The Effects of Changing Climate and Market Conditions on Crop Yield and Acreage Allocation in Nepal
Abstract
:1. Introduction
2. Method
2.1. Conceptual Framework: Factors Determining Crop Yield and Acreage
2.2. Impact of Education and Agricultural R&D (Research and Development)
2.3. Impact of Technology on Agriculture
2.4. Measurement of Weather Variables
2.5. Empirical Models
2.6. Model Estimation
2.7. The Data Sources and Study Period
3. Empirical Results
3.1. Summary Statistics
3.2. Yield Model Results
3.3. Acreage Response Model Results
4. Conclusions and Policy Recommendations
4.1. Conclusions
4.2. Policy Recommendations
4.3. Limitations
Acknowledgments
Conflicts of Interest
References
- Bajracharya, S.R.; Mool, P.K.; Shrestha, B.R. Impact of Climate Change on Himalayan Glaciers and Glacial Lakes: Case Studies on Glof and Associated Hazards in Nepal and Bhutan; International Centre for Integrated Mountain Development Kathmandu: Kathmandu, Nepal, 2007. [Google Scholar]
- Kulkarni, A.; Patwardhan, S.; Kumar, K.K.; Ashok, K.; Krishnan, R. Projected climate change in the Hindu Kush–Himalayan region by using the high-resolution regional climate model precis. Mount. Res. Dev. 2013, 33, 142–151. [Google Scholar] [CrossRef]
- McCarthy, J.J.; Canziani, O.F.; Leary, N.A.; Dokken, D.J.; White, K.S. Climate Change 2001: Impacts, Adaptation and Vulnerability; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Pepin, N.; Bradley, R.; Diaz, H.; Baraër, M.; Caceres, E.; Forsythe, N.; Fowler, H.; Greenwood, G.; Hashmi, M.; Liu, X. Elevation-dependent warming in mountain regions of the world. Nat. Clim. Chang. 2015, 5, 424–430. [Google Scholar] [Green Version]
- Lal, M. Implications of climate change in sustained agricultural productivity in south Asia. Reg. Environ. Chang. 2011, 11, 79–94. [Google Scholar] [CrossRef]
- Lavalle, C.; Micale, F.; Houston, T.D.; Camia, A.; Hiederer, R.; Lazar, C.; Conte, C.; Amatulli, G.; Genovese, G. Climate change in europe. 3. Impact on agriculture and forestry. A review. Agron. Sustain. Dev. 2009, 29, 433–446. [Google Scholar] [CrossRef]
- Jhajharia, D.; Yadav, B.K.; Maske, S.; Chattopadhyay, S.; Kar, A.K. Identification of trends in rainfall, rainy days and 24 h maximum rainfall over subtropical assam in northeast India. Comptes Rendus Geosci. 2012, 344, 1–13. [Google Scholar] [CrossRef]
- Kwarteng, A.Y.; Dorvlo, A.S.; Vijaya Kumar, G.T. Analysis of a 27-year rainfall data (1977–2003) in the sultanate of oman. Int. J. Climatol. 2009, 29, 605–617. [Google Scholar] [CrossRef]
- Hussain, A.; Rasul, G.; Mahapatra, B.; Tuladhar, S. Household food security in the face of climate change in the Hindu-Kush Himalayan region. Food Secur. 2016, 8, 921–937. [Google Scholar] [CrossRef]
- Kang, Y.; Khan, S.; Ma, X. Climate change impacts on crop yield, crop water productivity and food security—A review. Prog. Nat. Sci. 2009, 19, 1665–1674. [Google Scholar] [CrossRef]
- Kurukulasuriya, P.; Rosenthal, S. Climate change and agriculture: A review of impacts and adaptations. In Climate Change Series; The International Bank for Reconstruction and Development/The World Bank: Washington, DC, USA, 2013; pp. 1–96. [Google Scholar]
- Manandhar, S.; Vogt, D.S.; Perret, S.R.; Kazama, F. Adapting cropping systems to climate change in Nepal: A cross-regional study of farmers’ perception and practices. Reg. Environ. Chang. 2011, 11, 335–348. [Google Scholar] [CrossRef]
- Nelson, G.C.; Valin, H.; Sands, R.D.; Havlík, P.; Ahammad, H.; Deryng, D.; Elliott, J.; Fujimori, S.; Hasegawa, T.; Heyhoe, E. Climate change effects on agriculture: Economic responses to biophysical shocks. Proc. Natl. Acad. Sci. USA 2014, 111, 3274–3279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poudel, S.; Kotani, K. Climatic impacts on crop yield and its variability in Nepal: Do they vary across seasons and altitudes? Clim. Chang. 2013, 116, 327–355. [Google Scholar] [CrossRef]
- Hatfield, J.L.; Prueger, J.H. Temperature extremes: Effect on plant growth and development. Weather Clim. Extremes 2015, 10, 4–10. [Google Scholar] [CrossRef]
- Schlenker, W.; Hanemann, W.M.; Fisher, A.C. Will us agriculture really benefit from global warming? Accounting for irrigation in the hedonic approach. Am. Econ. Rev. 2005, 95, 395–406. [Google Scholar]
- Schlenker, W.; Roberts, M.J. Nonlinear temperature effects indicate severe damages to us crop yields under climate change. Proc. Natl. Acad. Sci. USA 2009, 106, 15594–15598. [Google Scholar] [CrossRef] [PubMed]
- Mainardi, S. Cropland use, yields, and droughts: Spatial data modeling for burkina faso and niger. Agric. Econ. 2011, 42, 17–33. [Google Scholar] [CrossRef]
- Gentle, P.; Maraseni, T.N. Climate change, poverty and livelihoods: Adaptation practices by rural mountain communities in Nepal. Environ. Sci. Policy 2012, 21, 24–34. [Google Scholar] [CrossRef]
- Pingali, P. Agricultural mechanization: Adoption patterns and economic impact. Handb. Agric. Econ. 2007, 3, 2779–2805. [Google Scholar]
- Pudasaini, S.P. The effects of education in agriculture: Evidence from Nepal. Am. J. Agric. Econ. 1983, 65, 509–515. [Google Scholar] [CrossRef]
- Boubacar, I. The effects of drought on crop yields and yield variability: An economic assessment. Int. J. Econ. Finance 2012, 4, 51. [Google Scholar] [CrossRef]
- Brown, S.; Shrestha, B. Market-driven land-use dynamics in the middle mountains of Nepal. J. Environ. Manag. 2000, 59, 217–225. [Google Scholar] [CrossRef]
- Gumma, M.K.; Gauchan, D.; Nelson, A.; Pandey, S.; Rala, A. Temporal changes in rice-growing area and their impact on livelihood over a decade: A case study of Nepal. Agric. Ecosyst. Environ. 2011, 142, 382–392. [Google Scholar] [CrossRef]
- Neumann, K.; Verburg, P.H.; Stehfest, E.; Müller, C. The yield gap of global grain production: A spatial analysis. Agric. Syst. 2010, 103, 316–326. [Google Scholar] [CrossRef]
- Roberts, M.J.; Schlenker, W.; Eyer, J. Agronomic weather measures in econometric models of crop yield with implications for climate change. Am. J. Agric. Econ. 2012, 95, 236–243. [Google Scholar] [CrossRef]
- O’Gorman, P.A. Precipitation extremes under climate change. Curr. Clim. Chang. Rep. 2015, 1, 49–59. [Google Scholar] [CrossRef] [PubMed]
- Kendon, E.J.; Roberts, N.M.; Fowler, H.J.; Roberts, M.J.; Chan, S.C.; Senior, C.A. Heavier summer downpours with climate change revealed by weather forecast resolution model. Nat. Clim. Chang. 2014, 4, 570. [Google Scholar] [CrossRef]
- Pant, K.P. Climate change and food security in Nepal. J. Agric. Environ. 2013, 13, 9–19. [Google Scholar] [CrossRef]
- Paudel, S.P.; Shivakoti, S. Energy based food security assessment in Nepal. J. Agric. Environ. 2013, 12, 127–131. [Google Scholar] [CrossRef]
- Ranum, P.; Peña-Rosas, J.P.; Garcia-Casal, M.N. Global maize production, utilization, and consumption. Ann. N. Y. Acad. Sci. 2014, 1312, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Pandey, S. Patterns of Adoption of Improved Rice Varieties and Farm-Level Impacts in Stress-Prone Rainfed Areas in South Asia; International Rice Research Institute: Los Baños, Philippines, 2012. [Google Scholar]
- Miao, R.; Khanna, M.; Huang, H. Responsiveness of crop yield and acreage to prices and climate. Am. J. Agric. Econ. 2016, 98, 191–211. [Google Scholar] [CrossRef]
- Deschénes, O.; Greenstone, M. The economic impacts of climate change: Evidence from agricultural output and random fluctuations in weather. Am. Econ. Rev. 2007, 97, 354–385. [Google Scholar] [CrossRef]
- Feng, H.; Babcock, B.A. Impacts of ethanol on planted acreage in market equilibrium. Am. J. Agric. Econ. 2010, 92, 789–802. [Google Scholar] [CrossRef]
- Shah, T.; Singh, O.P.; Mukherji, A. Some aspects of south Asia’s groundwater irrigation economy: Analyses from a survey in India, Pakistan, Nepal terai and Bangladesh. Hydrogeol. J. 2006, 14, 286–309. [Google Scholar] [CrossRef]
- Xiao, X.; Boles, S.; Frolking, S.; Li, C.; Babu, J.Y.; Salas, W.; Moore, B. Mapping paddy rice agriculture in south and southeast Asia using multi-temporal modis images. Remote Sens. Environ. 2006, 100, 95–113. [Google Scholar] [CrossRef]
- Bhattarai, S.; Nepali, N.; Thaller, J.; Thewarapperuma, A.; Webb, J. Promoting Agribusiness Innovation in Nepal: Feasibility Assessment for an Agribusiness Innovation Center; The World Bank: Washington, DC, USA, 2013. [Google Scholar]
- Joshi, J.; Ali, M.; Berrens, R.P. Valuing farm access to irrigation in Nepal: A hedonic pricing model. Agric. Water Manag. 2017, 181, 35–46. [Google Scholar] [CrossRef]
- Aryal, A.; Brunton, D.; Raubenheimer, D. Impact of climate change on human-wildlife-ecosystem interactions in the trans-Himalaya region of Nepal. Theor. Appl. Climatol. 2014, 115, 517–529. [Google Scholar] [CrossRef]
- Owens, T.; Hoddinott, J.; Kinsey, B. The impact of agricultural extension on farm production in resettlement areas of zimbabwe. Econ. Dev. Cult. Chang. 2003, 51, 337–357. [Google Scholar] [CrossRef]
- Kaya, O.; Kaya, I.; Gunter, L. Foreign aid and the quest for poverty reduction: Is aid to agriculture effective? J. Agric. Econ. 2013, 64, 583–596. [Google Scholar] [CrossRef]
- Khadka, N. Foreign aid to Nepal: Donor motivations in the post-cold war period. Asian Surv. 1997, 37, 1044–1061. [Google Scholar] [CrossRef]
- Evenson, R.E.; Gollin, D. Assessing the impact of the green revolution, 1960 to 2000. Science 2003, 300, 758–762. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.; Barau, A.D.; Goldman, A.; Mareck, J.H. The role of technology in agricultural intensification: The evolution of maize production in the northern guinea savanna of nigeria. Econ. Dev. Cult. Chang. 1994, 42, 537–554. [Google Scholar] [CrossRef]
- Tilman, D.; Cassman, K.G.; Matson, P.A.; Naylor, R.; Polasky, S. Agricultural sustainability and intensive production practices. Nature 2002, 418, 671. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.R. Agricultural sustainability and technology adoption: Issues and policies for developing countries. Am. J. Agric. Econ. 2005, 87, 1325–1334. [Google Scholar] [CrossRef]
- Hill, J.; Polasky, S.; Nelson, E.; Tilman, D.; Huo, H.; Ludwig, L.; Neumann, J.; Zheng, H.; Bonta, D. Climate change and health costs of air emissions from biofuels and gasoline. Proc. Natl. Acad. Sci. USA 2009, 106, 2077. [Google Scholar] [CrossRef] [PubMed]
- Karki, R.; Gurung, A. An overview of climate change and its impact on agriculture: A review from least developing country, Nepal. Int. J. Ecosyst. 2012, 2, 19–24. [Google Scholar] [CrossRef]
- Doku, A.; Di Falco, S. Biofuels in developing countries: Are comparative advantages enough? Energy Policy 2012, 44, 101–117. [Google Scholar] [CrossRef]
- Jepsen, M.R.; Kuemmerle, T.; Müller, D.; Erb, K.; Verburg, P.H.; Haberl, H.; Vesterager, J.P.; Andrič, M.; Antrop, M.; Austrheim, G. Transitions in european land-management regimes between 1800 and 2010. Land Use Policy 2015, 49, 53–64. [Google Scholar] [CrossRef]
- Yang, J.; Huang, Z.; Zhang, X.; Reardon, T. The rapid rise of cross-regional agricultural mechanization services in China. Am. J. Agric. Econ. 2013, 95, 1245–1251. [Google Scholar] [CrossRef]
- Shrestha, U.B.; Gautam, S.; Bawa, K.S. Widespread climate change in the himalayas and associated changes in local ecosystems. PLoS ONE 2012, 7, e36741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, C.C. The potential impact of climate change on Taiwan’s agriculture. Agric. Econ. 2002, 27, 51–64. [Google Scholar] [CrossRef]
- White, J.W.; Reynolds, M.P. A physiological perspective on modeling temperature response in wheat and maize crops. In Modeling Temperature Response in Wheat And Maize, 03-01 ed.; White, J.W., Ed.; CIMMYT: El Batan, Mexico, 2001; pp. 8–17. [Google Scholar]
- Nandargi, S.; Mulye, S. Relationships between rainy days, mean daily intensity, and seasonal rainfall over the koyna catchment during 1961–2005. Sci. World J. 2012, 2012, 894313. [Google Scholar] [CrossRef] [PubMed]
- Dhungana, B.R.; Nuthall, P.L.; Nartea, G.V. Measuring the economic inefficiency of Nepalese rice farms using data envelopment analysis. Aust. J. Agric. Resour. Econ. 2004, 48, 347–369. [Google Scholar] [CrossRef]
- Joshi, N.P.; Maharjan, K.L.; Piya, L. Effect of climate variables on yield of major food-crops in Nepal-a time-series analysis. J. Contemp. India Stud. Sapce Soc. 2011, 1, 19–26. [Google Scholar]
- Sharma, K. Crop diversification in Nepal. In Crop Diversification in the Asia-Pacific Region; Papademetriou, M.K., Dent, F.J., Eds.; FAO: Bangkok, Thailand, 2001; pp. 81–94. [Google Scholar]
- Zellner, A. An efficient method of estimating seemingly unrelated regressions and tests for aggregation bias. J. Am. Stat. Assoc. 1962, 57, 348–368. [Google Scholar] [CrossRef]
- Harris, I.; Jones, P.; Osborn, T.; Lister, D. Updated high-resolution grids of monthly climatic observations—The CRU TS3. 10 dataset. Int. J. Climatol. 2014, 34, 623–642. [Google Scholar] [CrossRef] [Green Version]
- Aulakh, M.S.; Khera, T.; Doran, J.W.; Bronson, K.F. Managing crop residue with green manure, urea, and tillage in a rice-wheat rotation. Soil Sci. Soc. Am. J. 2001, 65, 820–827. [Google Scholar] [CrossRef]
- Joshi, B.; Khatri-Chhetri, R.; Khatri, B.; Mishra, R. Production in rice and potato-based cropping patterns. Nepal J. Sci. Technol. 2003, 5, 1–6. [Google Scholar]
- Zheng, C.; Chen, C.; Zhang, X.; Song, Z.; Deng, A.; Zhang, B.; Wang, L.; Mao, N.; Zhang, W. Actual impacts of global warming on winter wheat yield in eastern himalayas. Int. J. Plant Prod. 2016, 10, 159–174. [Google Scholar]
- Xiao, G.; Zheng, F.; Qiu, Z.; Yao, Y. Impact of climate change on water use efficiency by wheat, potato and corn in semiarid areas of China. Agric. Ecosyst. Environ. 2013, 181, 108–114. [Google Scholar] [CrossRef]
- Xiao, G.; Zhang, Q.; Yao, Y.; Zhao, H.; Wang, R.; Bai, H.; Zhang, F. Impact of recent climatic change on the yield of winter wheat at low and high altitudes in semi-arid northwestern China. Agric. Ecosyst. Environ. 2008, 127, 37–42. [Google Scholar] [CrossRef]
- Gaire, N.; Koirala, M.; Bhuju, D.; Borgaonkar, H. Treeline dynamics with climate change at the central Nepal himalaya. Clim. Past 2014, 10, 1277–1290. [Google Scholar] [CrossRef]
- Miller, D.J.; Plantinga, A.J. Modeling land use decisions with aggregate data. Am. J. Agric. Econ. 1999, 81, 180–194. [Google Scholar] [CrossRef]
- Lin, W.; Dismukes, R. Supply response under risk: Implications for counter-cyclical payments’ production impact. Rev. Agric. Econ. 2007, 29, 64–86. [Google Scholar] [CrossRef]
- Chavas, J.-P.; Holt, M.T. Acreage decisions under risk: The case of corn and soybeans. Am. J. Agric. Econ. 1990, 72, 529–538. [Google Scholar] [CrossRef]
- Haile, M.G.; Kalkuhl, M.; von Braun, J. Worldwide acreage and yield response to international price change and volatility: A dynamic panel data analysis for wheat, rice, corn, and soybeans. Am. J. Agric. Econ. 2015, 98, 172–190. [Google Scholar] [CrossRef]
Variable Description | Mean | St. Dev. | Min | Max |
---|---|---|---|---|
Rice Yield (Metric Ton/Hectare) | 2.40 | 0.46 | 1.45 | 3.39 |
Maize Yield (Metric Ton/Hectare) | 1.77 | 0.31 | 1.33 | 2.50 |
Millet Yield (Metric Ton/Hectare) | 1.06 | 0.08 | 0.91 | 1.17 |
Wheat Yield (Metric Ton/Hectare) | 1.63 | 0.42 | 1.04 | 2.50 |
Potato Yield (Metric Ton/Hectare) | 9.12 | 2.97 | 5.10 | 13.74 |
Current Price of Rice (NRS/Metric Ton) | 8.20 | 6.69 | 1.24 | 25.26 |
Current Price of Maize (NRS/Metric Ton) | 8.33 | 6.76 | 1.63 | 25.92 |
Current Price of Millet (NRS/Metric Ton) | 8.65 | 7.01 | 1.59 | 29.05 |
Current Price of Wheat (NRS/Metric Ton) | 8.71 | 6.64 | 1.77 | 25.81 |
Current Price of Potato (NRS/Metric Ton) | 9.01 | 7.37 | 1.66 | 27.22 |
Rice Acreage (1000 Hectares) | 1434.04 | 105.57 | 1254.24 | 1560.04 |
Maize Acreage (1000 Hectares) | 727.59 | 154.51 | 432.34 | 928.76 |
Millet Acreage (1000 Hectares) | 214.12 | 60.41 | 121.13 | 278.03 |
Wheat Acreage (1000 Hectares) | 588.28 | 130.51 | 328.57 | 767.50 |
Potato Acreage (1000 Hectares) | 108.79 | 48.25 | 49.58 | 205.73 |
Energy Use (Kg of Oil Equivalent per capita) | 329.4 | 27.8 | 301 | 389 |
Adult Literacy Rate (%) | 34.9 | 14.0 | 21 | 60 |
Net Foreign Aid/Arable Land (NRS/Hectare) | 187.3 | 109.1 | 22 | 420 |
Fertilizer Price Index | 138.4 | 73.5 | 66 | 373 |
PS Rain (in mm): June-July (rice/millet season) | 486.7 | 88.0 | 312 | 647 |
March-April (maize) | 105.8 | 39.5 | 24 | 180 |
November-December (wheat/potato) | 30.0 | 28.6 | 1 | 128 |
GS Rain (in mm): June-October (rice/millet) | 990.7 | 125.3 | 777 | 1264 |
March-June (maize season) | 382.9 | 67.6 | 256 | 530 |
December-January (Wheat/Potato) | 37.8 | 25.9 | 1 | 127 |
PS Temperature (in F): June-July (rice/millet) | 74.9 | 1.6 | 72 | 79 |
March-April (maize) | 65.3 | 3.1 | 58 | 73 |
November-December (wheat/Potato) | 55.6 | 2.4 | 50 | 61 |
GS Temp (in F): June-October (Rice/Millet GDD) | 72.9 | 1.5 | 70 | 76 |
March-June (maize GDD) | 69.5 | 2.3 | 65 | 76 |
December-January (Wheat/Potato GDD) | 51.2 | 2.2 | 46 | 56 |
PS σptm: June-July (rice/millet) | 0.8 | 0.6 | 0 | 3 |
March-April (Maize) | 4.7 | 2.1 | 0 | 12 |
November-December (Wheat/Potato) | 4.8 | 1.2 | 2 | 7 |
GS σptg: June-October (Rice/Millet) | 3.4 | 0.9 | 1 | 6 |
March-April (Maize) | 5.9 | 1.3 | 4 | 9 |
November-December (Wheat/Potato) | 1.9 | 1.3 | 0 | 5 |
Variable | Rice | Maize | Wheat | Millet | Potato |
---|---|---|---|---|---|
Intercept | −55.4705 | 33.7946 * | −16.6594 * | 52.9434 | 38.6151 |
−(1.09) | (2.01) | −(2.02) | (1.39) | (0.71) | |
Price | −0.2275 | 0.4778 ** | 0.1086 | −0.0534 | −0.5648 |
−(1.10) | (5.38) | (1.08) | −(1.02) | −(1.29) | |
Fertilizer | 0.0538 * | −0.0601 ** | 0.0113 | −0.0022 | −0.0005 |
(2.37) | −(4.85) | (1.02) | −(0.24) | −(0.01) | |
Literacy Rate | 0.0848 | 0.1195 ** | 0.0739 * | 0.0617 * | 1.4190 ** |
(1.29) | (3.01) | (2.33) | (2.45) | (5.86) | |
Foreign Aid | 0.0164 * | 0.0051 | −0.0024 | 0.0037 | 0.0778 ** |
(2.16) | (1.44) | −(0.65) | (1.58) | (3.44) | |
Energy Use | 0.1003 * | −0.0684 * | 0.1121 ** | −0.0158 | 0.1408 |
(2.13) | −(2.26) | (4.45) | −(0.85) | (0.79) | |
Rainfall (Rn) | 1.0659 * | 0.4298 * | 1.9949 ** | 0.1573 | 3.3510 |
(2.23) | (2.20) | (4.93) | (0.76) | (1.12) | |
Rainfall Squared | −0.0078 * | −0.0065 * | −0.1954 ** | −0.0015 | −0.4074 |
−(2.21) | −(2.15) | −(4.77) | −(0.75) | −(1.35) | |
GDD | 0.0044 | −0.0051 | −0.0149 * | −0.0376 | −0.1185 ** |
(0.16) | −(0.75) | −(2.45) | −(1.05) | −(2.73) | |
GDD Squared | 0.0000 | 0.0000 | 0.0000 * | 0.0000 | 0.0001 ** |
−(0.17) | (0.97) | (1.93) | (1.03) | (2.98) | |
σtm | −0.9067 | −0.8986 | −3.4348 ** | 0.2719 | −11.9045 |
−(0.96) | −(0.43) | −(2.99) | (1.04) | −(1.38) | |
σ2tm | 0.0633 | 0.0595 | 0.4089 ** | −0.0262 | 1.1450 |
(1.08) | (0.41) | (3.06) | −(1.19) | (1.14) | |
R2 | 0.90 | 0.93 | 0.97 | 0.41 | 0.97 |
χ2 | 337.09 | 528.95 | 1343.30 | 31.52 | 1140.70 |
Variables | Rice | Maize | Wheat | Millet | Potato |
---|---|---|---|---|---|
Intercept | −25.3305 | 10.7007 * | 12.6748 | 132.3613 | 49.1120 * |
−(0.33) | (2.25) | (1.30) | (1.00) | (2.97) | |
Log(Output Price) | 0.1479 ** | 0.3733 ** | 0.3933 ** | 0.5769 ** | 0.3375 ** |
(5.02) | (7.56) | (6.37) | (10.97) | (5.03) | |
Fertilizer Price Index | −0.0003 * | −0.0004 * | −0.0002 | −0.0002 | −0.0012 ** |
−(2.17) | −(2.09) | −(1.05) | −(0.79) | −(3.52) | |
Literacy Rate | −0.0045 ** | −0.0033 | −0.0028 | 0.0002 | 0.0063 * |
−(2.80) | −(1.53) | −(1.10) | (0.06) | (1.88) | |
Log(Foreign Aid) | −0.0102 | 0.1165 ** | 0.1072 ** | −0.0126 | 0.1210 ** |
−(0.51) | (3.96) | (3.08) | −(0.35) | (3.03) | |
Log(Energy Use) | 0.1983 | −1.1694 ** | −1.2255 ** | −2.4002 ** | 0.8217 |
(0.75) | −(3.08) | −(3.40) | −(5.02) | (1.47) | |
Log(Rainfall) | 0.8108 | 0.0932 | −0.0092 | 8.6890 ** | 0.0174 |
(0.49) | (0.47) | −(0.50) | (3.06) | (0.46) | |
Log(Rainfall2) | −0.0642 | −0.0105 | 0.0017 | −0.7179 ** | −0.0063 |
−(0.47) | −(0.47) | (0.45) | −(3.09) | −(0.84) | |
Log(GDD) | 9.3746 | 1.3476 | 0.9984 | −37.7003 | −13.0917 ** |
(0.44) | (1.09) | (0.37) | −(1.04) | −(2.83) | |
Log(GDD2) | −0.6306 | −0.0998 | −0.0764 | 2.5895 | 0.9925 ** |
−(0.44) | −(1.08) | −(0.37) | (1.05) | (2.84) | |
Log(σtm) | −0.1419 * | 1.3472 ** | 0.7609 | −0.3626 ** | −3.5772 * |
−(1.93) | (4.65) | (1.02) | −(2.78) | −(2.53) | |
Log(σtm Squared) | 0.0665 * | −0.3965 ** | −0.2573 | 0.1222 * | 1.1101 * |
(2.19) | −(4.34) | −(1.12) | (2.32) | (2.56) | |
R2 | 0.80 | 0.96 | 0.96 | 0.96 | 0.97 |
χ2 | 159.76 | 940.40 | 1036.96 | 1082.98 | 1565.42 |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Acharya, R.N. The Effects of Changing Climate and Market Conditions on Crop Yield and Acreage Allocation in Nepal. Climate 2018, 6, 32. https://doi.org/10.3390/cli6020032
Acharya RN. The Effects of Changing Climate and Market Conditions on Crop Yield and Acreage Allocation in Nepal. Climate. 2018; 6(2):32. https://doi.org/10.3390/cli6020032
Chicago/Turabian StyleAcharya, Ram N. 2018. "The Effects of Changing Climate and Market Conditions on Crop Yield and Acreage Allocation in Nepal" Climate 6, no. 2: 32. https://doi.org/10.3390/cli6020032
APA StyleAcharya, R. N. (2018). The Effects of Changing Climate and Market Conditions on Crop Yield and Acreage Allocation in Nepal. Climate, 6(2), 32. https://doi.org/10.3390/cli6020032