Quality Control of Global Horizontal Irradiance Estimates through BSRN, TOACs and Air Temperature/Sunshine Duration Test Procedures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset
2.2. Method
2.2.1. Missing Value (NA) Detection
2.2.2. Comparison between BSRN and TOACs Tests
- GD: Ground Data
- So: Solar constant equal to 1367 W/m2
- cos θ: Cosine of solar zenith angle
2.2.3. Sunshine Duration Test
- M-diff: Possible max diffuse radiation equal to 35% of TOA in this study.
50 > SD < 30 min in 60 & GHIGD > 10% TOA W/m2
2.2.4. Air Temperature Test
- Other tests such as the upper and lower limit with extremely rare observations cannot be used for detecting errors in the middle of the data.
- When the comparison test based on solar components cannot be applied because diffuse and direct beam radiation were not recorded.
- When the sunshine record is unavailable at a station, AT is an option.
- The test can be used for further checks to demonstrate the quality of solar radiation data or to compare its result with others.
2.2.5. Combining Air Temperature and Sunshine Duration Tests
2.2.6. Quality Control Flags
2.2.7. Counting All Tests
3. Results
3.1. General check and NA Detection
3.2. Comparing BSRN and TOACs
3.3. Sunshine Duration Test
3.4. Air Temperature Test
3.5. Combining Air Temperature and Sunshine Duration Test
3.6. Data Pass (Flag 1)
4. Discussion
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Pashiardis, S.; Kalogirou, S. Quality control of solar shortwave and terrestrial longwave radiation for surface radiation measurements at two sites in Cyprus. Renew. Energy 2016, 96, 1015–1033. [Google Scholar] [CrossRef]
- Zo, I.-S.; Jee, J.-B.; Kim, B.-Y.; Lee, K.-T. Baseline surface radiation network (BSRN) quality control of solar radiation data on the gangneung-wonju national university radiation station. Asia-Pacific J. Atmos. Sci. 2017, 53, 11–19. [Google Scholar] [CrossRef]
- Rigollier, C.; Lefevre, M.; Cros, S.; Wald, L. In Heliosat 2: An improved method for the mapping of the solar radiation from meteosat imagery, In Proceedings of the EUMETSAT Meteorological Satellite Conference, Darmstadt, Germany, 23–27 September 2002; pp 585–592.
- Janjai, S.; Pankaew, P.; Laksanaboonsong, J. A model for calculating hourly global solar radiation from satellite data in the tropics. Appl. Energy 2009, 86, 1450–1457. [Google Scholar] [CrossRef]
- Dubayah, R. Estimating net solar radiation using landsat thematic mapper and digital elevation data. Water Resour. Res. 1992, 28, 2469–2484. [Google Scholar] [CrossRef]
- Qin, J.; Chen, Z.; Yang, K.; Liang, S.; Tang, W. Estimation of monthly-mean daily global solar radiation based on modis and trmm products. Appl. Energy 2011, 88, 2480–2489. [Google Scholar] [CrossRef]
- Hassan, G.E.; Youssef, M.E.; Mohamed, Z.E.; Ali, M.A.; Hanafy, A.A. New temperature-based models for predicting global solar radiation. Appl. Energy 2016, 179, 437–450. [Google Scholar] [CrossRef]
- Ampratwum, D.B.; Dorvlo, A.S.S. Estimation of solar radiation from the number of sunshine hours. Appl. Energy 1999, 63, 161–167. [Google Scholar] [CrossRef]
- El-Metwally, M. Simple new methods to estimate global solar radiation based on meteorological data in egypt. Atmos. Res. 2004, 69, 217–239. [Google Scholar] [CrossRef]
- Yadav, A.K.; Chandel, S. Solar radiation prediction using artificial neural network techniques: A review. Renew. Sustain. Energy Rev. 2014, 33, 772–781. [Google Scholar] [CrossRef]
- Younes, S.; Claywell, R.; Muneer, T. Quality control of solar radiation data: Present status and proposed new approaches. Energy 2005, 30, 1533–1549. [Google Scholar] [CrossRef]
- Muneer, T.; Fairooz, F. Quality control of solar radiation and sunshine measurements–lessons learnt from processing worldwide databases. Build. Serv. Eng. Res. Technol. 2002, 23, 151–166. [Google Scholar] [CrossRef]
- Long, C.; Shi, Y. An automated quality assessment and control algorithm for surface radiation measurements. Open Atmos. Sci. J. 2008, 2, 23–37. [Google Scholar] [CrossRef]
- Shi, G.-Y.; Hayasaka, T.; Ohmura, A.; Chen, Z.-H.; Wang, B.; Zhao, J.-Q.; Che, H.-Z.; Xu, L. Data quality assessment and the long-term trend of ground solar radiation in china. J. Appl. Meteorol. Climatol. 2008, 47, 1006–1016. [Google Scholar] [CrossRef]
- Roesch, A.; Wild, M.; Ohmura, A.; Dutton, E.G.; Long, C.N.; Zhang, T. Assessment of bsrn radiation records for the computation of monthly means. Atmos. Meas. Tech. 2011, 4, 339. [Google Scholar] [CrossRef]
- Schwandt, M.; Chhatbar, K.; Meyer, R.; Mitra, I.; Vashistha, R.; Giridhar, G.; Gomathinayagam, S.; Kumar, A. Quality check procedures and statistics for the indian srra solar radiation measurement network. Energy Procedia. 2014, 57, 1227–1236. [Google Scholar] [CrossRef]
- Moreno-Tejera, S.; Ramírez-Santigosa, L.; Silva-Pérez, M. A proposed methodology for quick assessment of timestamp and quality control results of solar radiation data. Renew. Energy 2015, 78, 531–537. [Google Scholar] [CrossRef]
- Perez-Astudillo, D.; Bachour, D.; Martin-Pomares, L. In Improved quality control protocols on solar radiation measurements. Sol. Energy 2018, 169, 425–433. [Google Scholar]
- Blonquist, J.M.; Tanner, B.D.; Bugbee, B. Evaluation of measurement accuracy and comparison of two new and three traditional net radiometers. Agric. Forest Meteorol. 2009, 149, 1709–1721. [Google Scholar] [CrossRef]
- Long, C.N.; Dutton, E.G. BSRN Global Network Recommended QC Tests, V2.0. BSRN Technical Report (2002). Available online: http://ezksun3.ethz.ch/bsrn/admin/dokus/qualitycheck.pdf (accessed on 17 July 2018).
- Geiger, M.; Diabaté, L.; Ménard, L.; Wald, L. A web service for controlling the quality of measurements of global solar irradiation. Sol. Energy 2002, 73, 475–480. [Google Scholar] [CrossRef] [Green Version]
- Moradi, I. Quality control of global solar radiation using sunshine duration hours. Energy 2009, 34, 1–6. [Google Scholar] [CrossRef]
- Tang, W.; Yang, K.; He, J.; Qin, J. Quality control and estimation of global solar radiation in china. Sol. Energy 2010, 84, 466–475. [Google Scholar] [CrossRef]
- Khaliliaqdam, N.; Soltani, A. Quality control and methods for modeling daily global solar radiation (case study: Gorgan, Iran). Int. J. Agric. Crop Sci. 2012, 4, 971–978. [Google Scholar]
- Maxwell, E.; Wilcox, S.; Rymes, M. Users Manual for SERI QC Software, Assessing the Quality of Solar Radiation Data; Report No. NREL-TP-463–5608; National Renewable Energy Laboratory: Golden, CO, USA, 1993. [Google Scholar]
- Lemos, L.F.; Starke, A.R.; Boland, J.; Cardemil, J.M.; Machado, R.D.; Colle, S. Assessment of solar radiation components in brazil using the brl model. Renew. Energy 2017, 108, 569–580. [Google Scholar] [CrossRef]
- Ineichen, P. Solar Radiation Resource in Geneva: Measurements, Modeling, Data Quality Control, Format and Accessibility. 2013. Available online: https://archive-ouverte.unige.ch/unige:29599 (accessed on 17 July 2018).
- Journée, M.; Bertrand, C. Quality control of solar radiation data within the rmib solar measurements network. Sol. Energy 2011, 85, 72–86. [Google Scholar] [CrossRef]
- WMO. Guide to Meteorological Instruments and Methods of Observation; Organization (WMO-No 8); World Meteorological Organisation: Geneva, Switzerland, 2008. [Google Scholar]
- Urraca, R.; Gracia-Amillo, A.M.; Huld, T.; Martinez-de-Pison, F.J.; Trentmann, J.; Lindfors, A.V.; Riihelä, A.; Sanz-Garcia, A. Quality control of global solar radiation data with satellite-based products. Sol. Energy 2017, 158, 49–62. [Google Scholar] [CrossRef]
- Scharmer, K.; Page, J.; Wald, L.; Albuisson, M.; Czeplak, G.; Bourges, B.; Aguiar, R.; Lund, H.; Joukoff, A.; et al. The European Solar Radiation Atlas Vol. 2: Database and Exploitation Software; Presses des Mines: Paris, France, 2000. [Google Scholar]
- Zahumenský, I. Guidelines on Quality Control Procedures for Data from Automatic Weather Stations; World Meteorological Organization: Geneva, Switzerland, 2004. [Google Scholar]
- Prieto, J.; Martínez-García, J.; Garcia, D. Correlation between global solar irradiation and air temperature in Asturias, Spain. Sol. Energy 2009, 83, 1076–1085. [Google Scholar] [CrossRef]
- Australian Government Bureau of Meteorology. Available online: http://reg.bom.gov.au/climate/reg/oneminsolar/ (accessed on 2 February 2018).
- König-Langlo, G.; Sieger, R.; Schmithüsen, H.; Bücker, A.; Richter, F.; Dutton, E. The Baseline Surface Radiation Network and Its World Radiation Monitoring Centre at the Alfred Wegener Institute; World Meteorological Organization: Geneva, Switzerland, 2013. [Google Scholar]
- GDMS. Ministry of Transport and Communications 2016. General Directorate of Meteorology & Seismology.. Available online: http://gdms-krg.org/ku/ (accessed on 14 May 2017).
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World map of the köppen-geiger climate classification updated. Meteorolo. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- NREL. Solar and Lunar Position Calculators. Available online: https://midcdmz.nrel.gov/apps/go2url.pl?site=BMS (accessed on 7 July 2017).
- SoDa. Solar Radiation Data. Available online: http://www.soda-pro.com/ (accessed on 20 March 2017).
- Lefèvre, M.; Oumbe, A.; Blanc, P.; Espinar, B.; Gschwind, B.; Qu, Z.; Wald, L.; Schroedter-Homscheidt, M.; Hoyer-Klick, C.; Arola, A.; et al. Mcclear: A new model estimating downwelling solar radiation at ground level in clear-sky conditions. Atmos. Meas. Tech. 2013, 6, 2403–2418. [Google Scholar]
- Reno, M.J.; Hansen, C.W.; Stein, J.S. Global Horizontal Irradiance Clear Sky Models: Implementation and Analysis; Sandia National Laboratories: Albuquerque, NM, USA, 2012. [Google Scholar]
- FAO. Chapter 3—Meteorological data. In Food and Agriculture Organization; Food and Agriculture Organization: Español; Available online: http://www.fao.org/docrep/X0490E/X0490E00.htm (accessed on 27 July 2018).
- Rigollier, C.; Bauer, O.; Wald, L. On the clear sky model of the esra—european solar radiation atlas—with respect to the heliosat method. Sol. Energy 2000, 68, 33–48. [Google Scholar] [CrossRef]
- Roesch, A.; Wild, M.; Ohmura, A.; Dutton, E.G.; Long, C.N.; Zhang, T. Assessment of BSRN radiation records for the computation of monthly means. Atmos. Meas. Tech. 2011, 4, 339–354. [Google Scholar] [CrossRef] [Green Version]
- Lefèvre, M.; Wald, L. Validation of the mcclear clear-sky model in desert conditions with three stations in israel. Adv. Sci. Res. 2016, 13, 21–26. [Google Scholar] [CrossRef] [Green Version]
- Besharat, F.; Dehghan, A.A.; Faghih, A.R. Empirical models for estimating global solar radiation: A review and case study. Renew. Sustain. Energy Rev. 2013, 21, 798–821. [Google Scholar] [CrossRef]
Station | Latitude | Longitude | Elevation a.s.l (m) | Time Scale | Data Number |
---|---|---|---|---|---|
Barzor | 37.1881 N | 42.6950 E | 509 | 1 July 2010–31 August 2011 | 4119 |
Batufa | 37.1764 N | 43.0236 E | 947 | 1 January 2011–31 December 2013 | 10320 |
Enjaksor | 37.0603 N | 42.4353 E | 509 | 1 January 2011–31 December 2014 | 13757 |
Hojava | 37.0075 N | 43.0369 E | 933 | 1 January 2011–31 December 2013 | 10320 |
Mazne | 36.7183 N | 44.4814 E | 677 | 1 June 2010–30 September 2011 | 4749 |
Kani spi | 36.5556 N | 42.8483 E | 334 | 1 January 2011–31 December 2014 | 13757 |
Jazhnikan | 36.3564 N | 43.9556 E | 430 | 1 January 2011–31 October 2013 | 9893 |
Aliawa | 36.1933 N | 44.7908 E | 535 | 1 July 2010–30 November 2011 | 4877 |
Tarjan | 36.1258 N | 43.7353 E | 276 | 1 January 2011–31 December 2013 | 10320 |
Shabakaykon | 35.9536 N | 44.9422 E | 602 | 1 July 2010–30 November 2011 | 4877 |
Surdash | 35.8625 N | 45.1036 E | 1040 | 1 January 2013–31 December 2013 | 3437 |
Banmaqan | 35.5197 N | 44.7903 E | 887 | 1 June 2010–31 December 2010 | 1987 |
Kalarikon | 34.6547 N | 45.3019 E | 254 | 1 June 2010–31 March 2011 | 2766 |
Station | Latitude | Longitude | Elevation a.s.l (m) | Time Scale | Data Number |
---|---|---|---|---|---|
Halsho | 36.2097 N | 45.2598 E | 1105 | 1 January 2013–31 December 2016 | 13757 |
Dukan | 35.9541 N | 44.9505 E | 555 | 1 January 2015–26 Septmber 2016 | 6138 |
Bazian | 35.6021 N | 45.1376 E | 892 | 1 April 2014–30 December 2016 | 9534 |
Halabja | 35.1889 N | 45.9928 E | 695 | 1 January 2013–31 December 2016 | 13757 |
Darband | 35.1131 N | 45.6854 E | 513 | 1 January 2015–31 December 2016 | 6883 |
Maydan | 34.9194 N | 45.6224 E | 330 | 1 January 2014–31 December 2016 | 10320 |
Kalar | 34.6244 N | 45.3049 E | 218 | 1 January 2014–31 December 2016 | 10320 |
Station-Country | Latitude | Longitude | Elevation a.s.l (m) | Time Scale | Data Number | Used for Test | Köppen Climate Type * |
---|---|---|---|---|---|---|---|
Carpentras–France | 44.083 N | 5.059 E | 100 | 1 January 2015–31 December 2016 | 6366 | AT | Csb |
Sede Boqer-Israel | 30.905 N | 34.782 E | 477 | 1 January 2010–31 December 2011 | 6899 | AT | Bwh |
Petrolina-Brazil | 34.6244 S | 45.3049 W | 387 | 1 January 2013–31 December 2015 | 7318 | AT | Bsh |
Geraldton-Australia | 28.7953 S | 114.6975 E | 33 | 1 January 2004–31 December 2005 | 5148 | SD | Bsh |
Longreach-Australia | 23.4397 S | 144.2828 E | 192 | 1 January 2013–31 December 2013 | 3027 | SD | Bsh |
Broome–Australia | 17.9475 S | 122.2353 E | 7.4 | 1 January 2015–31 December 2016 | 5778 | SD | Bsh |
Flag Number | Test Condition or Criteria | Test Description | |
---|---|---|---|
Pass | Fail | ||
1 | 2 | Upper physically possible limit BSRN second part of Equation (1) | Comparison of GHI ground data against TOA and additional TOA following Equation (1) for the upper limit and with 3% and −4% for the lower limit. Checks for major errors and flags those as a fail flag. |
1 | 3 | Upper physically possible limit TOACs second part of Equation (2) | |
1 | 4 | Lower physically possible limit BSRN first part of Equation (1) | |
1 | 5 | Lower physical possibly limit TOACs first part of Equation (2) | |
1 | 6 | Extremely rare limit BSRN second part of Equation (4) | Comparison of GHI ground data against 10% of TOA. |
1 | 7 | Extremely rare limit TOACs Equation (5) | Comparison of GHI ground data against the McClear model for clear sky radiation. |
1 | 8 | Sunshine 50 minutes in 60 and 35% of TOA: SD between 30 to 50 minutes in 60 and 10% of TOA Equation (7) | The test derived from the relation between GHI and SD as an argument when SD is high. Detects errors stemming from shaded or partly shaded conditions and partial malfunction of the sensor. |
1 | 9 | Sunshine zero and 35% of TOA Equation (6) | Same as flag 8, based on whether SD is zero. Persistency check of data and test for calibration errors of the sensor. |
1 | 10 | Temperature above its mean in the month and 10% of TOA Equation (8) | Tests the relation between GHI and AT similar to flag 8. Checks the plausibility of data. |
1 | 11 | A temperature lowers its half mean in the month and 35% of TOA Equation (9) | Similar to flag 9. Also checks the plausibility of the data. |
1 | 12 | Combine Equation (6) and Equation (8) | Based on the relationship among GHI, AT and SD. Tests all three variables against each other. |
1 | 13 | Combine Equation (7) and Equation (9) | |
1 | 14 | GHI/DNI*Cos θ + DHI ≤ 1.08, GHI/DNI*Cos θ + DHI ≥ 0.92 | Consistency check based on the combination of the solar radiation components. Applied for stations in Table 3 |
1 | Specific number | To count one test or some tests together | Counts if the observation passes all tests or some tests. |
Name | NA (%) | F2 (%) | F3 (%) | F4 (%) | F5 (%) | F6 (%) | F7 (%) | F10 (%) | F11 (%) |
---|---|---|---|---|---|---|---|---|---|
Barzor | 0.0 | 0 | 0.0 | 0 | 0.61 | 0 | 8.79 | 0.68 | 0.68 |
Batufa | 0 | 0 | 0.01 | 0 | 0.68 | 0 | 9.21 | 0.63 | 1.49 |
Enjkasor | 0 | 0 | 0.04 | 0 | 0.43 | 0 | 8.12 | 0.81 | 1.40 |
Hojava | 0.3 | 0 | 0.05 | 0 | 0.40 | 0 | 5.52 | 0.63 | 1.63 |
Mazne | 0 | 0 | 0 | 0 | 5.55 | 0 | 4.36 | 3.31 | 1.49 |
Kanispi | 0 | 0 | 0.01 | 0 | 0.46 | 0 | 8.03 | 0.71 | 1.05 |
Jazhnikan | 0 | 0 | 0 | 0 | 0.31 | 0 | 4.45 | 0.53 | 1.02 |
Aliawa | 0 | 0 | 0 | 0 | 0.24 | 0 | 12.98 | 0.33 | 0.76 |
Tarjan | 0 | 0 | 0.08 | 0 | 0.29 | 0 | 9.18 | 0.65 | 1.77 |
Shabakaykon | 0 | 0 | 0.0 | 0 | 0.86 | 0 | 2.21 | 0.69 | 0.63 |
Surdash | 0 | 0 | 0.03 | 0 | 1.46 | 0 | 27.18 | 1.11 | 1.75 |
Banmqan | 0 | 0 | 0.20 | 0 | 6.14 | 0.75 | 17.45 | 0.0 | 0.40 |
Kalarikon | 0 | 0 | 0 | 0 | 0.07 | 0.0 | 11.65 | 0.04 | 0.36 |
Name | NA (%) | F2 (%) | F3 (%) | F4 (%) | F5 (%) | F6 (%) | F7 (%) | F8 (%) | F9 (%) | F10 (%) | F11 (%) | F12 (%) | F13 (%) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Halsho | 3.0 | 0 | 0.01 | 0 | 1.15 | 0 | 5.61 | 0.01 | 17.64 | 0.80 | 1.81 | 0 | 0.36 |
Dukan | 7.0 | 0 | 0 | 0 | 1.14 | 0 | 1.12 | 1.12 | 0.02 | 1.85 | 0.72 | 0 | 0 |
Bazian | 5.6 | 0 | 0 | 0 | 0.36 | 0 | 3.17 | 0.07 | 12.3 | 0.29 | 0.72 | 0 | 0.04 |
Halabja | 3.3 | 0 | 0 | 0 | 0.60 | 0 | 0.03 | 1.68 | 0.03 | 0.54 | 0.46 | 0 | 0.0 |
Darband | 7.5 | 0 | 0 | 0 | 0.97 | 0 | 0.46 | 0.56 | 0.09 | 1.22 | 0.31 | 0 | 0 |
Maydan | 11.3 | 0 | 0 | 0 | 0.45 | 0 | 2.83 | 0.02 | 3.93 | 0.07 | 0.20 | 0 | 0.0 |
Kalar | 6.5 | 0 | 0 | 0 | 9.53 | 0 | 1.84 | 7.36 | 7.38 | 4.54 | 0.09 | 3.45 | 0.0 |
Name | F8 (%) | F9 (%) | F10 (%) | F11 (%) | F14 (%) |
---|---|---|---|---|---|
Carpentras-France | - | - | 0.93 | 2.08 | 0.03 |
Sede Boqer-Israel | - | - | 0.04 | 0.58 | 2.5 |
Petrolina-Brazil | - | - | 0 | 0 | 1.87 |
Geraldton-Australia | 0 | 0.59 | - | - | 0.02 |
Longreach-Australia | 0.03 | 0.26 | - | - | 0.0 |
Broome-Australia | 0.02 | 0.43 | - | - | 0.0 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ameen, B.; Balzter, H.; Jarvis, C. Quality Control of Global Horizontal Irradiance Estimates through BSRN, TOACs and Air Temperature/Sunshine Duration Test Procedures. Climate 2018, 6, 69. https://doi.org/10.3390/cli6030069
Ameen B, Balzter H, Jarvis C. Quality Control of Global Horizontal Irradiance Estimates through BSRN, TOACs and Air Temperature/Sunshine Duration Test Procedures. Climate. 2018; 6(3):69. https://doi.org/10.3390/cli6030069
Chicago/Turabian StyleAmeen, Bikhtiyar, Heiko Balzter, and Claire Jarvis. 2018. "Quality Control of Global Horizontal Irradiance Estimates through BSRN, TOACs and Air Temperature/Sunshine Duration Test Procedures" Climate 6, no. 3: 69. https://doi.org/10.3390/cli6030069
APA StyleAmeen, B., Balzter, H., & Jarvis, C. (2018). Quality Control of Global Horizontal Irradiance Estimates through BSRN, TOACs and Air Temperature/Sunshine Duration Test Procedures. Climate, 6(3), 69. https://doi.org/10.3390/cli6030069