CrossRef]
- Inventaire Forestier. 2016. Available online: http://inventaire-forestier.ign.fr/spip/ (accessed on 20 November 2016).
- Kändler, G.; Cullmann, D. (Eds.) Report: Regionale Auswertung der Bundeswaldinventur 3 Wuchsgebiet Schwarzwald; FVA: Baden-Württemberg, Germany, 2016. [Google Scholar]
- Nabuurs, G.J.; Ravindranath, N.H.; Paustian, K.; Freibauer, A.; Hohenstein, W.; Makundi, W. LUCF sector good practice guidance. In IPCC: Good Practice Guidance for Land Use, Land Use Change and Forestry; Penman, J., Gytarsky, M., Hiraishi, T., Krug, T., Kruger, D., Pipatti, R., Buendia, L., Miwa, K., Ngara, T., Tanabe, K., Wagner, F., Eds.; Institute for Global Environmental Strategies: Kanagawa, Japan, 2003; ISBN 4-88788-003-0. [Google Scholar]
- CITEPA. 2011. Available online: http://www.citepa.org/emissions (accessed on 20 November 2016).
- Szinyei, D. Modelling and Evaluation of Ozone Dry Deposition. PhD thesis, Free University, Berlin, Germany, 2014. [Google Scholar]
- Tiwari, S.; Grote, R.; Churkina, G.; Butler, T. Ozone damage, detoxification and the role of isoprenoids—New impetus for integrated models. Funct. Plant Biol. 2016, 43, 324–336. [Google Scholar] [CrossRef]
- Dumont, J.; Keski-Saari, S.; Keinänen, M.; Cohen, D.; Ningre, N.; Kontunen-Soppela, S.; Baldet, P.; Gibon, Y.; Dizengremel, P.; Vaultier, M.-N.; et al. Ozone affects ascorbate and glutathione biosynthesis as well as amino acid contents in three Euramerican poplar genotypes. Tree Physiol. 2014, 34, 253–266. [Google Scholar] [CrossRef] [PubMed]
- Leuzinger, S.; Körner, C. Tree species diversity affects canopy leaf temperatures in a mature temperate forest. Agric. Forest Meteorol. 2007, 146, 29–37. [Google Scholar] [CrossRef]
- Guenther, A.; Karl, T.; Harley, P.; Wiedinmyer, C.; Palmer, P.I.; Geron, C. Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmos. Chem. Phys. 2006, 6, 3181–3210. [Google Scholar] [CrossRef] [Green Version]
- Guenther, A.; Hewitt, C.N.; Erickson, D.; Fall, R.; Geron, C.; Graedel, T.; Harley, P.; Klinger, L.; Lerdau, M.; McKay, W.A.; et al. A global model of natural volatile organic compound emissions. J. Geophys. Res. Atmos. 1995, 100, 8873–8892. [Google Scholar] [CrossRef]
- Joback, K.G.; Reid, R.C. Estimation of pure-component properties from group-contributions. Chem. Eng. Commun. 1987, 57, 233–243. [Google Scholar] [CrossRef]
- Stein, S.E.; Brown, R.L. Estimation of normal boiling points from group contributions. J. Chem. Inf. Comp. Sci. 1994, 34, 581–587. [Google Scholar] [CrossRef]
- Volz-Thomas, A.; Kolahgar, B. On the budget of hydroxyl radicals at Schauinsland during the Schauinsland Ozone Precursor Experiment (SLOPE96). J. Geophys. Res. 2000, 105, 1611–1622. [Google Scholar] [CrossRef]
- Pätz, H.W.; Corsmeier, U.; Glaser, K.; Vogt, U.; Kalthoff, N.; Klemp, D.; Kolahgar, B.; Lerner, A.; Neininger, B.; Schmitz, T.; et al. Measurements of trace gases and photolysis frequencies during SLOPE96 and a coarse estimate of the local OH concentration from HNO3 formation. J. Geophys. Res. 2000, 105, 1563–1583. [Google Scholar] [CrossRef]
- Klemp, D.; Kley, D.; Kramp, F.; Buers, H.J.; Pilwat, G.; Flocke, F.; Patz, H.W.; Volz-Thomas, A. Long-term measurements of light hydrocarbons (C2-C5) at Schauinsland (Black Forest). J. Atmos. Chem. 1997, 28, 135–171. [Google Scholar] [CrossRef]
- Kalthoff, N.; Corsmeier, U.; Volz-Thomas, A. Influence of valley winds on transport and dispersion of airborne pollutants in the Freiburg-Schauinsland area. J. Geophys. Res. 2000, 105, 1585–1597. [Google Scholar] [CrossRef]
- Bonn, B.; Bourtsoukidis, E.; Sun, T.S.; Bingemer, H.; Rondo, L.; Javed, U.; Li, J.; Axinte, R.; Li, X.; Brauers, T.; et al. The link between atmospheric radicals and newly formed particles at a spruce forest site in Germany. Atmos. Chem. Phys. 2014, 14, 10823–10843. [Google Scholar] [CrossRef] [Green Version]
- Duhl, T.R.; Helmig, D.; Guenther, A. Sesquiterpene emissions from vegetation: A review. Biogeosciences 2008, 5, 761–777. [Google Scholar] [CrossRef]
- Aydin, Y.M.; Yaman, B.; Koca, H.; Dasdemir, O.; Kara, M.; Altinok, H.; Dumanoglu, Y.; Bayram, A.; Tolunay, D.; Odabasi, M.; et al. Biogenic volatile organic compound (BVOC) emissions from forested areas in Turkey: Determination of specific emission rates for thirty-one tree species. Sci. Total Environ. 2014, 490, 239–253. [Google Scholar] [CrossRef] [PubMed]
- van Meeningen, Y.; Schurgers, G.; Rinnan, R.; Holst, T. BVOC emissions from English oak (Quercus robur) and European beech (Fagus sylvatica) along a latitudinal gradient. Biogeosciences 2016, 13, 6067–6080. [Google Scholar] [CrossRef]
- Bonn, B.; von Schneidemesser, E.; Andrich, D.; Quedenau, J.; Gerwig, H.; Lüdecke, A.; Kura, J.; Pietsch, A.; Ehlers, C.; Klemp, D.; et al. BAERLIN2014—The influence of land surface types on and the horizontal heterogeneity of air pollutant levels in Berlin. Atmos. Chem. Phys. 2016, 16, 7785–7811. [Google Scholar] [CrossRef]
- Jacob, D.J. Introduction to Atmospheric Chemistry, 1st ed.; Princeton University Press: Princeton, NJ, USA, 1999; ISBN 13 978-0691001852. [Google Scholar]
- Finlayson-Pitts, B.; Pitts, J. Chemistry of the Upper and Lower Atmosphere, 2nd ed.; Academic Press: Waltham, MA, USA, 1999; ISBN 978-0122570605. [Google Scholar]
- Stocker, T.F.; Qin, D.; Plattner, G.-K.; Tignor, M.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y. (Eds.) IPCC: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; ISBN 978-1-107-66182-0. [Google Scholar]
- Churkina, G.; Kuik, F.; Bonn, B.; Lauer, A.; Grote, R.; Tomiak, K.; Butler, T.M. Effect of VOC Emissions from Vegetation on Air Quality in Berlin during a Heatwave. Environ. Sci. Technol. 2017, 51, 6120–6130. [Google Scholar] [CrossRef] [PubMed]
- Curci, G.; Beekmann, M.; Vautard, R.; Smiatek, G.; Steinbrecher, R.; Theloke, J.; Friedrich, R. Modelling study of the impact of isoprene and terpene biogenic emissions on European ozone levels. Atmos. Environ. 2009, 43, 1444–1455. [Google Scholar] [CrossRef]
- Anav, A.; de Marco, A.; Proietti, C.; Alessandi, A.; Dell’Aquila, A.; Cionni, I.; Friedlingstein, P.; Khvorostyanov, D.; Menut, L.; Paoletti, E.; et al. Comparing concentration-based (AOT40) and stomatal uptake (PODY) metrics for ozone risk assessment to European forests. Glob. Chang. Biol. 2016, 22, 1608–1622. [Google Scholar] [CrossRef] [PubMed]
- De Marco, A.; Sicard, P.; Fares, S.; Tuovinen, J.P.; Anav, A.; Paoletti, E. Assessing the role of soil water limitation in determining the Phytotoxic Ozone Dose (PODY) thresholds. Atmos. Environ. 2016, 147, 88–97. [Google Scholar] [CrossRef]
- Ormeno, E.; Mevy, J.P.; Vila, B.; Bousquet-Melou, A.; Greff, S.; Bonin, G.; Fernandez, C. Water deficit stress induces different monoterpene and sesquiterpene emission changes in Mediterranean species. Relationship between terpene emissions and plant water potential. Chemosphere 2007, 67, 276–284. [Google Scholar] [CrossRef] [PubMed]
- Staudt, M.; Ennajah, A.; Florent Mouillot, F.; Joffre, R. Do volatile organic compound emissions of Tunisian cork oak populations originating from contrasting climatic conditions differ in their responses to summer drought? Can. J. For. Res. 2008, 38, 2965–2975. [Google Scholar] [CrossRef]
- Šimpraga, M.; Verbeeck, H.; Demarcke, M.; Joó, É.; Pokorska, O.; Amelynck, C.; Schoon, N.; Dewulf, J.; Van Langenhove, H.; Heinesch, B.; et al. Clear link between drought stress, photosynthesis and biogenic volatile organic compounds in Fagus sylvatica L. Atmos. Environ. 2011, 45, 5254–5259. [Google Scholar] [CrossRef]
- Llusià, J.; Peñuelas, J. Changes in terpene content and emission in potted Mediterranean woody plants under severe drought. Can. J. Bot. 1998, 76, 1366–1373. [Google Scholar] [CrossRef]
- Peñuelas, J.; Filella, I.; Seco, R.; Llusià, J. Increase in isoprene and monoterpene emissions after re-watering of droughted Quercus ilex seedlings. Biol. Plant 2009, 53, 351–354. [Google Scholar] [CrossRef]
- Nogués, I.; Medori, M.; Calfapietra, C. Limitations of monoterpene emissions and their antioxidant role in Cistus sp. under mild and severe treatments of drought and warming. Environ. Exp. Bot. 2015, 119, 76–86. [Google Scholar] [CrossRef]
- Nogués, I.; Muzzini, V.; Loreto, F.; Bustamante, M.A. Drought and soil amendment effects on monoterpene emission in rosemary plants. Sci. Total Environ. 2015, 538, 768–778. [Google Scholar] [CrossRef] [PubMed]
- Jud, W.; Vanzo, E.; Li, Z.; Ghirardo, A.; Zimmer, I.; Sharkey, T.D.; Hansel, A.; Schnitzler, J. Effects of heat and drought stress on post-illumination bursts of volatile organic compounds in isoprene-emitting and non-emitting poplar. Plant Cell Environ. 2016, 39, 1204–1215. [Google Scholar] [CrossRef] [PubMed]
- Ochoa-Hueso, R.; Munzi, S.; Alonso, R.; Arróniz-Crespo, M.; Avila, A.; Bermejo, V.; Bobbink, R.; Branquinho, C.; Concostrina-Zubiri, L.; Cruz, C.; et al. Ecological impacts of atmospheric pollution and interactions with climate change in terrestrial ecosystems of the Mediterranean Basin: Current research and future directions. Environ. Pollut. 2017, 227, 194–206. [Google Scholar] [CrossRef] [PubMed]
Parameter | r | p | N |
---|---|---|---|
T | 0.78 | <2.2 × 10−16 | 2053 |
NO2 * | 0.19 * | 9.8 × 10−13 * | 1952 * |
0.01 ** | 0.66 ** | 2036 | |
global radiation | 0.11 | 2.1 × 10−8 | 2053 |
NO | 0.01 * | 5.8 × 10−9* | 1952 * |
−0.05 ** | 0.03 ** | 2036 ** | |
wind speed | −0.09 | 1.6 × 10−4 | 1756 |
wind direction | −0.16 | 1.4 × 10−8 | 1756 |
Tree Species (lat.) | Tree Species (engl.) | Alsace [%] | Vosges [%] | Black Forest [%] |
---|---|---|---|---|
Alnus spp. | Alder | 2.2 Δ | 1.3 Δ | 1.2 * |
Fraxinus excelsior | European ash | 4.4 Δ | 2.5 Δ | 0 * |
Fagus sylvatica | European beech | 23.5 | 22.7 | 15.3 |
Betula spp. | Birch | 3.3 Δ | 2.5 Δ | 1.9 * |
Robinia pseudoacacia | Black locust | 2.2 Δ | 1.3 Δ | 0 |
Pseudotsuga menziesii | Douglas fir | - | - | 5.1 |
Carpinus betulus | Hornbeam | 4.4 Δ | 1.9 Δ | 1.2 * |
Larix decidua | European larch | - | - | 1 |
Tilia spp. | Lime | 3.3 Δ | 1.9 Δ | 1 * |
Acer spp | Maple | 4.4 Δ | 2.5 Δ | 1.2 * |
Quercus spp. | Oak | 11.1 | 10.8 | 3.1 |
Pinus sylvestris | Scots pine | 9.2 | 5.9 | 5 |
Populus spp. | Poplar | 2.2 Δ | 1.3 Δ | 1.2 * |
Abies alba | Silver fir | 10.2 | 22.4 | 18.5 |
Picea abies | Norway spruce | 9.2 | 15.8 | 42.8 |
Other broadleaves | 6.6 Δ | 3.8 Δ | ||
Other conifers | n.s. | n.s. | ||
Total | 96.2 | 96.4 | 90.8 |
Tree Species (lat.) | Tree Species (engl.) | DWB * [g/m2] | E0,isop [µg/g(dw)/h] | E0,MT [µg/g(dw)/h] | βMT [K−1] |
---|---|---|---|---|---|
Alnus spp. | Alder | 109 ± 96 | 0.018 | 0.13 | 0.09 |
Fraxinus excelsior | European ash | 139 ± 116 | 0.012 | 0.012 | 0.09 |
Fagus sylvatica | European beech | 180 ± 140 | 0 | 43.5 | 0.31 |
Betula spp. | Birch | 105 ± 31 | 0 | 6.7 | 0.09 |
Robinia pseudoacacia | Black locust | 85 ± 75 | 11.9 | 3.34 | 0.09 |
Pseudotsuga menziesii | Douglas fir | 141 ± 45 | 0.008 | 0.064 | 0.08 |
Carpinus betulus | Hornbeam | 132 ± 110 | 0.1 | 0.0093 | 0.09 |
Larix decidua | European larch | 125 ± 91 | 0.4 | 13.1 | 0.07 |
Tilia spp. | Lime | 110 ± 92 | 5.5 | 0 | 0.09 |
Acer spp | Maple | 132 ± 110 | 3.9 | 0 | 0.09 |
Quercus spp. | Oak | 179 ± 83 | 20.4 | 13.1 | 0.121 |
Pinus sylvestris | Scots pine | 77 ± 39 | 0 | 7.48 | 0.09 |
Populus spp. | Poplar | 85 ± 75 | 76.3 | 3.45 | 0.09 |
Abies alba | Silver fir | 174 ± 54 | 0.038 | 28.8 | 0.135 |
Picea abies | Norway spruce | 177 ± 31 | 0.05 | 0.886 | 0.11 |
Parameter | r(Vosges) | p(Vosges) | r(Black Forest) | p(Black F.) | |
---|---|---|---|---|---|
HO2 | O3 | 0.39 | <2.2 × 10−16 | 0.39 | <2.2 × 10−16 |
OH | O3 | 0.35 | <2.2 × 10−16 | 0.35 | <2.2 × 10−16 |
Isoprene | O3 | −0.07 | 5.5 × 10−8 | −0.07 | 4.1 × 10−8 |
Monoterpenes | O3 | −0.26 | <2.2 × 10−16 | −0.24 | <2.2 × 10−16 |
SOA | O3 | −0.28 | <2.2 × 10−16 | −0.29 | <2.2 × 10−16 |
Isoprene | SOA | −0.15 | 1.7 × 10−11 | −0.11 | 1.5 × 10−9 |
Monoterpenes | SOA | −0.11 | 5.4 × 10−6 | −0.09 | 4.1 × 10−8 |
T | SOA | −0.46 | <2.2 × 10−16 | −0.46 | <2.2 × 10−16 |
Parametre | ∆O3/O3(Black Forest, ref.) |
---|---|
MTs = α-pinene | +0.55 ± 0.10 |
MTs = β-pinene | +0.55 ± 0.10 |
MT emission from storage pools only | +0.55 ± 0.10 |
no SOA | −1.89 ± 0.33 |
no MTs | +0.56 ± 0.10 |
no isoprene | −0.03 ± 0.01 |
no BVOCs | +0.55 ± 0.09 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonn, B.; Kreuzwieser, J.; Sander, F.; Yousefpour, R.; Baggio, T.; Adewale, O. The Uncertain Role of Biogenic VOC for Boundary-Layer Ozone Concentration: Example Investigation of Emissions from Two Forest Types with a Box Model. Climate 2017, 5, 78. https://doi.org/10.3390/cli5040078
Bonn B, Kreuzwieser J, Sander F, Yousefpour R, Baggio T, Adewale O. The Uncertain Role of Biogenic VOC for Boundary-Layer Ozone Concentration: Example Investigation of Emissions from Two Forest Types with a Box Model. Climate. 2017; 5(4):78. https://doi.org/10.3390/cli5040078
Chicago/Turabian StyleBonn, Boris, Jürgen Kreuzwieser, Felicitas Sander, Rasoul Yousefpour, Tommaso Baggio, and Oladeinde Adewale. 2017. "The Uncertain Role of Biogenic VOC for Boundary-Layer Ozone Concentration: Example Investigation of Emissions from Two Forest Types with a Box Model" Climate 5, no. 4: 78. https://doi.org/10.3390/cli5040078
APA StyleBonn, B., Kreuzwieser, J., Sander, F., Yousefpour, R., Baggio, T., & Adewale, O. (2017). The Uncertain Role of Biogenic VOC for Boundary-Layer Ozone Concentration: Example Investigation of Emissions from Two Forest Types with a Box Model. Climate, 5(4), 78. https://doi.org/10.3390/cli5040078