Study of Mesoscale Cloud System Oscillations Capable of Producing Convective Gravity Waves
Abstract
:1. Introduction
2. Materials and Methods
MCS Oscillations
3. Results and Discussion
3.1. Analysis of CGW Events
3.2. MCS-CQW Correlation
3.3. MCS Basic Characteristics
3.4. Daily Characteristics
3.5. Seasonal Characteristics
3.6. Land–Sea Distribution
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Fovell, R.; Durran, D.; Holton, J.R. Numerical simulations of convectively generated stratospheric gravity waves. J. Atmos. Sci. 1992, 49, 1427–1442. [Google Scholar] [CrossRef]
- Alexander, M.J.; Barnett, C. Using satellite observations to constrain gravity wave parametrizations for global models. J. Atmos. Sci. 2007, 64, 1652–1665. [Google Scholar] [CrossRef]
- Fritts, D.C.; Alexander, M.J. Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys. 2003, 41, 1003. [Google Scholar] [CrossRef]
- Song, I.S.; Chun, H.Y.; Lane, T.P. Generation mechanisms of convectively forced internal gravity waves and their propagation to the stratosphere. J. Atmos. Sci. 2003, 60, 1960–1980. [Google Scholar] [CrossRef]
- Lane, T.P.; Sharman, R.D. Gravity wave breaking, secondary wave generation, and mixing above deep convection in a three-dimensional cloud model. Geophys. Res. Lett. 2006, 33, L23813. [Google Scholar] [CrossRef]
- Wei, J.; Zhang, F. Mesoscale Gravity Waves in Moist Baroclinic Jet–Front Systems. J. Atmos. Sci. 2013, 71, 929–952. [Google Scholar] [CrossRef]
- Zhang, X.; Pang, J. A comparison between atmospheric water vapor content retrieval methods using MSG2-SEVIRI thermal-IR data. Int. J. Remote Sens. 2015, 36, 5075–5086. [Google Scholar] [CrossRef]
- Lane, T.P.; Reeder, M.J. Convectively generated gravity waves and their effect on the cloud environment. J. Atmos. Sci. 2001, 58, 2427–2440. [Google Scholar] [CrossRef]
- Pasko, V.P.; Inan, U.S.; Bell, T.F. Sprites as evidence of vertical gravity wave structures above mesoscale thunderstorms. Geophys. Res. Lett. 1997, 24, 1735–1738. [Google Scholar] [CrossRef]
- Sentman, D.D.; Wescott, E.M.; Picard, R.H.; Winick, J.R.; Stenbaek-Nielsen, H.C.; Dewan, E.M.; Moudry, D.R.; Sao Sabbas, F.T.; Heavner, M.J.; Morrill, J. Simultaneous observations of mesospheric gravity waves and sprites generated by a midwestern thunderstorm. J. Atmos. Sol. Terr. Phys. 2003, 65, 537–550. [Google Scholar] [CrossRef]
- Pautet, P.D.; Taylor, M.J.; Liu, A.Z.; Swenson, G.R. Climatology of short-period gravity waves observed over northern Australia during the Darwin Area Wave Experiment (DAWEX) and their dominant source regions. J. Geophys. Res. 2005, 110, D03S90. [Google Scholar] [CrossRef]
- Yue, J.; Vadas, S.L.; She, C.Y.; Nakamura, T.; Reising, S.C.; Liu, H.L.; Stamus, P.; Krueger, D.A.; Lyons, W.; Li, T. Concentric gravity waves in the mesosphere generated by deep convective plumes in the lower atmosphere near Fort Collins, Colorado. J. Geophys. Res. 2009, 114, D06104. [Google Scholar] [CrossRef]
- Kalisch, S.; Chun, H.-Y.; Ern, M.; Preusse, P.; Trihn, G.T.; Eckermann, S.D.; Riese, M. Comparison of simulated and observed convective gravity waves. J. Geophys. Res. Atmos. 2016, 121, 13474–13492. [Google Scholar] [CrossRef]
- Rechou, A.; Arnault, J.; Dalin, P.; Kirkwood, S. Case study of stratospheric gravity waves of convective origin over Arctic Scandinavia—VHF radar observations and numerical modelling. Annal. Geophys. 2013, 31, 239–250. [Google Scholar] [CrossRef]
- Dörnbrack, A.; Gisinger, S.; Kaifler, B. On the Interpretation of Gravity Wave Measurements by Ground-Based Lidars. Atmosphere 2016, 8, 49. [Google Scholar] [CrossRef]
- Jewtoukoff, V.; Plougonven, R.; Hertzog, A. Gravity waves generated by deep tropical convection: Estimates from balloon observations and mesoscale simulations. J. Geophys. Res. Atmos. 2013, 118, 9690–9707. [Google Scholar] [CrossRef] [Green Version]
- Blanc, E.; Farges, T.; Le Pichon, A.; Heinrich, P. Ten-year observations of gravity waves from thunderstorms in western Africa. J. Geophys. Res. Atmos. 2014, 119, 6409–6418. [Google Scholar] [CrossRef]
- Morel, C.; Senesi, S.A. climatology of mesoscale convective systems over Europe using satellite infrared imagery. II. Characteristics of European mesoscale convective systems. Q. J. R. Meteorol. Soc. 2002, 128, 1973–1995. [Google Scholar] [CrossRef]
- Kolios, S.; Feidas, H. Α warm season climatology of Mesoscale Convective Systems in the Mediterranean basin using satellite data. Theor. Appl. Clim. 2010, 102, 29–42. [Google Scholar] [CrossRef]
- Levizzani, V.; Pinelli, F.; Pasqui, M.; Melani, S.; Laing, A.G.; Carbone, R.E. A 10-year climatology of warm-season cloud patterns over Europe and the Mediterranean from Meteosat IR observations. Atmos. Res. 2010, 97, 555–576. [Google Scholar] [CrossRef]
- Kotroni, V.; Lagouvardos, K. Lightning in the Mediterranean and its relation with sea-surface temperature. Environ. Res. Lett. 2015, 11, 034006. [Google Scholar] [CrossRef]
- Kolios, S. Development of Automated System for the Very Short-Range Forecast of Mesoscale Convective Systems Using Meteosat Satellite Imagery. Ph.D. Dissertation, Aegean University, Mytilene, Greece, 2009. [Google Scholar]
- Kolios, S.; Feidas, H. An automated nowcasting system of Mesoscale Convective Systems for the Mediterranean basin using Meteosat imagery. Part I: System description. Meteorol. Appl. 2012, 20, 287–295. [Google Scholar] [CrossRef]
- Kolios, S.; Feidas, H. An automated nowcasting system of Mesoscale Convective Systems for the Mediterranean basin using Meteosat imagery. Part II: Verification statistics. Meteorol. Appl. 2012, 20, 296–307. [Google Scholar] [CrossRef]
- Merk, D.; Zinner, T. Detection of convective initiation using Meteosat SEVIRI. Atmos. Meas. Tech. 2013, 6, 1903–1918. [Google Scholar] [CrossRef]
- Kolios, S.; Stylios, C. Combined use of an instability index and SEVIRI water vapor imagery to detect unstable air masses. In Proceedings of the EUMETSAT Meteorological Satellite Conference, Geneva, Switzerland, 22–26 September 2014. [Google Scholar]
- Schmetz, J.; Tjmekes, S.A.; Gube, M.; Van de Berg, L. Monitoring deep convection and convective overshooting with METEOSAT. Adv. Space Res. 1997, 19, 433–441. [Google Scholar] [CrossRef]
- Lattanzio, A.; Watts, P.D.; Govaerts, Y. Activity Report on Physical Interpretation of Warm Water Vapour Pixels; Programme Development Department, Technical Memorandum, EUMETSAT: Darmstadt, Germany, 2005. [Google Scholar]
- Wilks, D. Statistical Methods in the Atmospheric Sciences, 3rd ed.; Academic Press: Cambridge, MA, USA, 2011; ISBN 9780123850232. [Google Scholar]
- Mazon, J.; Pino, D. Role of the nocturnal coastal–front depth on cloud formation and precipitation in the Mediterranean basin. Atmos. Res. 2015, 153, 145–154. [Google Scholar] [CrossRef]
- Mazon, J.; Pino, D. The Influence of an Increase of the Mediterranean Sea Surface Temperature on Two Nocturnal Offshore Rainbands: A Numerical Experiment. Atmosphere 2017, 8, 58. [Google Scholar] [CrossRef]
- Shaltout, M.; Omstedt, A. Recent sea surface temperature trends and future scenarios for the Mediterranean Sea. Oceanologia 2014, 56, 411–443. [Google Scholar] [CrossRef]
- Kolios, S.; Stylios, C. Spatiotemporal relation between sea surface temperature and cloud convection in the Mediterranean basin during warm season. Earth observation for ocean-atmosphere interactions science. In Proceedings of the European Space Agency Workshop, Rome, Italy, 28–31 October 2014. [Google Scholar]
- Sydeman, W.J.; García-Reyes, M.; Schoeman, D.S.; Rykaczewski, R.R.; Thompson, S.A.; Black, B.A.; Bograd, S.J. Climate change and wind intensification in coastal upwelling ecosystems. Science 2014, 345, 77–80. [Google Scholar] [CrossRef] [PubMed]
Detection Criteria | Threshold Values |
---|---|
BT10.8μm | ≤230 K |
BT6.2μm–BT7.3μm | ≥−5 K |
BT10.8μm–BT12.0μm | ≤2.5 K |
Area | ≥100 km2 |
Parameters [Unit] | Mean (StDev) | Q25% | Q50% | Q75% | Parameter Description |
---|---|---|---|---|---|
BT50% (6.2μm) [°C] | −51.17 (2.83) | −52.65 | −50.90 | −49.36 | It refers to the median value of the distribution regarding the brightness temperatures of the pixels which consist of the convective cloud cell at the time of CClocalmax. |
BT50% (10.8μm) [°C] | −49.13 (3.18) | −50.84 | −48.62 | −46.79 | |
BTcold10% (6.2μm) [°C] | −53.64 (3.45) | −55.68 | −53.31 | −51.30 | It refers to the coldest 10% isotherm of the convective cloud cell for the channels of 6.2 μm and 10.8 μm. |
BTcold10% (10.8μm) [°C] | −52.98 (4.07) | −55.48 | −52.44 | −49.97 | |
BTDiff(6.2μm–10.8μm) > 0 K [%] | 14.3 (20.03) | 0.0 | 3.3 | 22.2 | The percentage of cloud pixels with a positive difference in the temperature values between 6.2 μm and 10.8 μm. The positive values of this parameter can represent deep convective cloud areas which have penetrated to the lowest parts of the stratosphere (Warm Water Vapor “WWV” phenomenon). |
BTDiff(6.2μm–7.3μm) > −5 K [%] | 98.05 (2.0) | 96.1 | 99.0 | 100 | It refers to the percentage of optically thick cloud pixels which can represent deep convective cloud areas at the highest parts of the troposphere in combination with very cold temperature pixel values in both of the 6.2 and 7.3 μm channels. |
Area [km2] | 14,552 (39,725) | 1454 | 3842 | 11,615 | The areal extent of the convective cloud cell which represents a CClocalmax event. |
(dTcold10%/dt) (6.2μm) [°C/min] | −3.58 (0.23) | −3.71 | −3.55 | −3.42 | It is the cooling rate of the coldest 10% isotherm in the convective cloud cell, considering the temperature difference of this isotherm at the time of the CClocalmax and the previous one. |
(dTcold10%/dt) (10.8μm) [°C/min] | −3.53 (0.27) | −3.70 | −3.50 | −3.33 | |
* Fcclocalmax | 0.46 (0.23) | 0.29 | 0.4 | 0.6 | Number of CClocalmax events per hour (frequency of oscillations). |
* λcclocalmax [km] | 139.08 (93.98) | 73.02 | 115.65 | 177.6 | Distance between two consecutive CClocalmax events (wavelength of oscillations). |
* Phase speed [m/s] | 18.93 (10.10) | 11,66 | 16.55 | 23.7 | Horizontal phase speed. |
A/A | MCS Parameter Values— Number of CClocalmax Events | Corr. Coeff. |
---|---|---|
1 | Duration- CClocalmax | 0.57 |
2 | Total Distance-CClocalmax | 0.45 |
3 | Max. Area-CClocalmax | 0.28 |
4 | [BTcold10% (10.8μm)]min-CClocalmax | −0.15 |
5 | [BTcold10% (6.2μm)]min-CClocalmax | −0.14 |
MCS Parameters [Units] | Mean | StDev | 1st Quartile (Q25%) | Median (Q50%) | 3rd Quartile (Q75%) |
---|---|---|---|---|---|
Duration [min] | 311.3 | 191.2 | 180.0 | 255.0 | 375.0 |
Total Distance [km] | 353.4 | 331.3 | 150.2 | 245.9 | 429.0 |
(Areal Extent)max [Km2] | 13,869.5 | 25,402.8 | 3565.2 | 6812.3 | 14,993.8 |
Cloud Speed [Km/h] | 42.6 | 11.7 | 30.9 | 38.4 | 50.8 |
Total number of local maxima [unitless] | 2.3 | 1.7 | 1.0 | 2.0 | 3.0 |
Channel 10.8 μm: (BTcold10%)min [K] | −55.2 | 3.9 | −57.7 | −54.8 | −52.2 |
Channel 6.2 μm: (BTcold10%)min [K] | −54.9 | 3.4 | −57.1 | −54.7 | −52.5 |
BTDiff(6.2μm–10.8μm) > 0 K [%] | 14.87 | 0.16 | 2.25 | 8.03 | 22.9 |
BTDiff(6.2μm–7.3μm) > −5 K [%] | 98.2 | 1.9 | 97.5 | 98.8 | 99.6 |
MCS Parameters [Units] | Period of Day Day: “0” Night: “1” | N | Mean | StDev | 1st Quartile (Q25%) | Median (Q50%) | 3rd Quartile (Q75%) |
---|---|---|---|---|---|---|---|
Duration [min] | 0 | 1297 | 311.4 | 191.8 | 180.00 | 255.00 | 375.00 |
1 | 1047 | 311.2 | 190.5 | 180.00 | 255.00 | 375.00 | |
* Total Distance [km] | 0 | 1297 | 338.8 | 328.1 | 141.84 | 235.17 | 436.07 |
1 | 1047 | 358.9 | 335.3 | 163.03 | 256.12 | 422.09 | |
(Areal Extent)max [Km2] | 0 | 1297 | 13,381.8 | 19,688.4 | 3551.56 | 6681.70 | 15,542.02 |
1 | 1047 | 14,473.6 | 31,056.6 | 3584.28 | 7010.23 | 14,435.60 | |
* Cloud Speed [Km/h] | 0 | 1297 | 41.8 | 11.7 | 33.09 | 41.59 | 49.53 |
1 | 1047 | 43.7 | 11.7 | 35.16 | 43.66 | 51.86 | |
* Total number of local maxima [unitless] | 0 | 1297 | 2.1 | 1.7 | 1.00 | 2.00 | 3.00 |
1 | 1047 | 2.4 | 1.6 | 1.00 | 2.00 | 3.00 | |
* Channel 10.8 μm: (BTcold10%)min [K] | 0 | 1297 | −55.5 | 3.8 | −57.98 | −55.16 | −52.44 |
1 | 1047 | −53.8 | 3.8 | −57.29 | −54.39 | −51.95 | |
* Channel 6.2 μm: (BTcold10%)min [K] | 0 | 1297 | −55.1 | 3.5 | −57.29 | −54.84 | −52.63 |
1 | 1047 | −53.7 | 3.4 | −56.90 | −54.40 | −52.36 | |
BTDiff(6.2μm–10.8μm) > 0 K [%] | 0 | 334 | 16.3 | 15.1 | 2.7 | 9.9 | 25.7 |
1 | 262 | 13.1 | 11.2 | 1.7 | 6.8 | 20.2 | |
BTDiff(6.2μm–7.3μm) > −5 K [%] | 0 | 1297 | 98.26 | 1.9 | 97.6 | 98.6 | 99.5 |
1 | 1047 | 98.19 | 1.9 | 97.4 | 98.8 | 99.6 |
MCS Parameters [Units] | Period Cold: “0” Warm: “1” | N | Mean | StDev | 1st Quartile (Q25%) | Median (Q50%) | 3rd Quartile (Q75%) |
---|---|---|---|---|---|---|---|
Duration [min] | 0 | 1236 | 315.72 | 199.31 | 180.0 | 255.0 | 390.0 |
1 | 1108 | 306.34 | 181.66 | 180.0 | 255.0 | 375.0 | |
*Total Distance [km] | 0 | 1236 | 387.29 | 345.40 | 172.47 | 274.31 | 478.36 |
1 | 1108 | 315.50 | 310.58 | 129.24 | 218.52 | 384.73 | |
* (Areal Extent)max [Km2] | 0 | 1236 | 14,138.6 | 20,734.2 | 3826.7 | 7327.5 | 16,685.5 |
1 | 1108 | 13,569.3 | 29,765.9 | 3367.5 | 6273.1 | 12,769.8 | |
* Cloud Speed [Km/h] | 0 | 1236 | 44.42 | 11.05 | 36.74 | 44.87 | 51.85 |
1 | 1108 | 40.65 | 12.15 | 31.0 | 40.09 | 48.96 | |
* Total number of local maxima [unitless] | 0 | 1236 | 2.45 | 1.78 | 1.0 | 2.0 | 3.0 |
1 | 1108 | 2.08 | 1.54 | 1.0 | 2.0 | 3.0 | |
* Channel 10.8 μm: (BTcold10%)min [K] | 0 | 1236 | −54.87 | 4.06 | −57.38 | −54.45 | −51.84 |
1 | 1108 | −55.48 | 3.74 | −57.98 | −55.37 | −52.74 | |
* Channel 6.2 μm: (BTcold10%)min [K] | 0 | 1236 | −55.14 | 3.55 | −57.36 | −54.77 | −52.66 |
1 | 1108 | −54.69 | 3.28 | −56.84 | −54.48 | −52.34 | |
BTDiff(6.2μm–10.8μm) > 0 K [%] | 0 | 314 | 12.9 | 14.2 | 2.1 | 7.7 | 19.9 |
1 | 282 | 17.1 | 18.4 | 2.7 | 9.6 | 27.8 | |
* BTDiff(6.2μm–7.3μm) > −5 K [%] | 0 | 1236 | 97.8 | 2.1 | 96.7 | 98.9 | 100 |
1 | 1108 | 98.2 | 1.8 | 96.4 | 99.4 | 100 |
MCS Parameters [Units] | Location Land: “0” Sea: “1” | N | Mean | StDev | 1st Quartile (Q25%) | Median (Q50%) | 3rd Quartile (Q75%) |
---|---|---|---|---|---|---|---|
Duration [min] | 0 | 1574 | 307.40 | 18.22 | 180.00 | 255.00 | 375.00 |
1 | 770 | 319.23 | 195.02 | 180.00 | 255.00 | 390.00 | |
Total Distance [km] | 0 | 1574 | 357,40 | 334.36 | 149.61 | 251.33 | 431.72 |
1 | 770 | 345.09 | 324.93 | 152.02 | 238.18 | 416.61 | |
* (Areal Extent)max [Km2] | 0 | 1574 | 13,754.85 | 20,991.63 | 3825.14 | 7009.06 | 15,429.56 |
1 | 770 | 14,103.78 | 32,629.44 | 3210.87 | 6383.52 | 14,281.85 | |
Cloud Speed [Km/h] | 0 | 1574 | 42.71 | 11.78 | 33.99 | 42.91 | 50.53 |
1 | 770 | 42.49 | 11.63 | 33.88 | 42.50 | 51.05 | |
* Total number of local maxima [unitless] | 0 | 1574 | 2.21 | 1.65 | 1.00 | 2.00 | 3.00 |
1 | 770 | 2.40 | 1.73 | 1.00 | 2.00 | 3.00 | |
Channel 10.8 μm: (BTcold10%)min [K] | 0 | 1574 | −55.24 | 4.00 | −57.82 | −54.87 | −52.22 |
1 | 770 | −54.98 | 3.74 | −57.52 | −54.78 | −52.26 | |
Channel 6.2 μm: (BTcold10%)min [K] | 0 | 1574 | −55.03 | 3.46 | −57.10 | −54.72 | −52.61 |
1 | 770 | −54.72 | 3.38 | −56.98 | −54.51 | −52.32 | |
BTDiff(6.2μm–10.8μm) > 0 K [%] | 0 | 402 | 15.8 | 16.8 | 2.7 | 9.7 | 24.6 |
1 | 194 | 12.9 | 15.6 | 1.6 | 6.8 | 21.1 | |
* BTDiff(6.2μm–7.3μm) > −5 K [%] | 0 | 1574 | 0.98 | 0.02 | 0.98 | 0.99 | 1.00 |
1 | 770 | 0.98 | 0.02 | 0.97 | 0.99 | 1.00 |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kolios, S. Study of Mesoscale Cloud System Oscillations Capable of Producing Convective Gravity Waves. Climate 2018, 6, 25. https://doi.org/10.3390/cli6020025
Kolios S. Study of Mesoscale Cloud System Oscillations Capable of Producing Convective Gravity Waves. Climate. 2018; 6(2):25. https://doi.org/10.3390/cli6020025
Chicago/Turabian StyleKolios, Stavros. 2018. "Study of Mesoscale Cloud System Oscillations Capable of Producing Convective Gravity Waves" Climate 6, no. 2: 25. https://doi.org/10.3390/cli6020025
APA StyleKolios, S. (2018). Study of Mesoscale Cloud System Oscillations Capable of Producing Convective Gravity Waves. Climate, 6(2), 25. https://doi.org/10.3390/cli6020025