Micro-Scale Variability of Air Temperature within a Local Climate Zone in Berlin, Germany, during Summer
Abstract
:1. Introduction
- (1)
- How large is the intra-LCZ variability within one LCZ and can it be explained by micro-scale characteristics around the measurement sites?
- (2)
- What influence does the adjacent urban green space as a distinctly different LCZ have onto the regime within the study area?
- (3)
- How do the intra-LCZ within the study area compare to between different LCZ classes within Berlin?
2. Materials and Methods
2.1. Study Area and Local Climate Zone Classification
2.2. Measurement Campaign
2.3. Data Processing
3. Results
3.1. Air Temperature Variability within the Schillerkiez
3.2. Influence of Neighbouring Green Space (LCZ D)
3.3. Correlation between T and Micro-Scale Morphometric Parameters
3.4. Comparison with T in Other LCZs
4. Discussion
4.1. Air Temperature Variability within the LCZ and Influence of Micro-Scale Morphometric Parameters
4.1.1. Night-Time Situation
4.1.2. Daytime Situation
4.1.3. The Exceptional Site “Courtyard”
4.2. Influence of the Neighbouring Urban Green Space
4.3. Comparison with T in Other LCZs
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A
References
- Orlanski, L. A rational subdivision of scale for atmospheric processes. Bull. Am. Meteorol. Soc. 1975, 56, 527–530. [Google Scholar]
- Oke, T.R. The distinction between canopy and boundary-layer urban heat islands. Atmosphere 1976, 14, 268–277. [Google Scholar] [CrossRef]
- Oke, T. Methods in urban climatology. Appl. Climatol. 1984, 14, 19–29. [Google Scholar]
- Oke, T. The micrometeorology of the urban forest. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 1989, 324, 335–349. [Google Scholar] [CrossRef]
- Stewart, I.D.; Oke, T.R. Local Climate Zones for Urban Temperature Studies. Bull. Am. Meteorol. Soc. 2012, 93, 1879–1900. [Google Scholar] [CrossRef]
- Bokwa, A.; Hajto, M.J.; Walawender, J.P.; Szymanowski, M. Influence of diversified relief on the urban heat island in the city of Kraków, Poland. Theor. Appl. Climatol. 2015, 122, 365–382. [Google Scholar] [CrossRef]
- Leconte, F.; Bouyer, J.; Claverie, R.; Pétrissans, M. Using Local Climate Zone scheme for UHI assessment: Evaluation of the method using mobile measurements. Build. Environ. 2015, 83, 39–49. [Google Scholar] [CrossRef]
- Skarbit, N.; Stewart, I.D.; Unger, J.; Gál, T. Employing an urban meteorological network to monitor air temperature conditions in the ‘local climate zones’ of Szeged, Hungary. Int. J. Climatol. 2017, 37, 582–596. [Google Scholar] [CrossRef]
- Stewart, I.D.; Oke, T.; Krayenhoff, E.S. Evaluation of the ‘local climate zone’ scheme using temperature observations and model simulations. Int. J. Climatol. 2014, 34, 1062–1080. [Google Scholar] [CrossRef]
- Alexander, J.P.; Mills, G. Local Climate Classification and Dublin’s Urban Heat Island. Atmosphere 2014, 5, 755–774. [Google Scholar] [CrossRef]
- Fenner, D.; Meier, F.; Scherer, D.; Polze, A. Spatial and temporal air temperature variability in Berlin, Germany, during the years 2001–2010. Urban Clim. 2014, 10, 308–331. [Google Scholar] [CrossRef]
- Emmanuel, R.; Krüger, E. Urban heat island and its impact on climate change resilience in a shrinking city: The case of Glasgow, UK. Build. Environ. 2012, 53, 137–149. [Google Scholar] [CrossRef]
- Arnds, D.; Böhner, J.; Bechtel, B. Spatio-temporal variance and meteorological drivers of the urban heat island in a European city. Theor. Appl. Climatol. 2017, 128, 43–61. [Google Scholar] [CrossRef]
- Lehnert, M.; Geletič, J.; Husák, J.; Vysoudil, M. Urban field classification by “local climate zones” in a medium-sized Central European city: The case of Olomouc (Czech Republic). Theor. Appl. Climatol. 2015, 122, 531–541. [Google Scholar] [CrossRef]
- Fenner, D.; Meier, F.; Bechtel, B.; Otto, M.; Scherer, D. Intra and inter “local climate zone” variability of air temperature as observed by crowdsourced citizen weather stations in Berlin, Germany. Meteorol. Z. 2017, 26, 525–547. [Google Scholar] [CrossRef]
- Houet, T.; Pigeon, G. Mapping urban climate zones and quantifying climate behaviors—An application on Toulouse urban area (France). Environ. Pollut. 2011, 159, 2180–2192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bassett, R.; Cai, X.; Chapman, L.; Heaviside, C.; Thornes, J.E.; Muller, C.L.; Young, D.T.; Warren, E.L. Observations of urban heat island advection from a high-density monitoring network. Q. J. R. Meteorol. Soc. 2016, 142, 2434–2441. [Google Scholar] [CrossRef]
- Andreou, E.; Axarli, K. Investigation of urban canyon microclimate in traditional and contemporary environment. Experimental investigation and parametric analysis. Renew. Energy 2012, 43, 354–363. [Google Scholar] [CrossRef]
- Blankenstein, S.; Kuttler, W. Impact of street geometry on downward longwave radiation and air temperature in an urban environment. Meteorol. Z. 2004, 13, 373–379. [Google Scholar] [CrossRef]
- Eliasson, I. Urban nocturnal temperatures, street geometry and land use. Atmos. Environ. 1996, 30, 379–392. [Google Scholar] [CrossRef]
- Yan, H.; Fan, S.; Guo, C.; Wu, F.; Zhang, N.; Dong, L. Assessing the effects of landscape design parameters on intra-urban air temperature variability: The case of Beijing, China. Build. Environ. 2014, 76, 44–53. [Google Scholar] [CrossRef]
- Nadeau, D.F.; Brutsaert, W.; Parlange, M.B.; Bou-Zeid, E.; Barrenetxea, G.; Couach, O.; Boldi, M.-O.; Selker, J.S.; Vetterli, M. Estimation of urban sensible heat flux using a dense wireless network of observations. Environ. Fluid Mech. 2009, 9, 635–653. [Google Scholar] [CrossRef]
- Thepvilojanapong, N.; Ono, T.; Tobe, Y. A Deployment of Fine-Grained Sensor Network and Empirical Analysis of Urban Temperature. Sensors 2010, 10, 2217–2241. [Google Scholar] [CrossRef] [PubMed]
- Hawkins, T.W.; Brazel, A.J.; Stefanov, W.L.; Bigler, W.; Saffell, E.M. The Role of Rural Variability in Urban Heat Island Determination for Phoenix, Arizona. J. Appl. Meteorol. 2004, 43, 476–486. [Google Scholar] [CrossRef]
- Lengfeld, K.; Ament, F. Observing Local-Scale Variability of Near-Surface Temperature and Humidity Using a Wireless Sensor Network. J. Appl. Meteorol. Climatol. 2012, 51, 30–41. [Google Scholar] [CrossRef]
- Statistical Office for Berlin-Brandenburg. Statistischer Bericht. A I 5–hj 1/16: Einwohnerinnen und Einwohner im Land Berlin am 30. Juni 2016. Available online: https://www.statistik-berlin-brandenburg.de/publikationen/stat_berichte/2016/SB_A01-05-00_2016h01_BE.pdf (accessed on 30 November 2017).
- Berlin Senate Department for Urban Development and the Environment, Urban and Environmental Information System. Environmental Atlas: Terrain Elevations. Available online: http://fbinter.stadt-berlin.de/fb/index.jsp?Szenario=fb_en (accessed on 30 November 2017).
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- DWD Climate Data Center (CDC). Historical Daily Station Observations (Air Temperature, Pressure, Precipitation, Sunshine Duration, etc.) for Germany, version v005; DWD: Offenbach, Germany, 2017. [Google Scholar]
- Berlin Senate Department for Urban Development and the Environment Urban and Environmental Information System. Environmental Atlas: Building and Vegetation Heights. Available online: http://www.stadtentwicklung.berlin.de/umwelt/umweltatlas/ei610.htm (accessed on 30 November 2017).
- Lindberg, F.; Holmer, B.; Thorsson, S. SOLWEIG 1.0—Modelling spatial variations of 3D radiant fluxes and mean radiant temperature in complex urban settings. Int. J. Biometeorol. 2008, 52, 697–713. [Google Scholar] [CrossRef] [PubMed]
- Konarska, J.; Lindberg, F.; Larsson, A.; Thorsson, S.; Holmer, B. Transmissivity of solar radiation through crowns of single urban trees-application for outdoor thermal comfort modelling. Theor. Appl. Climatol. 2014, 117, 363–376. [Google Scholar] [CrossRef]
- Meier, F.; Fenner, D.; Grassmann, T.; Otto, M.; Scherer, D. Crowdsourcing air temperature from citizen weather stations for urban climate research. Urban Clim. 2017, 19, 170–191. [Google Scholar] [CrossRef]
- Kaspar, F.; Müller-Westermeier, G.; Penda, E.; Mächel, H.; Zimmermann, K.; Kaiser-Weiss, A.; Deutschländer, T. Monitoring of climate change in Germany—Data, products and services of Germany’s National Climate Data Centre. Adv. Sci. Res. 2013, 10, 99–106. [Google Scholar] [CrossRef]
- Berlin Senate Department for Urban Development and the Environment Urban and Environmental Information System. Environmental Atlas: Land Use. Available online: http://www.stadtentwicklung.berlin.de/umwelt/umweltatlas/edua_index.shtml (accessed on 30 November 2017).
- Google Earth DWD Schönefeld (SCHN). Available online: https://www.google.com/earth/ (accessed on 30 November 2017).
- Oke, T.R. Initial Guidance to Obtain Representative Meteorological Observations at Urban Sites; World Meteorological Organization: Geneva, Switzerland, 2006; p. 47. [Google Scholar]
- Oke, T. The energetic basis of the Urban heat-island. Q. J. R. Meteorol. Soc. 1982, 108, 1–24. [Google Scholar] [CrossRef]
- Erell, E.; Williamson, T. Intra-urban differences in canopy layer air temperature at a mid-latitude city. Int. J. Climatol. 2007, 27, 1243–1255. [Google Scholar] [CrossRef]
- Middel, A.; Häb, K.; Brazel, A.J.; Martin, C.A.; Guhathakurta, S. Impact of urban form and design on mid-afternoon microclimate in Phoenix Local Climate Zones. Landsc. Urban Plan. 2014, 122, 16–28. [Google Scholar] [CrossRef]
- Mirzaei, P.A.; Haghighat, F. Approaches to study Urban Heat Island—Abilities and limitations. Build. Environ. 2010, 45, 2192–2201. [Google Scholar] [CrossRef]
- Yan, H.; Fan, S.; Guo, C.; Hu, J.; Dong, L. Quantifying the Impact of Land Cover Composition on Intra-Urban Air Temperature Variations at a Mid-Latitude City. PLoS ONE 2014, 9, e102124. [Google Scholar] [CrossRef] [PubMed]
- Bowler, D.E.; Buyung-Ali, L.; Knight, T.M.; Pullin, A.S. Urban greening to cool towns and cities: A systematic review of the empirical evidence. Landsc. Urban Plan. 2010, 97, 147–155. [Google Scholar] [CrossRef]
- Giridharan, R.; Lau, S.S.Y.; Ganesan, S.; Givoni, B. Urban design factors influencing heat island intensity in high-rise high-density environments of Hong Kong. Build. Environ. 2007, 42, 3669–3684. [Google Scholar] [CrossRef]
- Oke, T.R. Boundary Layer Climates, 2nd ed.; Routledge, Taylor and Francis Group: London, UK; New York, NY, USA, 1987; ISBN 0-416-04422-0. [Google Scholar]
- Christen, A.; Vogt, R. Energy and radiation balance of a central European city. Int. J. Climatol. 2004, 24, 1395–1421. [Google Scholar] [CrossRef]
- Spronken-Smith, R.A.; Oke, T.R. The thermal regime of urban parks in two cities with different summer climates. Int. J. Remote Sens. 1998, 19, 2085–2104. [Google Scholar] [CrossRef]
- Morris, C.J.G.; Simmonds, I.; Plummer, N. Quantification of the Influences of Wind and Cloud on the Nocturnal Urban Heat Island of a Large City. J. Appl. Meteorol. 2001, 40, 169–182. [Google Scholar] [CrossRef]
- Upmanis, H.; Eliasson, I.; Lindqvist, S. The influence of green areas on nocturnal temperatures in a high latitude city (Göteborg, Sweden). Int. J. Climatol. 1998, 18, 681–700. [Google Scholar] [CrossRef]
- Doick, K.J.; Peace, A.; Hutchings, T.R. The role of one large greenspace in mitigating London’s nocturnal urban heat island. Sci. Total Environ. 2014, 493, 662–671. [Google Scholar] [CrossRef] [PubMed]
- Spronken-Smith, R.A.; Oke, T.R. Scale Modelling of Nocturnal Cooling in Urban Parks. Bound.-Layer Meteorol. 1999, 93, 287–312. [Google Scholar] [CrossRef]
- Chow, W.T.L.; Pope, R.L.; Martin, C.A.; Brazel, A.J. Observing and modeling the nocturnal park cool island of an arid city: Horizontal and vertical impacts. Theor. Appl. Climatol. 2011, 103, 197–211. [Google Scholar] [CrossRef]
- Spronken-Smith, R.A. Energetics and Cooling in Urban Parks. Ph.D. Thesis, University of British Columbia, Vancouver, BC, Canada, 1994. [Google Scholar]
- Nakamura, Y.; Oke, T.R. Wind, temperature and stability conditions in an east-west oriented urban canyon. Atmos. Environ. 1988, 22, 2691–2700. [Google Scholar] [CrossRef]
- Lelovics, E.; Unger, J.; Gál, T.; Gál, C. Design of an urban monitoring network based on Local Climate Zone mapping and temperature pattern modelling. Clim. Res. 2014, 60, 51–62. [Google Scholar] [CrossRef] [Green Version]
Site (Operator) | Schillerkiez | BAMB (UCON) Bamberger Straße | KANI (DWD) Berlin-Kaniswall | KOEP (UCON) Köpenick |
Latitude, Longitude (°) | 52.475 N, 13.422 E | 52.4964 N, 13.3375 E | 52.4040 N, 13.7309 E | 52.4330 N,13.6157 E |
Elevation (m amsl) | 53 | 36 | 33 | 36 |
Building/Pervious/Impervious and bare soil surface fraction (-) | 0.40/0.26/0.34 | 0.34/0.33/0.32 | 0.01/0.37/0.56 | 0.00/0.99/0.01 |
Mean building/Vegetation height (m) | 19.4/10.2 | 20.8/9.5 | 3.4/7.2 | -/14.4 |
SVFarea (-) | 0.21 | 0.24 | 0.9 | 0.06 |
LCZ class | 2B—compact mid-rise with scattered trees | 2B—compact mid-rise with scattered trees | B—scattered trees | A—dense trees |
Aerial view (250 m radius) | ||||
Sensor (all with white radiation shields) | Driesen + Kern GmbH DK390-DM-4M HandyLog (11 sensors, c.f. Figure 1b), passive ventilation | Campbell CS215, active ventilation during sunlit periods | Eigenbrodt LTS2000, active ventilation | Campbell CS215, active ventilation during sunlit periods |
Height (m agl) | 3 | 2.5 | 2 | 2 |
Comment | Sensor attached to balcony | Sensor below tree canopy | ||
Site (Operator) | ROTH (UCON) Rothenburgstraße | SCHN (DWD) Berlin-Schönefeld | SWIN (UCON) Swinemünder Straße | TEMP (DWD) Berlin-Tempelhof |
Latitude, Longitude (°) | 52.4572 N, 13.3158 E | 52.3807 N, 13.5306 E | 52.5431 N, 13.3969 E | 52.4675 N, 13.4021 E |
Elevation (m amsl) | 47 | 46 | 47 | 48 |
Building/Pervious/Impervious and bare soil surface fraction (-) | 0.19/0.61/0.19 | -/-/- | 0.24/0.40/0.35 | 0.1/81.2/18.7 |
Building/Vegetation height (m) | 12.4/9.9 | -/- | 16.4/6.9 | 3.0/0.2 |
SVFarea (-) | 0.23 | - | 0.34 | 0.96 |
LCZ class | 62014open low-rise | D—low plants | 5—open midrise | D—low plants |
Aerial view (250 m radius) | ||||
Sensor (all with white radiation shields) | Campbell CS215, active ventilation during sunlit periods | Eigenbrodt LTS2000, active ventilation | Campbell CS215, active ventilation during sunlit periods | Eigenbrodt LTS2000, active ventilation |
Height (m agl) | 2 | 2 | 2 | 2 |
Comment | Airport station, located on grassland |
Site | Latitude, Longitude (°) | fB/fV (-) | SVFarea/SVFphoto (-) | Fish-Eye Photograph | Street Orientation | Distance to Border of THF (m) | Site Photograph |
---|---|---|---|---|---|---|---|
1 | 52.47439 N, 13.41918 E | 0.14/0.57 | 0.48/0.44 | N-S | 13 | ||
2 | 52.47430 N, 13.41961 E | 0.25/0.50 | 0.29/0.37 | W-E | 40 | ||
3 | 52.47434 N, 13.42004 E | 0.31/0.45 | 0.24/0.30 | W-E | 70 | ||
4 | 52.47442 N, 13.42080 E | 0.36/0.31 | 0.23/0.42 | W-E | 122 | ||
5 | 52.47449 N, 13.42137 E | 0.43/0.20 | 0.24/0.32 | W-E | 162 | ||
6 | 52.47497 N, 13.42570 E | 0.47/0.15 | 0.24/0.36 | W-E | 488 | ||
7 | 52.47412 N, 13.42098 E | 0.36/0.39 | 0.22/0.11 | N-S | 153 | ||
8 | 52.47441 N, 13.42288 E | 0.24/0.48 | 0.24/0.19 | N-S | 259 | ||
9 | 52.47519 N, 13.42571 E | 0.53/0.19 | 0.17/0.048 | courtyard | 452 | ||
10 | 52.47749 N, 13.42211 E | 0.25/0.44 | 0.27/0.41 | roundabout | 271 | ||
11 | 52.47893 N, 13.42387 E | 0.46/0.27 | 0.13/0.16 | W-E | 434 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quanz, J.A.; Ulrich, S.; Fenner, D.; Holtmann, A.; Eimermacher, J. Micro-Scale Variability of Air Temperature within a Local Climate Zone in Berlin, Germany, during Summer. Climate 2018, 6, 5. https://doi.org/10.3390/cli6010005
Quanz JA, Ulrich S, Fenner D, Holtmann A, Eimermacher J. Micro-Scale Variability of Air Temperature within a Local Climate Zone in Berlin, Germany, during Summer. Climate. 2018; 6(1):5. https://doi.org/10.3390/cli6010005
Chicago/Turabian StyleQuanz, Justus A., Susanne Ulrich, Daniel Fenner, Achim Holtmann, and Jonas Eimermacher. 2018. "Micro-Scale Variability of Air Temperature within a Local Climate Zone in Berlin, Germany, during Summer" Climate 6, no. 1: 5. https://doi.org/10.3390/cli6010005
APA StyleQuanz, J. A., Ulrich, S., Fenner, D., Holtmann, A., & Eimermacher, J. (2018). Micro-Scale Variability of Air Temperature within a Local Climate Zone in Berlin, Germany, during Summer. Climate, 6(1), 5. https://doi.org/10.3390/cli6010005