Climate and the Decline and Fall of the Western Roman Empire: A Bibliometric View on an Interdisciplinary Approach to Answer a Most Classic Historical Question
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset Used
2.2. Visualization of Authorships and Research Topics
2.3. Visualization of the Citation Network
2.4. News Mentions
3. Results
3.1. Estimated Number of Publications
3.2. Co-authorship and Keyword Maps
3.3. Citation Network
3.4. News Mentions
4. Discussion
5. Conclusions
- Vulnerability, or sensitivity, to climate change is not equal, different societies were better able to withstand certain climate changes than others;
- The possible impact of climate change on other factors decisive for the demise of societies, like food production and livestock pasture;
- A better understanding of the casual chain from climate shift to history;
- The re-interpretation of written records with regard to climatic shifts, as documented by paleoclimatic records.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
# 3 | 257 | TITLE: (((breakdown OR collapse OR decline OR demise OR doom OR end OR downfall OR fall OR fate) SAME (rome OR roman OR romans OR “late antiquity”) NOT republic)) Refined by: [excluding] RESEARCH AREAS: (MUSIC OR LITERATURE OR FILM RADIO TELEVISION OR LINGUISTICS OR ART OR THEATER) AND DOCUMENT TYPES: (ARTICLE OR PROCEEDINGS PAPER OR REVIEW) Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, BKCI-S, BKCI-SSH, ESCI, CCR-EXPANDED, IC Timespan=All years |
# 2 | 1123 | TITLE: (((breakdown OR collapse OR decline OR demise OR doom OR end OR downfall OR fall OR fate) SAME (rome OR roman OR romans OR “late antiquity”) NOT republic)) Refined by: [excluding] RESEARCH AREAS: (MUSIC OR LITERATURE OR FILM RADIO TELEVISION OR LINGUISTICS OR ART OR THEATER) Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, BKCI-S, BKCI-SSH, ESCI, CCR-EXPANDED, IC Timespan=All years |
# 1 | 1287 | TITLE: (((breakdown OR collapse OR decline OR demise OR doom OR end OR downfall OR fall OR fate) SAME (rome OR roman OR romans OR “late antiquity”) NOT republic)) Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, BKCI-S, BKCI-SSH, ESCI, CCR-EXPANDED, IC Timespan=All years |
# 4 | 46 | #3 OR #2 OR #1 Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, BKCI-S, BKCI-SSH, ESCI, CCR-EXPANDED, IC Timespan=All years |
# 3 | 25 | TOPIC: ((breakdown OR collapse OR decline OR demise OR doom OR end OR downfall OR fall OR fate) NEAR/5 (rome OR roman OR romans OR “late antiquity”)) AND TITLE: (climat* OR environment*) Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, BKCI-S, BKCI-SSH, ESCI, CCR-EXPANDED, IC Timespan=All years |
# 2 | 15 | TITLE: ((breakdown OR collapse OR decline OR demise OR doom OR end OR downfall OR fall OR fate) SAME (rome OR roman OR romans OR “late antiquity”)) AND TOPIC: (climat* OR environment*) Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, BKCI-S, BKCI-SSH, ESCI, CCR-EXPANDED, IC Timespan=All years |
# 1 | 17 | TITLE: ((rome OR roman OR romans OR “late antiquity”) SAME (“climat* chang*”)) Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, BKCI-S, BKCI-SSH, ESCI, CCR-EXPANDED, IC Timespan=All years |
# 3 | 263 | #2 OR #1 Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, BKCI-S, BKCI-SSH, ESCI, CCR-EXPANDED, IC Timespan=All years |
# 2 | 137 | TOPIC: ((climat* NEAR/5 (chang* OR histor* OR variabilit* OR reconstruct*) OR environment* NEAR/5 (chang* OR histor* OR variabilit* OR reconstruct*) OR temperature* NEAR/5 (european OR reconstruct* OR variabilit*) OR climat* NEAR/5 (proxy OR record*) OR proxy* NEAR/5 (climat* OR data OR record*) OR palaeoclimat* OR paleoclimat* OR glacier* OR “ice core*” OR sediment* OR varve* OR pollen* OR “tree ring*” OR cave* OR speleothem* OR stalagmit*) SAME (“roman empire” OR “late antiquity”)) Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, BKCI-S, BKCI-SSH, ESCI, CCR-EXPANDED, IC Timespan=All years |
# 1 | 141 | TITLE: ((climat* NEAR/5 (chang* OR histor* OR variabilit* OR reconstruct*) OR environment* NEAR/5 (chang* OR histor* OR variabilit* OR reconstruct*) OR temperature* NEAR/5 (european OR reconstruct* OR variabilit*) OR climat* NEAR/5 (proxy OR record*) OR proxy* NEAR/5 (climat* OR data OR record*) OR palaeoclimat* OR paleoclimat* OR glacier* OR “ice core*” OR sediment* OR varve* OR pollen* OR “tree ring*” OR cave* OR speleothem* OR stalagmit*) SAME (rome OR roman OR romans OR “late antiquity”)) Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, BKCI-S, BKCI-SSH, ESCI, CCR-EXPANDED, IC Timespan=All years |
Appendix B
References
- Drake, B.L. Changes in North Atlantic Oscillation drove population migrations and the collapse of the Western Roman Empire. Sci. Rep. 2017, 7, 1227. [Google Scholar] [CrossRef] [PubMed]
- Demandt, A. Der Fall Roms: Die Auflösung des Römischen Reiches im Urteil der Nachwelt, 1st ed.; Verlag C.H. Beck: Munich, Germany, 1984; 695p, ISBN-10 3406095984, ISBN-13 978-3406095986. [Google Scholar]
- Demandt, A. Geschichte der Spätantike: Das Römische Reich von Diocletian bis Justinian 284-565 n. Chr., 2nd ed.; Verlag C.H. Beck: Munich, Germany, 2008; 604p, ISBN-10 3406572413, ISBN-13 978-3406572418. [Google Scholar]
- Harper, K. Climate change and the course of global history: A rough journey. J. Interdiscip. Hist. 2015, 45, 549–566. [Google Scholar] [CrossRef]
- Bornmann, L.; Marx, W. The Anna Karenina principle: A way of thinking about success in science. J. Am. Soc. Inf. Sci. Technol. 2012, 63, 2037–2051. [Google Scholar] [CrossRef] [Green Version]
- Brown, P. The World of Late Antiquity: From Marcus Aurelius to Muhammad, 1st ed.; Thames and Hudson: New York, NY, USA, 1971; 216p, ISBN-10 0500330220, ISBN-13 9780500330227. [Google Scholar]
- Heather, P. The Fall of the Roman Empire: A New History of Rome and the Barbarians, 1st ed.; Oxford University Press: Oxford, UK, 2005; 608p, ISBN-10 0195159543, ISBN-13 978-0195159547. [Google Scholar]
- Ward-Perkins, B. The Fall of Rome: And the End of Civilization, 1st ed.; Oxford University Press: Oxford, UK, 2005; 248p, ISBN-10 0192805649, ISBN-13 978-0192805645. [Google Scholar]
- Interview Ward-Perkins. 2006. Available online: http://www.bu.edu/historic/hs/perkins.pdf (accessed on 7 June 2018).
- Brooke, J.L. Climate Change and the Course of Global History: A Rough Journey, 1st ed.; Cambridge University Press: New York, NY, USA, 2014; 654p, ISBN-10 0521871646, ISBN-13 978-0521871648. [Google Scholar]
- Gibbon, E. The History of the Decline and Fall of the Roman Empire, 1st ed.; Printed for W. Strahan and T. Cadell; Strand: London, UK; Volume I–VI, pp. 1776–1788.
- Huntington, E. Climatic change and agricultural exhaustion as elements in the fall of Rome. Q. J. Econ. 1917, 31, 173–208. [Google Scholar] [CrossRef]
- Harper, K. Fate of Rome: Climate, Disease, and the End of an Empire, 1st ed.; Princeton University Press, The Princeton History of the Ancient World: Princeton, NJ, USA, 2017; 417p, ISBN-10 0691166838, ISBN-13 978-0691166834. [Google Scholar]
- Marx, W.; Haunschild, R.; Bornmann, L. The Role of climate in the collapse of the Maya civilization: A bibliometric analysis of the scientific discourse. Climate 2017, 5, 88. [Google Scholar] [CrossRef]
- Buckland, M.; Gey, F. The relationship between recall and precision. J. Am. Soc. Inf. Sci. 1994, 45, 12–19. [Google Scholar] [CrossRef]
- Moravcsik, A. The fate of Rome: Climate, disease, and the end of an empire. Foreign Aff. 2018, 97, 160. [Google Scholar]
- Decker, M.J. Approaches to the environmental history of Late Antiquity, part II: Climate change and the end of the Roman Empire. Hist. Compass 2017, 15, e12425. [Google Scholar] [CrossRef]
- Storey, R.; Storey, G.R. Rome and the Classic Maya: Comparing the low Collapse of Civilizations, 1st ed.; Routledge: Oxford, UK, 2017; 280p, ISBN 978-1-62958-458-4 (pbk), ISBN 978-1-315-30941-5 (ebk), ISBN 978-1-62958-457-7 (hbk). [Google Scholar]
- Harper, K. The environmental fall of the Roman Empire. Daedalus 2016, 145, 101–111. [Google Scholar] [CrossRef]
- Izdebski, A.; Pickett, J.; Roberts, N.; Waliszewski, T. The environmental, archaeological and historical evidence for regional climatic changes and their societal impacts in the Eastern Mediterranean in Late Antiquity. Quat. Sci. Rev. 2016, 136, 189–208. [Google Scholar] [CrossRef]
- McCormick, M.; Buentgen, U.; Cane, M.A.; Cook, E.R.; Harper, K.; Huybers, P.; Litt, T.; Manning, S.W.; Mayewski, P.A.; More, A.F.M.; et al. Climate change during and after the Roman Empire: Reconstructing the past from scientific and historical evidence. J. Interdiscip. Hist. 2012, 43, 169–220. [Google Scholar] [CrossRef]
- Buentgen, U.; Tegel, W.; Nicolussi, K.; McCormick, M.; Frank, D.; Trouet, V.; Kaplan, J.O.; Herzig, F.; Heussner, K.U.; Wanner, H.; et al. 2500 years of European climate variability and human susceptibility. Science 2011, 331, 578–582. [Google Scholar] [CrossRef] [PubMed]
- Brown, N. Climate change and human history—Some indicators from Europe, AD 400–1400. Environ. Pollut. 1994, 83, 37–43. [Google Scholar] [CrossRef]
- Haunschild, R.; Bornmann, L.; Marx, W. Climate change research in view of bibliometrics. PLoS ONE 2016, 11, e0160393. [Google Scholar] [CrossRef] [PubMed]
- Wacholder, N. Interactive query formulation. Ann. Rev. Inf. Sci. Technol. 2011, 45, 157–196. [Google Scholar] [CrossRef]
- Oumghar, S. The climate of North Africa in the Roman era: New approaches. Hesperis-Tamuda 2017, 52, 49–81. [Google Scholar]
- VOSviewer—Visualizing Scientific Landscapes. Available online: http://www.vosviewer.com (accessed on 7 June 2018).
- Waltman, L.; van Eck, N.J.; Noyons, E.C.M. A unified approach to mapping and clustering of bibliometric networks. J. Informetr. 2010, 4, 629–635. [Google Scholar] [CrossRef] [Green Version]
- CitNetExplorer—Analyzing Citation Patterns in Scientific Literature. Available online: http://www.citnetexplorer.nl (accessed on 7 June 2018).
- Van Eck, N.J.; Waltman, L. CitNetExplorer: A new software tool for analyzing and visualizing citation networks. J. Informetr. 2014, 8, 802–823. [Google Scholar] [CrossRef] [Green Version]
- Altmetric—Who’s Talking about Your Research? Available online: https://www.altmetric.com (accessed on 7 June 2018).
- Luterbacher, J.; Werner, J.P.; Smerdon, J.E.; Fernandez-Donado, L.; Gonzalez-Rouco, F.J.; Barriopedro, D.; Ljungqvist, F.C.; Buentgen, U.; Zorita, E.; Wagner, S.; et al. European summer temperatures since Roman times. Environ. Res. Lett. 2016, 11, 024001. [Google Scholar] [CrossRef] [Green Version]
- Sapart, C.J.; Monteil, G.; Prokopiou, M.; van de Wal, R.S.W.; Kaplan, J.O.; Sperlich, P.; Krumhardt, K.M.; van der Veen, C.; Houweling, S.; Krol, M.C.; et al. Natural and anthropogenic variations in methane sources during the past two millennia. Nature 2012, 490, 85–88. [Google Scholar] [CrossRef] [PubMed]
- Izdebski, A.; Holmgren, K.; Weiberg, E.; Stocker, S.R.; Buentgen, U.; Florenzano, A.; Gogou, A.; Leroy, S.A.G.; Luterbacher, J.; Martrat, B.; et al. Realising consilience: How better communication between archaeologists, historians and natural scientists can transform the study of past climate change in the Mediterranean. Quat. Sci. Rev. 2016, 136, 5–22. [Google Scholar] [CrossRef] [Green Version]
- Helama, S.; Arppe, L.; Uusitalo, J.; Holopainen, J.; Makela, H.M.; Makinen, H.; Mielikainen, K.; Nojd, P.; Sutinen, R.; Taavitsainen, J.P.; et al. Volcanic dust veils from sixth century tree-ring isotopes linked to reduced irradiance, primary production and human health. Sci. Rep. 2018, 8, 1339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masi, A.; Francke, A.; Pepe, C.; Thienemann, M.; Wagner, B.; Sadori, L. Vegetation history and paleoclimate at Lake Dojran (FYROM/Greece) during the Late Glacial and Holocene. Clim. Past 2018, 14, 351–367. [Google Scholar] [CrossRef] [Green Version]
- Morellon, M.; Anselmetti, F.S.; Ariztegui, D.; Brushulli, B.; Sinopoli, G.; Wagner, B.; Sadori, L.; Gilli, A.; Pambuku, A. Human-climate interactions in the Central Mediterranean region during the last millennia: The laminated record of Lake Butrint (Albania). Quat. Sci. Rev. 2016, 136, 134–152. [Google Scholar] [CrossRef]
- Cisneros, M.; Cacho, I.; Frigola, J.; Canals, M.; Masque, P.; Martrat, B.; Casado, M.; Grimalt, J.O.; Pena, L.D.; Margaritelli, G.; et al. Sea surface temperature variability in the central-western Mediterranean Sea during the last 2700 years: A multi-proxy and multi-record approach. Clim. Past 2016, 12, 849–869. [Google Scholar] [CrossRef]
- Sanchez-Lopez, G.; Hernandez, A.; Pla-Rabes, S.; Trigo, R.M.; Toro, M.; Granados, I.; Saez, A.; Masque, P.; Pueyo, J.J.; Rubio-Ingles, M.J.; et al. Climate reconstruction for the last two millennia in Central Iberia: The role of East Atlantic (EA), North Atlantic Oscillation (NAO) and their interplay over the Iberian Peninsula. Quat. Sci. Rev. 2016, 149, 135–150. [Google Scholar] [CrossRef]
- Nieto-Moreno, V.; Martinez-Ruiz, F.; Giralt, S.; Jimenez-Espejo, F.J.; Gallego-Torres, D.; Rodrigo-Gamiz, M.; Garcia-Orellana, J.; Ortega-Huertas, M.; de Lange, G.J. Tracking climate variability in the Western Mediterranean during the Late Holocene: A multiproxy approach. Clim. Past 2011, 7, 1395–1414. [Google Scholar] [CrossRef]
- Martin-Puertas, C.; Valero-Garces, B.L.; Mata, M.P.; Gonzalez-Samperiz, P.; Bao, R.; Moreno, A.; Stefanova, V. Arid and humid phases in Southern Spain during the last 4000 years: The Zonar Lake record, Cordoba. Holocene 2008, 18, 907–921. [Google Scholar] [CrossRef] [Green Version]
- Martin-Puertas, C.; Valero-Garces, B.L.; Brauer, A.; Mata, M.P.; Delgado-Huertas, A.; Dulski, P. The Iberian-Roman Humid Period (2600–1600 cal yr BP) in the Zonar Lake varve record (Andalucia, Southern Spain). Quat. Res. 2009, 71, 108–120. [Google Scholar] [CrossRef]
- Martin-Puertas, C.; Jimenez-Espejo, F.J.; Martinez-Ruiz, F.; Nieto-Moreno, V.; Rodrigo, M.; Mata, M.P.; Valero-Garces, B.L. Late Holocene climate variability in the Southwestern Mediterranean region: An integrated marine and terrestrial geochemical approach. Clim. Past 2010, 6, 807–816. [Google Scholar] [CrossRef] [Green Version]
- Esper, J.; Duthorn, E.; Krusic, P.J.; Timonen, M.; Buentgen, U. Northern European summer temperature variations over the Common Era from integrated tree-ring density records. J. Quat. Sci. 2014, 29, 487–494. [Google Scholar] [CrossRef]
- Ljungqvist, F.C. A new reconstruction of temperature variability in the extra-tropical Northern Hemisphere during the last two millennia. Geogr. Ann. Ser. A Phys. Geogr. 2010, 92A, 339–351. [Google Scholar] [CrossRef]
- Marx, W.; Bornmann, L. The emergence of plate tectonics and the Kuhnian model of paradigm shift: A bibliometric case study based on the Anna Karenina principle. Scientometrics 2013, 94, 595–614. [Google Scholar] [CrossRef]
- Murphey, R. The decline of North Africa since the Roman occupation: Climatic or human? Ann. Assoc. Am. Geogr. 1951, 116–132. [Google Scholar] [CrossRef]
- McDermott, F.; Mattey, D.P.; Hawkesworth, C. Centennial-scale Holocene climate variability revealed by a high-resolution speleothem delta O-18 record from SW Ireland. Science 2001, 294, 1328–1331. [Google Scholar] [CrossRef] [PubMed]
- Mensing, S.A.; Tunno, I.; Sagnotti, L.; Florindo, F.; Noble, P.; Archer, C.; Zimmerman, S.; Pavon-Carrasco, F.J.; Cifani, G.; Passigli, S.; et al. 2700 years of Mediterranean environmental change in Central Italy: A synthesis of sedimentary and cultural records to interpret past impacts of climate on society. Quat. Sci. Rev. 2015, 116, 72–94. [Google Scholar] [CrossRef]
- Desprat, S.; Goni, M.F.S.; Loutre, M.F. Revealing climatic variability of the last three millennia in Northwestern Iberia using pollen influx data. Earth Planet. Sci. Lett. 2003, 213, 63–78. [Google Scholar] [CrossRef]
- Curras, A.; Zamora, L.; Reed, J.M.; Garcia-Soto, E.; Ferrero, S.; Armengol, X.; Mezquita-Joanes, F.; Marques, M.A.; Riera, S.; Julia, R. Climate change and human impact in Central Spain during Roman times: High-resolution multi-proxy analysis of a tufa lake record (Somolinos, 1280 m asl). Catena 2012, 89, 31–53. [Google Scholar] [CrossRef]
- Schmidt, R.; Kamenik, C.; Roth, M. Siliceous algae-based seasonal temperature inference and indicator pollen tracking ca. 4000 years of climate/land use dependency in the Southern Austrian Alps. J. Paleolimnol. 2007, 38, 541–554. [Google Scholar] [CrossRef]
- Rudzka, D.; Mcdermott, F.; Suric, M. A late Holocene climate record in stalagmites from Modric Cave (Croatia). J. Quat. Sci. 2012, 27, 585–596. [Google Scholar] [CrossRef]
- Psomiadis, D.; Dotsika, E.; Albanakis, K.; Ghaleb, B.; Hillaire-Marcel, C. Speleothem record of climatic changes in the Northern Aegean region (Greece) from the Bronze Age to the collapse of the Roman Empire. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2018, 489, 272–283. [Google Scholar] [CrossRef]
- Fuks, D.; Ackermann, O.; Ayalon, A.; Bar-Matthews, M.; Bar-Oz, G.; Levi, Y.; Maeir, A.M.; Weiss, E.; Zilberman, T.; Safrai, Z. Dust clouds, climate change and coins: Consiliences of palaeoclimate and economy in the Late Antique Southern Levant. Levant 2017, 49, 205–223. [Google Scholar] [CrossRef]
- Bar-Matthews, M.; Ayalon, A. Mid-Holocene climate variations revealed by high-resolution speleothem records from Soreq Cave, Israel and their correlation with cultural changes. Holocene 2011, 21, 163–171. [Google Scholar] [CrossRef]
- Bar-Matthews, M.; Ayalon, A.; Kaufman, A.; Wasserburg, G.J. The Eastern Mediterranean paleoclimate as a reflection of regional events: Soreq cave, Israel. Earth Planet. Sci. Lett. 1999, 166, 85–95. [Google Scholar] [CrossRef]
- Orland, I.J.; Bar-Matthews, M.; Kita, N.T.; Ayalon, A.; Matthews, A.; Valley, J.W. Climate deterioration in the Eastern Mediterranean as revealed by ion microprobe analysis of a speleothem that grew from 2.2 to 0.9 ka in Soreq Cave, Israel. Quat. Res. 2009, 71, 27–35. [Google Scholar] [CrossRef]
- Ghilardi, M.; Boraik, M. Reconstructing the Holocene depositional environments in the western part of Ancient Karnak temples complex (Egypt): A geoarchaeological approach. J. Archaeol. Sci. 2011, 38, 3204–3216. [Google Scholar] [CrossRef]
- Grauel, A.L.; Goudeau, M.L.S.; de Lange, G.J.; Bernasconi, S.M. Climate of the past 2500 years in the Gulf of Taranto, Central Mediterranean Sea: A high-resolution climate reconstruction based on delta O-18 and delta C-13 of Globigerinoides ruber (white). Holocene 2013, 23, 1440–1446. [Google Scholar] [CrossRef]
- Bakker, J.; Paulissen, E.; Kaniewski, D.; Poblome, J.; De Laet, V.; Verstraeten, G.; Waelkens, M. Climate, people, fire and vegetation: New insights into vegetation dynamics in the Eastern Mediterranean since the 1st century AD. Clim. Past 2013, 9, 57–87. [Google Scholar] [CrossRef] [Green Version]
- Moschen, R.; Kuehl, N.; Peters, S.; Vos, H.; Luecke, A. Temperature variability at Durres Maar, Germany during the Migration Period and at High Medieval Times, inferred from stable carbon isotopes of Sphagnum cellulose. Clim. Past 2011, 7, 1011–1026. [Google Scholar] [CrossRef]
- Franke, J.G.; Donner, R.V. Dynamical anomalies in terrestrial proxies of North Atlantic climate variability during the last 2 ka. Clim. Chang. 2017, 143, 87–100. [Google Scholar] [CrossRef]
- Reale, O.; Dirmeyer, P. Modeling the effects of vegetation on Mediterranean climate during the Roman Classical Period. Part I: Climate history and model sensitivity. Glob. Planet. Chang. 2000, 25, 163–184. [Google Scholar] [CrossRef]
- Reale, O.; Shukla, J. Modeling the effects of vegetation on Mediterranean climate during the Roman Classical Period. Part II: Model simulation. Glob. Planet. Chang. 2000, 25, 185–214. [Google Scholar] [CrossRef]
- Manning, S.W. The Roman World and Climate: Context, Relevance of Climate Change, and some Issues. In The Ancient Mediterranean Environment between Science and History, 1st ed.; Harris, W.V., Ed.; Columbia Studies in the Classical Tradition; Brill: Leiden, The Netherlands; Boston, MA, USA, 2013; Volume 39, pp. 103–170. 334p, ISBN-10 9004253432, ISBN-13 978-9004253438. [Google Scholar]
- Brambati, A.; Quaia, T. Special issue—Global climate changes during the Late Quaternary—Selected papers of the Accademia Nazionale dei Lincei International Conference, Rome, Italy, 3–4 May 2001. Foreword. Glob. Planet. Chang. 2004, 40, 1. [Google Scholar] [CrossRef]
- Elliott, C.P. The Antonine Plague, climate change and local violence in Roman Egypt. Past Present 2016, 231, 3–31. [Google Scholar] [CrossRef]
- Mastrolorenzo, G.; Palladino, D.M.; Vecchio, G.; Taddeucci, J. The 472 AD Pollena eruption of Somma-Vesuvius (Italy) and its environmental impact at the end of the Roman Empire. J. Volcanol. Geotherm. Res. 2002, 113, 19–36. [Google Scholar] [CrossRef]
- Passchier, C.; Surmelihindi, G.; Spoetl, C.; Mertz-Kraus, R.; Scholz, D. Carbonate deposits from the ancient aqueduct of Beziers, France—A high-resolution palaeoenvironmental archive for the Roman Empire. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2016, 461, 328–340. [Google Scholar] [CrossRef]
- Passchier, C.; Surmelihindi, G.; Spoetl, C. A high-resolution palaeoenvironmental record from carbonate deposits in the Roman aqueduct of Patara, SW Turkey, from the time of Nero. Sci. Rep. 2016, 6, 28704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gilly, J.C.; Plegat, R.; Coudray, J. Preliminary note on calcium incrustations of Roman aqueduct of Pont-Du-Gard, paleoclimatic and paleochronological indicators of first 5 years of present area. C. R. Hebd. Seances Acad. Sci. 1971, 273, 1668–1670. [Google Scholar]
- Cook, E.R. Megadroughts, ENSO, and the Invasion of Late-Roman Europe by the Huns and Avars. In The Ancient Mediterranean Environment between Science and History, Columbia Studies in the Classical Tradition; Harris, W.V., Ed.; Brill: Leiden, The Netherlands, 2013; Volume 39, pp. 89–102. ISBN 978-90-04-25405-3. [Google Scholar] [CrossRef]
- Sheppard, P.R.; Tarasov, P.E.; Graumlich, L.J.; Heussner, K.U.; Wagner, M.; Osterle, H.; Thompson, L.G. Annual precipitation since 515 BC reconstructed from living and fossil juniper growth of northeastern Qinghai Province, China. Clim. Dyn. 2004, 23, 869–881. [Google Scholar] [CrossRef]
- Zhang, Q.B. A millennium-long tree-ring chronology of Sabina przewalskii on Northeastern Qinghai-Tibetan Plateau. Dendrochronologia 2007, 24, 91–95. [Google Scholar] [CrossRef]
- Bokovenko, N.A. Migrations of early nomads of the Eurasian steppe in a context of climate changes. In NATO Science Series IV. Earth and Environmental Sciences, Vol. 42: Impact of Environment on Human Migration in Eurasia; Scott, E.M., Yu, A., Zaitseva, A., Zaitseva, G., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2004; pp. 21–33. [Google Scholar]
- Saunders, J.J. The debate on the Fall of Rome. History 1963, 48, 1–17. [Google Scholar] [CrossRef]
- Nichols, J. Mapping the Crisis of the Third Century. In Impact of Empire, Volume 7: Crises and the Roman Empire: Proceedings of the Seventh Workshop of the International Network Impact of Empire, Nijmegen, The Netherlands, 20–24 June 2007; Hekster, O., de Kleijn, G., Slootjes, D., Eds.; Brill Academic Publishers: Boston, MA, USA, 2007; pp. 431–437. [Google Scholar]
- Di Cosmo, N.; Oppenheimer, C.; Buntgen, U. Interplay of environmental and socio-political factors in the downfall of the Eastern Turk Empire in 630 CE. Clim. Chang. 2017, 145, 383–395. [Google Scholar] [CrossRef]
- Di Cosmo, N.; Hessl, A.; Leland, C.; Byambasuren, O.; Tian, H.Q.; Nachin, B.; Pederson, N.; Andreu-Hayles, L.; Cook, E.R. Environmental stress and steppe nomads: Rethinking the history of the Uyghur Empire (744-840) with paleoclimate data. J. Interdiscip. Hist. 2018, 48, 439–463. [Google Scholar] [CrossRef]
- Buentgen, U.; Myglan, V.S.; Ljungqvist, F.C.; McCormick, M.; Di Cosmo, N.; Sigl, M.; Jungclaus, J.; Wagner, S.; Krusic, P.J.; Esper, J.; et al. Cooling and societal change during the Late Antique Little Ice Age from 536 to around 660 AD. Nat. Geosci. 2016, 9, 231–237. [Google Scholar] [CrossRef]
- Fagan, B. The Great Warming: Climate Change and the Rise and Fall of Civilizations, 1st ed.; Bloomsbury Press: New York, NY, USA, 2008; 282p, ISBN-10 1596913924, ISBN-13 978-1596913929. [Google Scholar]
- Diamond, J. Collapse: How Societies Choose to Fail or Succeed, 1st ed.; Viking Adult, Penguin Group: New York, NY, USA; Toronto, ON, Canada; London, UK, 2004; 592p, ISBN-10 0670033375, ISBN-13 978-0670033379. [Google Scholar]
- Weiss, H.; Bradley, R.S. What drives societal collapse? Science 2001, 291, 609–610. [Google Scholar] [CrossRef] [PubMed]
- Haldon, J. The Empire That Would Not Die: The Paradox of Eastern Roman Survival; Harvard University Press: Cambridge, MA, USA, 2016; pp. 640–740. 432p, ISBN-10 0674088778, ISBN-13 978-0674088771. [Google Scholar]
- Haldon, J.; Mordechai, L.; Newfield, T.P.; Chase, A.F.; Izdebski, A.; Guzowski, P.; Labuhn, I.; Roberts, N. History meets palaeoscience: Consilience and collaboration in studying past societal responses to environmental change. Proc. Natl. Acad. Sci. USA 2018, 115, 3210–3218. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marx, W.; Haunschild, R.; Bornmann, L. Climate and the Decline and Fall of the Western Roman Empire: A Bibliometric View on an Interdisciplinary Approach to Answer a Most Classic Historical Question. Climate 2018, 6, 90. https://doi.org/10.3390/cli6040090
Marx W, Haunschild R, Bornmann L. Climate and the Decline and Fall of the Western Roman Empire: A Bibliometric View on an Interdisciplinary Approach to Answer a Most Classic Historical Question. Climate. 2018; 6(4):90. https://doi.org/10.3390/cli6040090
Chicago/Turabian StyleMarx, Werner, Robin Haunschild, and Lutz Bornmann. 2018. "Climate and the Decline and Fall of the Western Roman Empire: A Bibliometric View on an Interdisciplinary Approach to Answer a Most Classic Historical Question" Climate 6, no. 4: 90. https://doi.org/10.3390/cli6040090
APA StyleMarx, W., Haunschild, R., & Bornmann, L. (2018). Climate and the Decline and Fall of the Western Roman Empire: A Bibliometric View on an Interdisciplinary Approach to Answer a Most Classic Historical Question. Climate, 6(4), 90. https://doi.org/10.3390/cli6040090