Effect of Climate Change on the Yield of Cereal Crops: A Review
Abstract
:1. Introduction
2. Production Data—Cereal Crops
3. Required Growing Condition of Different Crops
3.1. Paddy
3.2. Millet
3.3. Maize
3.4. Wheat
4. Greenhouse Gases from Different Crops
5. Climate Change Impact on Crops Yield and Food Security
5.1. Paddy
5.2. Millet
5.3. Maize
5.4. Wheat
6. Food Security
6.1. Food Availability and Accessibility
6.2. Food Utilization and Food Systems Stability
7. Potential Strategies to Increase Cereal Crops Production
7.1. Breeding
7.2. Irrigation and Fertilizer Efficiency
7.3. Increasing the Cultivation Area of Tolerant Cereal Crops
8. Conclusions
Acknowledgments
Conflicts of Interest
References
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food security: The challenge of feeding 9 billion people. Science 2010, 327, 812–818. [Google Scholar] [CrossRef] [PubMed]
- Ray, D.K.; Mueller, N.D.; West, P.C.; Foley, J.A. Yield trends are insufficient to double global crop production by 2050. PLoS ONE 2013, 8, e66428. [Google Scholar] [CrossRef] [PubMed]
- Hawkesford, M.J.; Araus, J.L.; Park, R.; Calderini, D.; Miralles, D.; Shen, T.; Zhang, J.; Parry, M.A. Prospects of doubling global wheat yields. Food Energy Secur. 2013, 2, 34–48. [Google Scholar] [CrossRef] [Green Version]
- Tripathi, A.; Tripathi, D.K.; Chauhan, D.; Kumar, N.; Singh, G. Paradigms of climate change impacts on some major food sources of the world: A review on current knowledge and future prospects. Agric. Ecosyst. Environ. 2016, 216, 356–373. [Google Scholar] [CrossRef]
- Howden, S.M.; Soussana, J.-F.; Tubiello, F.N.; Chhetri, N.; Dunlop, M.; Meinke, H. Adapting agriculture to climate change. Proc. Natl. Acad. Sci. USA 2007, 104, 19691–19696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Solomon, S. Climate Change 2007—The Physical Science Basis: Working Group I Contribution to the Fourth Assessment Report of the IPCC; Cambridge University Press: Cambridge, UK, 2007; Volume 4. [Google Scholar]
- Bernstein, L.; Bosch, P.; Canziani, O.; Chen, Z.; Christ, R.; Riahi, K. IPCC, 2007: Climate Change 2007: Synthesis Report; IPCC: Geneva, Switzerland, 2008. [Google Scholar]
- Asseng, S.; Foster, I.; Turner, N.C. The impact of temperature variability on wheat yields. Glob. Chang. Biol. 2011, 17, 997–1012. [Google Scholar] [CrossRef]
- Högy, P.; Fangmeier, A. Effects of elevated atmospheric CO2 on grain quality of wheat. J. Cereal Sci. 2008, 48, 580–591. [Google Scholar] [CrossRef]
- You, L.; Rosegrant, M.W.; Wood, S.; Sun, D. Impact of growing season temperature on wheat productivity in China. Agric. For. Meteorol. 2009, 149, 1009–1014. [Google Scholar] [CrossRef]
- Jain, N.; Arora, P.; Tomer, R.; Mishra, S.V.; Bhatia, A.; Pathak, H.; Chakraborty, D.; Kumar, V.; Dubey, D.; Harit, R. Greenhouse gases emission from soils under major crops in northwest India. Sci. Total Environ. 2016, 542, 551–561. [Google Scholar] [CrossRef] [PubMed]
- Jain, R.; Bal, S. Properties of pearl millet. J. Agric. Eng. Res. 1997, 66, 85–91. [Google Scholar] [CrossRef]
- Yao, F.; Huang, J.; Cui, K.; Nie, L.; Xiang, J.; Liu, X.; Wu, W.; Chen, M.; Peng, S. Agronomic performance of high-yielding rice variety grown under alternate wetting and drying irrigation. Field Crops Res. 2012, 126, 16–22. [Google Scholar] [CrossRef]
- Porter, J.R.; Xie, L.; Challinor, A.J.; Cochrane, K.; Howden, S.M.; Iqbal, M.M.; Lobell, D.B.; Travasso, M.I.; Netra Chhetri, N.C.; Garrett, K. Food Security and Food Production Systems; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Faostat, F.; Production, A.C. Food and Agriculture Organization of the United Nations, 2016; FAO: Rome, Italy, 2017. [Google Scholar]
- Lal, R. Restoring soil and water resources and mitigating climate change in India by judicious management of agricultural and urban wastes. J. Indian Soc. Soil Sci. 2017, 65, 105–117. [Google Scholar] [CrossRef]
- Mo, X.-G.; Hu, S.; Lin, Z.-H.; Liu, S.-X.; Xia, J. Impacts of climate change on agricultural water resources and adaptation on the north China plain. Adv. Clim. Chang. Res. 2017, 8, 93–98. [Google Scholar] [CrossRef]
- Coats, B. Global rice production. In Rice Origin, History, Technology and Production; Wiley: Hoboken, NJ, USA, 2003; pp. 247–470. [Google Scholar]
- Guo, Z.; Chai, M.; Zhan, Z.; Chen, Z. Spatiotemporal Variation of Soil PH in the Past 30 Years of Guangdong Province, China. In Proceedings of the 2011 19th International Conference on Geoinformatics, Shanghai, China, 24–26 June 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 1–5. [Google Scholar]
- Santos, E.S.; Abreu, M.M.; Magalhães, M.C.; Viegas, W.; Amâncio, S.; Cordovil, C. Nutrients Levels in Paddy Soils and Flood Waters from Tagus-Sado Basin: The Impact of Farming System. In Proceedings of the 19th EGU General Assembly, EGU2017, Vienna, Austria, 23–28 April 2017; p. 17129. [Google Scholar]
- Lamers, M.; Anyusheva, M.; La, N.; Nguyen, V.V.; Streck, T. Pesticide pollution in surface-and groundwater by paddy rice cultivation: A case study from northern Vietnam. Clean-Soil Air Water 2011, 39, 356–361. [Google Scholar] [CrossRef]
- Amadou, I.; Gounga, M.E.; Le, G.-W. Millets: Nutritional composition, some health benefits and processing—A review. Emir. J. Food Agric. 2013, 25, 501–508. [Google Scholar] [CrossRef]
- Wen, Y.; Liu, J.; Meng, X.; Zhang, D.; Zhao, G. Characterization of proso millet starches from different geographical origins of China. Food Sci. Biotechnol. 2014, 23, 1371–1377. [Google Scholar] [CrossRef]
- Habiyaremye, C.; Matanguihan, J.B.; D’Alpoim Guedes, J.; Ganjyal, G.M.; Whiteman, M.R.; Kidwell, K.K.; Murphy, K.M. Proso millet (Panicum miliaceum L.) and its potential for cultivation in the Pacific Northwest, US: A review. Front. Plant Sci. 2017, 7, 1961. [Google Scholar] [CrossRef] [PubMed]
- Goron, T.L.; Raizada, M.N. Genetic diversity and genomic resources available for the small millet crops to accelerate a new green revolution. Front. Plant Sci. 2015, 6, 157. [Google Scholar] [CrossRef] [PubMed]
- Changmei, S.; Dorothy, J. Millet-the frugal grain. Int. J. Sci. Res. Rev. 2014, 3, 75–90. [Google Scholar]
- Piperno, D.R.; Flannery, K.V. The earliest archaeological maize (Zea mays L.) from highland Mexico: New accelerator mass spectrometry dates and their implications. Proc. Natl. Acad. Sci. USA 2001, 98, 2101–2103. [Google Scholar] [CrossRef] [PubMed]
- Zamir, M.; Yasin, G.; Javeed, H.; Ahmad, A.; Tanveer, A.; Yaseen, M. Effect of different sowing techniques and mulches on the growth and yield behavior of spring planted maize (Zea mays L.). Cercetari Agronomice in Moldova 2013, 46, 77–82. [Google Scholar] [CrossRef]
- Woldesenbet, M.; Haileyesus, A. Effect of nitrogen fertilizer on growth, yield and yield components of maize (Zea mays L.) in Decha district, Southwestern Ethiopia. Intl. J. Res. Granthaalayah 2016, 4, 95–100. [Google Scholar]
- Yin, G.; Gu, J.; Zhang, F.; Hao, L.; Cong, P.; Liu, Z. Maize yield response to water supply and fertilizer input in a semi-arid environment of northeast china. PLoS ONE 2014, 9, e86099. [Google Scholar] [CrossRef] [PubMed]
- Anon. Fertilizers for Corn. Available online: https://fieldcrops.cals.cornell.edu/corn/fertilizers-corn (accessed on 24 April 2018).
- Ngwako, S.; Mashiqa, P. The effect of irrigation on the growth and yield of winter wheat (Triticum aestivum L.) cultivars. Int. J. Agric. Crop Sci. 2013, 5, 976–982. [Google Scholar]
- Hergert, G.W.; Shaver, T.M. Fertilizing Winter Wheat; UNL-West Central Research and Extension Center: North Plate, NE, USA, 2009; p. 69101. [Google Scholar]
- Acevedo, E.; Silva, P.; Silva, H. Wheat growth and physiology. In Bread Wheat; Plant Production and Protection Series (FAO); FAO: Rome, Italy, 2002. [Google Scholar]
- Rajaniemi, M.; Mikkola, H.; Ahokas, J. Greenhouse gas emissions from oats, barley, wheat and rye production. Agron. Res. 2011, 9, 189–195. [Google Scholar]
- Smit, B.; Skinner, M.W. Adaptation options in agriculture to climate change: A typology. Mitig. Adapt. Strat. Glob. Chang. 2002, 7, 85–114. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, C.; Ming, H.; Zhang, Y.; Li, X.; Dong, W.; Oenema, O. Concentration profiles of CH4, CO2 and N2O in soils of a wheat–maize rotation ecosystem in North China plain, measured weekly over a whole year. Agric. Ecosyst. Environ. 2013, 164, 260–272. [Google Scholar] [CrossRef]
- Cole, C.; Duxbury, J.; Freney, J.; Heinemeyer, O.; Minami, K.; Mosier, A.; Paustian, K.; Rosenberg, N.; Sampson, N.; Sauerbeck, D. Global estimates of potential mitigation of greenhouse gas emissions by agriculture. Nutr. Cycl. Agroecosyst. 1997, 49, 221–228. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2011; p. 881. [Google Scholar]
- Shang, Q.; Yang, X.; Gao, C.; Wu, P.; Liu, J.; Xu, Y.; Shen, Q.; Zou, J.; Guo, S. Net annual global warming potential and greenhouse gas intensity in Chinese double rice-cropping systems: A 3-year field measurement in long-term fertilizer experiments. Glob. Chang. Biol. 2011, 17, 2196–2210. [Google Scholar] [CrossRef]
- Adviento-Borbe, M.; Haddix, M.; Binder, D.; Walters, D.; Dobermann, A. Soil greenhouse gas fluxes and global warming potential in four high-yielding maize systems. Glob. Chang. Biol. 2007, 13, 1972–1988. [Google Scholar] [CrossRef]
- Bhatia, A.; Pathak, H.; Jain, N.; Singh, P.; Singh, A. Global warming potential of manure amended soils under rice-wheat system in the indo-gangetic plains. Atmos. Environ. 2005, 39, 6976–6984. [Google Scholar] [CrossRef]
- Das, S.; Adhya, T.K. Effect of combine application of organic manure and inorganic fertilizer on methane and nitrous oxide emissions from a tropical flooded soil planted to rice. Geoderma 2014, 213, 185–192. [Google Scholar] [CrossRef]
- Mosier, A.R.; Halvorson, A.D.; Reule, C.A.; Liu, X.J. Net global warming potential and greenhouse gas intensity in irrigated cropping systems in northeastern colorado. J. Environ. Qual. 2006, 35, 1584–1598. [Google Scholar] [CrossRef] [PubMed]
- Tuomisto, H.; Hodge, I.; Riordan, P.; Macdonald, D. Comparing global warming potential, energy use and land use of organic, conventional and integrated winter wheat production. Ann. Appl. Biol. 2012, 161, 116–126. [Google Scholar] [CrossRef]
- Dendooven, L.; Patino-Zúniga, L.; Verhulst, N.; Luna-Guido, M.; Marsch, R.; Govaerts, B. Global warming potential of agricultural systems with contrasting tillage and residue management in the central highlands of mexico. Agric. Ecosyst. Environ. 2012, 152, 50–58. [Google Scholar] [CrossRef]
- Bhatia, A.; Pathak, H.; Aggarwal, P.K.; Jain, N. Trade-off between productivity enhancement and global warming potential of rice and wheat in India. Nutr. Cycl. Agroecosyst. 2010, 86, 413–424. [Google Scholar] [CrossRef]
- Laratte, B.; Guillaume, B.; Kim, J.; Birregah, B. Modeling cumulative effects in life cycle assessment: The case of fertilizer in wheat production contributing to the global warming potential. Sci. Total Environ. 2014, 481, 588–595. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.; Liang, X.; Chen, Y.; Liu, J.; Gu, J.; Guo, R.; Li, L. Alternate wetting and drying irrigation and controlled-release nitrogen fertilizer in late-season rice. Effects on dry matter accumulation, yield, water and nitrogen use. Field Crops Res. 2013, 144, 212–224. [Google Scholar] [CrossRef]
- Carrijo, D.R.; Lundy, M.E.; Linquist, B.A. Rice yields and water use under alternate wetting and drying irrigation: A meta-analysis. Field Crops Res. 2017, 203, 173–180. [Google Scholar] [CrossRef]
- Shao, G.-C.; Deng, S.; Liu, N.; Yu, S.-E.; Wang, M.-H.; She, D.-L. Effects of controlled irrigation and drainage on growth, grain yield and water use in paddy rice. Eur. J. Agron. 2014, 53, 1–9. [Google Scholar] [CrossRef]
- Hansen, J.; Ruedy, R.; Sato, M.; Lo, K. Global surface temperature change. Rev. Geophys. 2010, 48, RG4004. [Google Scholar] [CrossRef]
- Zhao, X.; Fitzgerald, M. Climate change: Implications for the yield of edible rice. PLoS ONE 2013, 8, e66218. [Google Scholar] [CrossRef] [PubMed]
- Nelson, G.C.; Rosegrant, M.W.; Koo, J.; Robertson, R.; Sulser, T.; Zhu, T.; Ringler, C.; Msangi, S.; Palazzo, A.; Batka, M. Climate Change: Impact on Agriculture and Costs of Adaptation; IFPRI: Washington, DC, USA, 2009; Volume 21. [Google Scholar]
- Li, M. Climate Change to Adversely Impact Grain Production in China by 2030; IFPRI: Washington, DC, USA, 2018; Volume 2018. [Google Scholar]
- Vaghefi, N.; Shamsudin, M.N.; Makmom, A.; Bagheri, M. The economic impacts of climate change on the rice production in Malaysia. Int. J. Agric. Res. 2011, 6, 67–74. [Google Scholar] [CrossRef]
- Matthews, R.; Kropff, M.; Horie, T.; Bachelet, D. Simulating the impact of climate change on rice production in asia and evaluating options for adaptation. Agric. Syst. 1997, 54, 399–425. [Google Scholar] [CrossRef]
- Aggarwal, P.K.; Mall, R. Climate change and rice yields in diverse agro-environments of India. II. Effect of uncertainties in scenarios and crop models on impact assessment. Clim. Chang. 2002, 52, 331–343. [Google Scholar] [CrossRef]
- Lobell, D.B.; Schlenker, W.; Costa-Roberts, J. Climate trends and global crop production since 1980. Science 2011, 333, 616–620. [Google Scholar] [CrossRef] [PubMed]
- Piao, S.; Ciais, P.; Huang, Y.; Shen, Z.; Peng, S.; Li, J.; Zhou, L.; Liu, H.; Ma, Y.; Ding, Y. The impacts of climate change on water resources and agriculture in china. Nature 2010, 467, 43. [Google Scholar] [CrossRef] [PubMed]
- Welch, J.R.; Vincent, J.R.; Auffhammer, M.; Moya, P.F.; Dobermann, A.; Dawe, D. Rice yields in tropical/subtropical Asia exhibit large but opposing sensitivities to minimum and maximum temperatures. Proc. Natl. Acad. Sci. USA 2010, 107, 14562–14567. [Google Scholar] [CrossRef] [PubMed]
- Challinor, A.J.; Watson, J.; Lobell, D.; Howden, S.; Smith, D.; Chhetri, N. A meta-analysis of crop yield under climate change and adaptation. Nat. Clim. Chang. 2014, 4, 287–291. [Google Scholar] [CrossRef]
- Singh, P.; Boote, K.; Kadiyala, M.; Nedumaran, S.; Gupta, S.; Srinivas, K.; Bantilan, M. An assessment of yield gains under climate change due to genetic modification of pearl millet. Sci. Total Environ. 2017, 601, 1226–1237. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, P.; Araya, H.; Aruna, G.; Balamatti, A.; Banerjee, S.; Baskaran, P.; Barah, B.C.; Behera, D.; Berhe, T.; Boruah, P.; et al. System of crop intensification for more productive, resource-conserving, climate-resilient, and sustainable agriculture: Experience with diverse crops in varying agroecologies. Int. J. Agric. Sustain. 2018, 16, 1–28. [Google Scholar] [CrossRef]
- Obeng, E.; Cebert, E.; Singh, B.P.; Ward, R.; Nyochembeng, L.M.; Mays, D.A. Growth and grain yield of pearl millet (Pennisetum glaucum) genotypes at different levels of nitrogen fertilization in the Southeastern United States. J. Agric. Sci. 2012, 4, 155–163. [Google Scholar] [CrossRef]
- Piri, I.; Tavassoli, A. Determining the best management of nitrogen fertilizer consumption and harvest time of forage yield of pearl millet (Pennisetum glaucum) in Shirvan region. Afr. J. Microbiol. Res. 2012, 6, 2287–2293. [Google Scholar]
- Hadebe, S.; Modi, A.; Mabhaudhi, T. Drought tolerance and water use of cereal crops: A focus on sorghum as a food security crop in sub-Saharan Africa. J. Agron. Crop Sci. 2017, 203, 177–191. [Google Scholar] [CrossRef]
- Cao, L.; Wang, Q.; Deng, Z.; Guo, X.; Ma, X.; Ning, H. Effects of climate warming and drying on millet yield in Gansu province and related countermeasures. Ying Yong Sheng Tai Xue Bao 2010, 21, 2931–2937. [Google Scholar] [PubMed]
- Rasul, G.; Hussain, A.; Mahapatra, B.; Dangol, N. Food and nutrition security in the Hindu Kush Himalayan region. J. Sci. Food Agric. 2018, 98, 429–438. [Google Scholar] [CrossRef] [PubMed]
- Msowoya, K.; Madani, K.; Davtalab, R.; Mirchi, A.; Lund, J.R. Climate change impacts on maize production in the warm heart of Africa. Water Resour. Manag. 2016, 30, 5299–5312. [Google Scholar] [CrossRef]
- Li, X.; Takahashi, T.; Suzuki, N.; Kaiser, H.M. Impact of climate change on maize production in Northeast and Southwest China and risk mitigation strategies. APCBEE Procedia 2014, 8, 11–20. [Google Scholar] [CrossRef]
- Leng, G.; Huang, M. Crop yield response to climate change varies with crop spatial distribution pattern. Sci. Rep. 2017, 7, 1463. [Google Scholar] [CrossRef] [PubMed]
- Nagy, J. Effect of Irrigation on Maize Yield (Zea mays L.). Acta Agrar. Debreceniensis 2003, 1–6. Available online: http://www.date.hu/kiadvany/acta/2003-11i/nagy.pdf (accessed on 5 May 2018).
- Amin, M.; Anjum, L.; Alazba, A.; Rizwan, M. Effect of the irrigation frequency and quality on yield, growth and water productivity of maize crops. Qual. Assur. Saf. Crops 2015, 7, 721–730. [Google Scholar] [CrossRef]
- Lobell, D.B.; Burke, M.B. On the use of statistical models to predict crop yield responses to climate change. Agric. For. Meteorol. 2010, 150, 1443–1452. [Google Scholar] [CrossRef]
- Lobell, D.B.; Bänziger, M.; Magorokosho, C.; Vivek, B. Nonlinear heat effects on African maize as evidenced by historical yield trials. Nat. Clim. Chang. 2011, 1, 42. [Google Scholar] [CrossRef]
- Bassu, S.; Brisson, N.; Durand, J.L.; Boote, K.; Lizaso, J.; Jones, J.W.; Rosenzweig, C.; Ruane, A.C.; Adam, M.; Baron, C. How do various maize crop models vary in their responses to climate change factors? Glob. Chang. Biol. 2014, 20, 2301–2320. [Google Scholar] [CrossRef] [PubMed]
- Tesfaye, K.; Gbegbelegbe, S.; Cairns, J.E.; Shiferaw, B.; Prasanna, B.M.; Sonder, K.; Boote, K.; Makumbi, D.; Robertson, R. Maize systems under climate change in Sub-Saharan Africa: Potential impacts on production and food security. Int. J. Clim. Chang. Strateg. 2015, 7, 247–271. [Google Scholar] [CrossRef]
- Gammans, M.; Mérel, P.; Ortiz-Bobea, A. Negative impacts of climate change on cereal yields: Statistical evidence from France. Environ. Res. Lett. 2017, 12, 054007. [Google Scholar] [CrossRef]
- Tao, F.; Zhang, Z.; Xiao, D.; Zhang, S.; Rötter, R.P.; Shi, W.; Liu, Y.; Wang, M.; Liu, F.; Zhang, H. Responses of wheat growth and yield to climate change in different climate zones of China, 1981–2009. Agric. For. Meteorol. 2014, 189, 91–104. [Google Scholar] [CrossRef]
- Eruygur, O.; Özokcu, S. Impacts of climate change on wheat yield in Turkey: A heterogeneous panel study. Ekon. Yaklasim 2016, 27, 219–255. [Google Scholar] [CrossRef]
- Zewdie, A. Impacts of climate change on food security: A literature review in sub Saharan Africa. J. Earth Sci. Clim. Chang. 2014, 5, 225. [Google Scholar]
- Thompson, H.E.; Berrang-Ford, L.; Ford, J.D. Climate change and food security in Sub-Saharan Africa: A systematic literature review. Sustainability 2010, 2, 2719–2733. [Google Scholar] [CrossRef]
- Trostle, R. Global Agricultural Supply and Demand: Factors Contributing to the Recent Increase in Food Commodity Prices; DIANE Publishing: Collingdale, PA, USA, 2010. [Google Scholar]
- Nelson, G.C.; Rosegrant, M.W.; Palazzo, A.; Gray, I.; Ingersoll, C.; Robertson, R.; Tokgoz, S.; Zhu, T.; Sulser, T.B.; Ringler, C. Food Security, Farming, and Climate Change to 2050: Scenarios, Results, Policy Options; IFPRI: Washington, DC, USA, 2010; Volume 172. [Google Scholar]
- Conforti, P. Looking Ahead in World Food and Agriculture: Perspectives to 2050; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2011. [Google Scholar]
- Food and Agriculture Organization of the United Nations (FAO). Introduction to the Basic Concepts of Food Security; FAO: Rome, Italy, 2008. [Google Scholar]
- Thomas, J.; Boote, K.; Allen, L., Jr.; Gallo-Meagher, M.; Davis, J. Elevated temperature and carbon dioxide effects on soybean seed composition and transcript abundance. Crop Sci. 2003, 43, 1548–1557. [Google Scholar] [CrossRef]
- Williams, M.; Shewry, P.; Lawlor, D.; Harwood, J. The effects of elevated temperature and atmospheric carbon dioxide concentration on the quality of grain lipids in wheat (Triticum aestivum L.) grown at two levels of nitrogen application. Plant Cell Environ. 1995, 18, 999–1009. [Google Scholar] [CrossRef]
- Rosenzweig, C.; Iglesias, A.; Yang, X.; Epstein, P.R.; Chivian, E. Climate change and extreme weather events; implications for food production, plant diseases, and pests. Glob. Chang. Hum. Health 2001, 2, 90–104. [Google Scholar] [CrossRef]
- Garnett, T. Where are the best opportunities for reducing greenhouse gas emissions in the food system (including the food chain)? Food Policy 2011, 36, S23–S32. [Google Scholar] [CrossRef]
- Wheeler, T.; Von Braun, J. Climate change impacts on global food security. Science 2013, 341, 508–513. [Google Scholar] [CrossRef] [PubMed]
- Solomon, S.; Plattner, G.-K.; Knutti, R.; Friedlingstein, P. Irreversible climate change due to carbon dioxide emissions. Proc. Natl. Acad. Sci. USA 2009, 106, 1704–1709. [Google Scholar] [CrossRef] [PubMed]
- Stratonovitch, P.; Semenov, M.A. Heat tolerance around flowering in wheat identified as a key trait for increased yield potential in europe under climate change. J. Exp. Bot. 2015, 66, 3599–3609. [Google Scholar] [CrossRef] [PubMed]
- Fita, A.; Rodríguez-Burruezo, A.; Boscaiu, M.; Prohens, J.; Vicente, O. Breeding and domesticating crops adapted to drought and salinity: A new paradigm for increasing food production. Front. Plant Sci. 2015, 6, 978. [Google Scholar] [CrossRef] [PubMed]
- Ehlers, J.; Hall, A. Heat tolerance of contrasting cowpea lines in short and long days. Field Crops Res. 1998, 55, 11–21. [Google Scholar] [CrossRef]
- Gororo, N.; Eagles, H.; Eastwood, R.; Nicolas, M.; Flood, R. Use of triticum tauschii to improve yield of wheat in low-yielding environments. Euphytica 2002, 123, 241–254. [Google Scholar] [CrossRef]
- Benites, F.R.G.; Pinto, C.A.B.P. Genetic gains for heat tolerance in potato in three cycles of recurrent selection. Crop Breed. Appl. Biotechnol. 2011, 11, 133–140. [Google Scholar] [CrossRef]
- Yan, K.; Chen, N.; Qu, Y.Y.; Dong, X.C.; Meng, Q.W.; Zhao, S.J. Overexpression of sweet pepper glycerol-3-phosphate acyltransferase gene enhanced thermotolerance of photosynthetic apparatus in transgenic tobacco. J. Integr. Plant Biol. 2008, 50, 613–621. [Google Scholar] [CrossRef] [PubMed]
- Olmstead, S.M. Climate change adaptation and water resource management: A review of the literature. Energy Econ. 2014, 46, 500–509. [Google Scholar] [CrossRef]
- Reklev, S.; Chen, K.; Stanway, D.; Fernandez, C. China’s Water Squeeze Worsens as Wetlands Shrink 9%. Available online: https://www.scientificamerican.com/article/chinas-water-squeeze-worsens-as-wetlands-shrink/ (accessed on 20 April 2018).
- Rosegrant, M.W.; Koo, J.; Cenacchi, N.; Ringler, C.; Robertson, R.D.; Fisher, M.; Cox, C.M.; Garrett, K.; Perez, N.D.; Sabbagh, P. Food Security in a World of Natural Resource Scarcity: The Role of Agricultural Technologies; IFPRI: Washington, DC, USA, 2014. [Google Scholar]
- Cooley, H.; Christian-Smith, J.; Gleick, P.H. More with Less: Agricultural Water Conservation and Efficiency in California; Pacific Institute: Oakland, CA, USA, 2008; Volume 30, p. 2011. [Google Scholar]
- Brouwer, C.; Prins, K.; Kay, M.; Heibloem, M. Irrigation Water Management: Irrigation Methods; Training Manual No. 5; FAO: Rome, Italy, 1988; Volume 9. [Google Scholar]
- Fageria, N.; Dos Santos, A.; Moraes, M. Influence of urea and ammonium sulfate on soil acidity indices in lowland rice production. Commun. Soil Sci. Plant Anal. 2010, 41, 1565–1575. [Google Scholar] [CrossRef]
- Ju, X.; Kou, C.; Christie, P.; Dou, Z.; Zhang, F. Changes in the soil environment from excessive application of fertilizers and manures to two contrasting intensive cropping systems on the north China plain. Environ. Pollut. 2007, 145, 497–506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vogan, P.J.; Sage, R.F. Water-use efficiency and nitrogen-use efficiency of c3-c4 intermediate species of flaveria juss. (Asteraceae). Plant Cell Environ. 2011, 34, 1415–1430. [Google Scholar] [CrossRef] [PubMed]
- Lychuk, T.E.; Hill, R.L.; Izaurralde, R.C.; Momen, B.; Thomson, A.M. Evaluation of climate change impacts and effectiveness of adaptation options on crop yield in the southeastern United States. Field Crop. Res. 2017, 214, 228–238. [Google Scholar] [CrossRef]
- Lychuk, T.E.; Moulin, A.P.; Lemke, R.L.; Gossen, B.D.; Leeson, J.Y.; Kirk, A.; Johnson, E.N.; Olfert, O.O.; Brandt, S.A.; Thomas, A. Effects of crop inputs, diversity, environment, and terrain on yield in an 18-yr study in the semi-arid Canadian prairies. Can. J. Plant Sci. 2017, 97, 715–730. [Google Scholar]
- Hadebe, S.T.; Mabhaudhi, T.; Modi, A.T. Water use of sorghum (Sorghum bicolor L. Moench) in response to varying planting dates evaluated under rainfed conditions. Water SA 2017, 43, 91–103. [Google Scholar] [CrossRef]
- Rosenzweig, C.; Parry, M.L. Potential impact of climate change on world food supply. Nature 1994, 367, 133–138. [Google Scholar] [CrossRef]
- Roudier, P.; Sultan, B.; Quirion, P.; Berg, A. The impact of future climate change on West African crop yields: What does the recent literature say? Glob. Environ. Chang. 2011, 21, 1073–1083. [Google Scholar] [CrossRef]
Region | Maize Area (Mha) | Maize Yield (MT) | Paddy Area (Mha) | Paddy Yield (MT) | Millet Area (Mha) | Millet Yield (MT) | Wheat Area (Mha) | Wheat Yield (MT) |
---|---|---|---|---|---|---|---|---|
Africa | 36.6 | 77.8 | 12.5 | 32.5 | 20.0 | 13.6 | 8.9 | 23.1 |
Americas | 70.1 | 547.4 | 6.1 | 36.0 | 0.2 | 0.3 | 36.9 | 126.7 |
Asia | 63.5 | 324.1 | 140.5 | 667.9 | 10.9 | 13.8 | 100.4 | 326.7 |
Europe | 17.7 | 117.4 | 0.6 | 4.2 | 0.6 | 0.9 | 62.5 | 250.1 |
Oceania | 0.07 | 0.6 | 0.03 | 0.3 | 0.04 | 0.03 | 11.3 | 22.7 |
World | 187.9 | 1060.1 | 159.8 | 740.9 | 31.7 | 28.3 | 220.1 | 749.4 |
Crop | First | Yield (MT) | Second | Yield (MT) | Third | Yield (MT) | Fourth | Yield (MT) | Fifth | Yield (MT) |
---|---|---|---|---|---|---|---|---|---|---|
Paddy | China | 211.1 | India | 158.8 | Indonesia | 77.3 | Bangladesh | 52.6 | Vietnam | 43.4 |
Millet | India | 10.2 | Niger | 3.9 | China | 2.0 | Mali | 1.8 | Burkina Faso | 1.1 |
Wheat | China | 131.7 | India | 93.5 | Russia | 73.3 | USA | 62.8 | France | 29.5 |
Maize | USA | 384.7 | China | 231.8 | Brazil | 64.1 | Argentina | 39.8 | Ukraine | 28.1 |
Species | Irrigation (mm) | Temperature (°C) | Sunshine (h/d) | Duration of Growth (d) | Photosynthesis Pathway | References |
---|---|---|---|---|---|---|
Paddy | 500–600 | 22–31 | 4–6 | 90–120 | C3 | [13,15] |
Millet | 0 | 20–35 | 4–5 | 60–100 | C4 | [24,25] |
Wheat | 60–90 | −3–23 | 4–6 | 120–180 | C3 | [15,31,32] |
Maize | 40–50 | 11–30 | 6–7 | 90–110 | C4 | [15,29] |
Species | Soil pH | Soil Type | N (kg/ha) | P (kg/ha) | K (kg/ha) | Pesticide | References |
---|---|---|---|---|---|---|---|
Paddy | 5.0–6.5 | flooded field | 90–120 | 30–40 | 40–60 | Yes | [19,20] |
Millet | 4.5–8.0 | saline, sandy, clay loams | No * | No * | No * | No * | [24,25,26] |
Wheat | 5.5–6.5 | sandy loam | 70–200 | 20–40 | 80–100 | Yes | [15,32,33,34] |
Maize | 5.8–7.0 | warm and silt loams | 125–160 | 55–80 | 85–110 | Yes | [29,30,31] |
Crop | Global Warming Potential (Kg CO2 eq. ha−1) | Carbon Equivalent Emission (kg C ha−1) |
---|---|---|
Rice | 2890–17,000 | 956–4600 |
Millet | 3218 | 878 |
Wheat | 2000–18,000 | 545–4900 |
Maize | 3427–17,600 | 935–4800 |
Sorghum | 3358 | 916 |
Rice-Wheat * | 7137–18,000 | 2000–4900 |
Wheat-Maize * | 12,880–18,850 | 3512–5100 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Vanga, S.K.; Saxena, R.; Orsat, V.; Raghavan, V. Effect of Climate Change on the Yield of Cereal Crops: A Review. Climate 2018, 6, 41. https://doi.org/10.3390/cli6020041
Wang J, Vanga SK, Saxena R, Orsat V, Raghavan V. Effect of Climate Change on the Yield of Cereal Crops: A Review. Climate. 2018; 6(2):41. https://doi.org/10.3390/cli6020041
Chicago/Turabian StyleWang, Jin, Sai Kranthi Vanga, Rachit Saxena, Valérie Orsat, and Vijaya Raghavan. 2018. "Effect of Climate Change on the Yield of Cereal Crops: A Review" Climate 6, no. 2: 41. https://doi.org/10.3390/cli6020041
APA StyleWang, J., Vanga, S. K., Saxena, R., Orsat, V., & Raghavan, V. (2018). Effect of Climate Change on the Yield of Cereal Crops: A Review. Climate, 6(2), 41. https://doi.org/10.3390/cli6020041