Relationship between City Size, Coastal Land Use, and Summer Daytime Air Temperature Rise with Distance from Coast
Abstract
:1. Introduction
2. Outline of Calculation
3. Calculation Accuracy
4. Analysis on Air Temperature Distribution
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Oke, T.R. City size and the urban heat island. Atmos. Environ. 1973, 7, 769–779. [Google Scholar] [CrossRef]
- Fukuoka, Y. Physical climatological discussion on causal factors of urban temperature. Mem. Fac. Integr. Arts Sci. Hiroshima Univ. 1983, IV, 157–178. [Google Scholar]
- Park, H.C. Features of the heat island in Seoul and its surrounding cities. Atmos. Environ. 1986, 20, 1859–1866. [Google Scholar] [CrossRef]
- Sakakibara, Y.; Kitahara, Y. Relationship between Population and Heat Island Intensity in Japanese Cities. Tenki 2003, 50, 625–633. [Google Scholar]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.M.; Duha, M.G.; Huang, X.Y.; Wang, W.; Powers, J.G. A description of advanced research WRF version 3. NCAR/TN-475+STR 2008. [Google Scholar] [CrossRef]
- Iizuka, S.; Xuan, Y.; Kondo, Y. Impacts of disaster mitigation/prevention urban structure models of future urban thermal environment. Sustain. Cities Soc. 2015, 19, 414–420. [Google Scholar] [CrossRef]
- Kusaka, H.; Iijima, N.; Ihara, T.; Hara, M.; Takane, Y.; Iizuka, S. Future projection of heat stroke and sleep disturbance for 2070’s August in Tokyo, Nagoya, and Osaka, Dynamical downscale experiments from multiple CMIP3-GCMs and health impact assessment by mid-point type methodology. J. Environ. Eng. AIJ 2013, 693, 873–881. [Google Scholar] [CrossRef]
- Moriyama, M.; Inui, Y.; Takebayashi, H. Study on Thermal Environmental Mitigation Effects Caused by Changes of Urban Form on a Large Scale Area. In Proceedings of the 7th Japanese-German Meeting on Urban Climatology, Hannover, Germany, 6–10 October 2014. [Google Scholar]
- Takebayashi, H.; Moriyama, M. Urban heat island phenomena influenced by sea breeze. AIJ J. Technol. Des. 2005, 21, 199–202. (In Japanese) [Google Scholar] [CrossRef]
- Kusaka, H.; Kimura, F.; Hirakuchi, H.; Mizutori, M. The effects of land-use alternation on the sea breeze and daytime heat island in the Tokyo metropolitan area. J. Meteorol. Soc. Japan 2000, 78, 405–420. [Google Scholar] [CrossRef]
- Yamamo, H.; Mikami, T.; Takahashi, H. Impact of sea breeze penetration over urban areas on midsummer temperature distributions in the Tokyo metropolitan area. Int. J. Climatol. 2017, 37, 5154–5169. [Google Scholar] [CrossRef]
- Hardin, A.W.; Liu, Y.; Gao, G.; Vanos, J.K. Urban heat island intensity and spatial variability by synoptic weather type in the northeast U.S. Urban Clim. 2018, 24, 747–762. [Google Scholar] [CrossRef]
- Kusaka, H.; Kondo, H.; Kikegawa, Y.; Kimura, F. A simple single-layer urban canopy model for atmospheric models, Comparison with multi-layer and slab models. Bound. Layer Meteorol. 2001, 101, 261–304. [Google Scholar] [CrossRef]
- Kitao, N.; Moriyama, M.; Nakajima, S.; Tanaka, T.; Takebayashi, H. The characteristics of urban heat island based on the comparison of temperature and wind field between present land cover and potential natural land cover. In Proceedings of the Seventh International Conference on Urban Climate, Yokohama, Japan, 29 June–3 July 2009. [Google Scholar]
- Takebayashi, H.; Senoo, M. Analysis of the relationship between urban size and heat island intensity using WRF model. Urban Clim. 2018, 24, 287–298. [Google Scholar] [CrossRef]
For Japanese Cities | For German Cities | ||
---|---|---|---|
Period | August 1–31, 2010 | July 23–August 23, 2008 | |
Vertical grid | 28 layers (surface - 100 hPa) | ||
Horizontal grid | Domain 1: 3 km (120 x 120 grids), Domain 2: 1 km (103 x 103 grids) | ||
Meteorological data | JMA: Meso-scale analysis (3 hourly, 10 km gird, 20 layer) | ||
NCEP: final analysis (6 hourly, 1 degree grid, 17 layer) | |||
Geographical data | Terrain height | Digital map (50 x 50 m resolution) | United states geological survey (about 100 x 100 m resolution) |
Land use | Digital national land information (about 100 x 100 m resolution) + NVI | ||
Microphysics process | Purdue Lin et al. scheme | ||
Radiation process | Long wave | RRTM long wave scheme | |
Short wave | Dudhia short wave scheme | ||
Planetary boundary layer process | Mellor–Yamada–Janjic PBL scheme | ||
Surface process | Urban area | UCM (urban canopy model) | |
Non-urban area | Noah LSM | ||
Cumulus parameterization | None | ||
Four-dimensional data assimilation | None |
Air Temperature | Wind Velocity | ||||||
---|---|---|---|---|---|---|---|
Measurement site | Bias (°C) | RMSE (°C) | Correlation | Bias (m/s) | RMSE (m/s) | Correlation | |
Tokyo area | Tokyo | 0.50 | 0.72 | 0.92 | −0.38 | 0.54 | 0.78 |
Nerima | 0.72 | 0.79 | 0.92 | 1.74 | 1.85 | 0.63 | |
Fuchu | 1.80 | 2.14 | 0.90 | 0.01 | 0.72 | 0.70 | |
Saitama | 1.13 | 1.19 | 0.91 | 0.41 | 0.72 | 0.69 | |
Tsukuba | 0.82 | 0.88 | 0.94 | 0.73 | 0.95 | 0.74 | |
Chiba | −0.24 | 0.28 | 0.90 | −0.97 | 1.03 | 0.78 | |
Osaka area | Osaka | 0.20 | 0.31 | 0.92 | −0.13 | 0.43 | 0.67 |
Kobe | 0.30 | 0.45 | 0.89 | −1.14 | 1.19 | 0.59 | |
Sakai | 0.40 | 1.15 | 0.91 | 0.28 | 0.71 | 0.58 | |
Toyonaka | 0.43 | 0.54 | 0.91 | −0.18 | 0.52 | 0.62 | |
Yao | 0.92 | 0.98 | 0.92 | −0.71 | 0.92 | 0.56 | |
Hirakata | 0.42 | 0.63 | 0.87 | 0.86 | 0.94 | 0.47 | |
Nagoya area | Nagoya | 0.71 | 0.80 | 0.90 | −0.46 | 0.56 | 0.64 |
Tokai | 0.24 | 0.48 | 0.89 | 0.97 | 1.02 | 0.53 | |
Aisai | −0.18 | 0.32 | 0.93 | 1.37 | 1.52 | 0.62 | |
Toyota | 0.59 | 0.75 | 0.93 | 0.42 | 0.58 | 0.33 | |
Gifu | 0.97 | 1.01 | 0.90 | −0.29 | 0.40 | 0.64 | |
Tajimi | 0.47 | 0.84 | 0.93 | 0.46 | 0.59 | 0.53 | |
Hiroshima area | Hiroshima | 0.01 | 0.02 | 0.91 | −0.56 | 0.77 | 0.56 |
Kure | −0.05 | 0.06 | 0.93 | 0.04 | 0.55 | 0.59 | |
Otake | 0.05 | 0.05 | 0.86 | −0.70 | 0.74 | 0.41 | |
Higashi hiroshima | −0.08 | 0.08 | 0.94 | −0.50 | 0.77 | 0.30 | |
Miiri | 0.03 | 0.03 | 0.89 | −1.38 | 1.68 | 0.01 | |
Sendai area | Sendai | −0.03 | 0.04 | 0.90 | −0.19 | 0.44 | 0.46 |
Watari | −0.06 | 0.06 | 0.81 | −0.36 | 0.62 | 0.31 | |
Shiogama | 0.47 | 1.08 | 0.91 | 1.38 | 1.45 | 0.32 | |
Zao | −0.02 | 0.04 | 0.83 | −0.82 | 0.90 | 0.12 | |
Ishinomaki | −0.05 | 0.06 | 0.83 | −0.74 | 0.82 | 0.57 |
Air Temperature | Wind Velocity | ||||||
---|---|---|---|---|---|---|---|
Measurement site | Bias (°C) | RMSE (°C) | Correlation | Bias (m/s) | RMSE (m/s) | Correlation | |
Berlin area | Alexanderplatz | 0.11 | 0.61 | 0.93 | - | - | - |
Buch | −0.30 | 0.58 | 0.93 | - | - | - | |
Dahlem | 1.44 | 1.84 | 0.94 | - | - | - | |
Marzahn | 0.47 | 0.73 | 0.93 | - | - | - | |
Tegel | 0.59 | 0.78 | 0.94 | 1.29 | 1.35 | 0.84 | |
Tempelhof | 0.73 | 0.84 | 0.94 | 0.97 | 1.08 | 0.82 | |
Neuruppin | −0.15 | 1.27 | 0.90 | 2.08 | 2.14 | 0.79 | |
Potsdam | −0.74 | 1.88 | 0.91 | 0.86 | 0.90 | 0.74 | |
Zehdenick | −0.28 | 0.95 | 0.91 | - | - | - | |
Heckelberg | 0.02 | 0.94 | 0.91 | - | - | - | |
Essen area | Bochum | −0.15 | 0.73 | 0.87 | - | - | - |
Borken in Westfalen | −0.53 | 1.84 | 0.90 | - | - | - | |
Essen-Bredeney | 0.47 | 0.76 | 0.92 | 1.37 | 1.40 | 0.74 | |
Toenisvorst | −0.69 | 0.95 | 0.92 | - | - | - | |
Wuppertal-Buchenhofen | 1.19 | 1.34 | 0.91 | - | - | - | |
Remscheid | −0.56 | 0.82 | 0.90 | - | - | - | |
Luedinghausen-Brochtrup | −0.82 | 0.92 | 0.92 | - | - | - | |
Duisburg-Baerl | −1.00 | 1.32 | 0.91 | - | - | - | |
Waltrop-Abdinghof | −0.12 | 0.45 | 0.92 | - | - | - | |
Gevelsberg-Oberbroeking | −0.60 | 0.88 | 0.90 | - | - | - | |
Karlsruhe area | Bergzabern-Ba | −1.63 | 1.70 | 0.91 | - | - | - |
Heidelberg | −2.93 | 3.00 | 0.91 | - | - | - | |
Kaiserslautern | −0.99 | 1.15 | 0.93 | - | - | - | |
Karlsruhe | −1.60 | 1.73 | 0.92 | −0.54 | 0.61 | 0.73 | |
Pforzheim-Ispringen | −0.13 | 0.72 | 0.92 | 0.46 | 0.66 | 0.61 | |
Rheinau-Memprechtshofen | −0.44 | 0.71 | 0.91 | - | - | - | |
Neubulach-Oberhaugstett | 0.12 | 0.94 | 0.91 | - | - | - |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takebayashi, H.; Tanaka, T.; Moriyama, M.; Watanabe, H.; Miyazaki, H.; Kittaka, K. Relationship between City Size, Coastal Land Use, and Summer Daytime Air Temperature Rise with Distance from Coast. Climate 2018, 6, 84. https://doi.org/10.3390/cli6040084
Takebayashi H, Tanaka T, Moriyama M, Watanabe H, Miyazaki H, Kittaka K. Relationship between City Size, Coastal Land Use, and Summer Daytime Air Temperature Rise with Distance from Coast. Climate. 2018; 6(4):84. https://doi.org/10.3390/cli6040084
Chicago/Turabian StyleTakebayashi, Hideki, Takahiro Tanaka, Masakazu Moriyama, Hironori Watanabe, Hiroshi Miyazaki, and Kosuke Kittaka. 2018. "Relationship between City Size, Coastal Land Use, and Summer Daytime Air Temperature Rise with Distance from Coast" Climate 6, no. 4: 84. https://doi.org/10.3390/cli6040084
APA StyleTakebayashi, H., Tanaka, T., Moriyama, M., Watanabe, H., Miyazaki, H., & Kittaka, K. (2018). Relationship between City Size, Coastal Land Use, and Summer Daytime Air Temperature Rise with Distance from Coast. Climate, 6(4), 84. https://doi.org/10.3390/cli6040084