Integrating Satellite and Ground Measurements for Predicting Locations of Extreme Urban Heat
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Temperature Collection and Data
2.3. Spectral Data
2.4. Modeling
2.4.1. Focal Buffers
2.4.2. Data Compilation
2.4.3. Random Forest Regression
3. Results
3.1. Urban Heat Island Modeling
3.2. Land Cover/Band Correlations
4. Discussion
4.1. Land Cover/Band Correlations
4.2. Implications for Understanding Extreme Heat in Mid-Atlantic Cities
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Riahi, K.; Rao, S.; Krey, V.; Cho, C.; Chirkov, V.; Fischer, G.; Kindermann, G.; Nakicenovic, N.; Rafaj, P. RCP 8.5—A scenario of comparatively high greenhouse gas emissions. Clim. Chang. 2011, 109, 33. [Google Scholar] [CrossRef]
- Uejio, C.K.; Wilhelmi, O.V.; Golden, J.S.; Mills, D.M.; Gulino, S.P.; Samenow, J.P. Intra-urban societal vulnerability to extreme heat: The role of heat exposure and the built environment, socioeconomics, and neighborhood stability. Health Place 2011, 17, 498–507. [Google Scholar] [CrossRef] [PubMed]
- Hatvani-Kovacs, G.; Belusko, M.; Pockett, J.; Boland, J. Assessment of Heatwave Impacts. Procedia Eng. 2016, 169, 316–323. [Google Scholar] [CrossRef]
- Santamouris, M.; Kolokotsa, D. On the impact of urban overheating and extreme climatic conditions on housing, energy, comfort and environmental quality of vulnerable population in Europe. Energy Build. 2015, 98, 125–133. [Google Scholar] [CrossRef]
- Klok, L.; Zwart, S.; Verhagen, H.; Mauri, E. The surface heat island of Rotterdam and its relationship with urban surface characteristics. Resour. Conserv. Recycl. 2012, 64, 23–29. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Oltra-Carrió, R.; Sòria, G.; Bianchi, R.; Paganini, M. Impact of spatial resolution and satellite overpass time on evaluation of the surface urban heat island effects. Remote Sens. Environ. 2012, 117, 50–56. [Google Scholar] [CrossRef]
- Stathopoulou, M.; Cartalis, C. Daytime urban heat islands from Landsat ETM+ and Corine land cover data: An application to major cities in Greece. Sol. Energy 2007, 81, 358–368. [Google Scholar] [CrossRef]
- Zhang, Y.; Murray, A.T.; Turner, B.L. Optimizing green space locations to reduce daytime and nighttime urban heat island effects in Phoenix, Arizona. Landsc. Urban Plan. 2017, 165, 162–171. [Google Scholar] [CrossRef] [Green Version]
- Sailor, D.J.; Smith, M.; Hart, M. Climate change implications for wind power resources in the Northwest United States. Renew. Energy 2008, 33, 2393–2406. [Google Scholar] [CrossRef]
- Makido, Y.; Shandas, V.; Ferwati, S.; Sailor, D. Daytime Variation of Urban Heat Islands: The Case Study of Doha, Qatar. Climate 2016, 4, 32. [Google Scholar] [CrossRef]
- Saaroni, H.; Ben-Dor, E.; Bitan, A.; Potchter, O. Spatial distribution and microscale characteristics of the urban heat island in Tel-Aviv, Israel. Landsc. Urban Plan. 2000, 48, 1–18. [Google Scholar] [CrossRef]
- Voelkel, J.; Shandas, V. Towards Systematic Prediction of Urban Heat Islands: Grounding Measurements, Assessing Modeling Techniques. Climate 2017, 5, 41. [Google Scholar] [CrossRef]
- Wong, N.H.; Yu, C. Study of green areas and urban heat island in a tropical city. Habitat Int. 2005, 29, 547–558. [Google Scholar] [CrossRef]
- Yamashita, S.; Sekine, K.; Shoda, M.; Yamashita, K.; Hara, Y. On relationships between heat island and sky view factor in the cities of Tama River basin, Japan. Atmos. Environ. 1967 1986, 20, 681–686. [Google Scholar] [CrossRef]
- Yokobori, T.; Ohta, S. Effect of land cover on air temperatures involved in the development of an intra-urban heat island. Clim. Res. 2009, 39, 61–73. [Google Scholar] [CrossRef] [Green Version]
- Kardinal Jusuf, S.; Wong, N.H.; Hagen, E.; Anggoro, R.; Hong, Y. The influence of land use on the urban heat island in Singapore. Habitat Int. 2007, 31, 232–242. [Google Scholar] [CrossRef]
- Jeffrey, S.J.; Carter, J.O.; Moodie, K.B.; Beswick, A.R. Using spatial interpolation to construct a comprehensive archive of Australian climate data. Environ. Model. Softw. 2001, 16, 309–330. [Google Scholar] [CrossRef]
- United States Census Bureau American Fact Finder. Available online: https://factfinder.census.gov/ (accessed on 2 January 2019).
- Chandler, T.J. Temperature and Humidity Traverses Across London. Weather 1962, 17, 235–242. [Google Scholar] [CrossRef]
- Kotharkar, R.; Surawar, M. Land Use, Land Cover, and Population Density Impact on the Formation of Canopy Urban Heat Islands through Traverse Survey in the Nagpur Urban Area, India. J. Urban Plan. Dev. 2016, 142, 04015003. [Google Scholar] [CrossRef]
- GMES Sentinel-2 Mission Requirements Document. Available online: https://earth.esa.int/pub/ESA_DOC/GMES_Sentinel2_MRD_issue_2.0_update.pdf (accessed on 2 January 2019).
- Sonobe, R.; Yamaya, Y.; Tani, H.; Wang, X.; Kobayashi, N.; Mochizuki, K. Evaluating metrics derived from Landsat 8 OLI imagery to map crop cover. Geocarto Int. 2018. [Google Scholar] [CrossRef]
- Ramachandran, B.; Justice, C.O.; Abrams, M.J. Land Remote Sensing and Global Environmental Change: NASA’s Earth Observing System and the Science of ASTER and MODIS; Springer Science & Business Media: Berlin, Germany, 2010; ISBN 978-1-4419-6749-7. [Google Scholar]
- Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation. Available online: https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19750020419.pdf (accessed on 2 January 2019).
- Gandhi, G.M.; Parthiban, S.; Thummalu, N.; Christy, A. Ndvi: Vegetation Change Detection Using Remote Sensing and Gis—A Case Study of Vellore District. Procedia Comput. Sci. 2015, 57, 1199–1210. [Google Scholar] [CrossRef]
- Running, S.W.; Loveland, T.R.; Pierce, L.L.; Nemani, R.R.; Hunt, E.R. A remote sensing based vegetation classification logic for global land cover analysis. Remote Sens. Environ. 1995, 51, 39–48. [Google Scholar] [CrossRef]
- Valdiviezo-N, J.C.; Téllez-Quiñones, A.; Salazar-Garibay, A.; López-Caloca, A.A. Built-up index methods and their applications for urban extraction from Sentinel 2A satellite data: Discussion. JOSA A 2018, 35, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Shashua-Bar, L.; Hoffman, M.E. Vegetation as a climatic component in the design of an urban street: An empirical model for predicting the cooling effect of urban green areas with trees. Energy Build. 2000, 31, 221–235. [Google Scholar] [CrossRef]
- Voelkel, J.; Shandas, V.; Haggerty, B. Developing High-Resolution Descriptions of Urban Heat Islands: A Public Health Imperative. Prev. Chronic. Dis. 2016, 13, E129. [Google Scholar] [CrossRef] [PubMed]
- Tobler, W.R. A Computer Movie Simulating Urban Growth in the Detroit Region. Econ. Geogr. 1970, 46, 234–240. [Google Scholar] [CrossRef]
- Clougherty, J.E.; Kheirbek, I.; Eisl, H.M.; Ross, Z.; Pezeshki, G.; Gorczynski, J.E.; Johnson, S.; Markowitz, S.; Kass, D.; Matte, T. Intra-urban spatial variability in wintertime street-level concentrations of multiple combustion-related air pollutants: The New York City Community Air Survey (NYCCAS). J. Expo. Sci. Environ. Epidemiol. 2013, 23, 232–240. [Google Scholar] [CrossRef]
- Henderson, S.B.; Beckerman, B.; Jerrett, M.; Brauer, M. Application of Land Use Regression to Estimate Long-Term Concentrations of Traffic-Related Nitrogen Oxides and Fine Particulate Matter. Environ. Sci. Technol. 2007, 41, 2422–2428. [Google Scholar] [CrossRef]
- Rao, M.; George, L.A.; Rosenstiel, T.N.; Shandas, V.; Dinno, A. Assessing the relationship among urban trees, nitrogen dioxide, and respiratory health. Environ. Pollut. Barking Essex 1987 2014, 194, 96–104. [Google Scholar] [CrossRef]
- Rodriguez-Galiano, V.F.; Chica-Olmo, M.; Abarca-Hernandez, F.; Atkinson, P.M.; Jeganathan, C. Random Forest classification of Mediterranean land cover using multi-seasonal imagery and multi-seasonal texture. Remote Sens. Environ. 2012, 121, 93–107. [Google Scholar] [CrossRef]
- Ghimire, B.; Rogan, J.; Miller, J. Contextual land-cover classification: Incorporating spatial dependence in land-cover classification models using random forests and the Getis statistic. Remote Sens. Lett. 2010, 1, 45–54. [Google Scholar] [CrossRef]
- Oliveira, S.; Oehler, F.; San-Miguel-Ayanz, J.; Camia, A.; Pereira, J.M. c. Modeling spatial patterns of fire occurrence in Mediterranean Europe using Multiple Regression and Random Forest. For. Ecol. Manag. 2012, 275, 117–129. [Google Scholar] [CrossRef]
- Hastie, T. The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd ed.; Springer Series in Statistics; Springer: New York, NY, USA, 2009; ISBN 978-0-387-84857-0. [Google Scholar]
- Dormann, C.F.; Elith, J.; Bacher, S.; Buchmann, C.; Carl, G.; Carré, G.; Marquéz, J.R.G.; Gruber, B.; Lafourcade, B.; Leitão, P.J.; et al. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography 2013, 36, 27–46. [Google Scholar] [CrossRef]
- Huang, G.; Zhou, W.; Cadenasso, M.L. Is everyone hot in the city? Spatial pattern of land surface temperatures, land cover and neighborhood socioeconomic characteristics in Baltimore, MD. J. Environ. Manag. 2011, 92, 1753–1759. [Google Scholar] [CrossRef] [PubMed]
- Mallick, J.; Rahman, A.; Singh, C.K. Modeling urban heat islands in heterogeneous land surface and its correlation with impervious surface area by using night-time ASTER satellite data in highly urbanizing city, Delhi-India. Adv. Space Res. 2013, 52, 639–655. [Google Scholar] [CrossRef]
- Rodriguez-Galiano, V.F.; Ghimire, B.; Rogan, J.; Chica-Olmo, M.; Rigol-Sanchez, J.P. An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS J. Photogramm. Remote Sens. 2012, 67, 93–104. [Google Scholar] [CrossRef]
- Scott, A.A.; Zaitchik, B.; Waugh, D.W.; O’Meara, K. Intraurban Temperature Variability in Baltimore. J. Appl. Meteorol. Climatol. 2016, 56, 159–171. [Google Scholar] [CrossRef]
- Kerle, N. Remote sensing of natural hazards and disasters. Encycl. Nat. Hazards 2013, 837–847. [Google Scholar] [CrossRef]
- Huntington, J.L.; Hegewisch, K.C.; Daudert, B.; Morton, C.G.; Abatzoglou, J.T.; McEvoy, D.J.; Erickson, T. Climate Engine: Cloud Computing and Visualization of Climate and Remote Sensing Data for Advanced Natural Resource Monitoring and Process Understanding. Bull. Am. Meteorol. Soc. 2017, 98, 2397–2410. [Google Scholar] [CrossRef]
- National Oceanic and Atmospheric Administration Climate Program Office U.S. Climate Resilience Toolkit. Available online: https://toolkit.climate.gov/content/us-climate-resilience-toolkit (accessed on 29 November 2018).
Study Area | Area Covered (km2) | Date | n | Number of Drivers | Observed Temperatures (°C) | |||
---|---|---|---|---|---|---|---|---|
Min. | Mean | Med. | Max. | |||||
Richmond, VA | 851 | 13 July 2017 | 103,971 | 12 (9 cars, 3 bicycles) | 24.8 | 31.8 | 33.6 | 39.5 |
Washington, D.C. | 476 | 28 August 2018 | 74,048 | 9 cars | 20.5 | 30.5 | 32.0 | 39.5 |
Baltimore, MD | 679 | 29 August 2018 | 79,306 | 9 cars | 22.4 | 30.8 | 31.8 | 40.3 |
Band | Purpose | Wavelength (nm) | Spatial Resolution (m2) |
---|---|---|---|
1 | Coastal aerosols | 443 | 60 |
2 | Blue | 490 | 10 |
3 | Green | 560 | 10 |
4 | Red | 665 | 10 |
5 | Vegetation red edge | 705 | 20 |
6 | Vegetation red edge | 740 | 20 |
7 | Vegetation red edge | 783 | 20 |
8 | NIR * | 842 | 10 |
8A | Narrow NIR | 865 | 20 |
9 | Water vapour | 940 | 60 |
10 | SWIR **/Cirrus | 1375 | 60 |
11 | SWIR | 1610 | 20 |
12 | SWIR | 2190 | 20 |
Study Area | Time | R2 | RMSE |
---|---|---|---|
Richmond, VA | Morning | 0.9795 | 0.0809 |
Afternoon | 0.9644 | 0.1782 | |
Evening | 0.9764 | 0.1304 | |
Washington, D.C. | Morning | 0.9967 | 0.0650 |
Afternoon | 0.9803 | 0.1737 | |
Evening | 0.9928 | 0.1156 | |
Baltimore, MD | Morning | 0.9923 | 0.0871 |
Afternoon | 0.9685 | 0.1837 | |
Evening | 0.9850 | 0.1334 |
Sentinel-2 Band | Index | |
---|---|---|
NDVI | NBAI | |
B2 | −0.3249 | 0.7011 |
B3 | −0.2452 | 0.6884 |
B4 | −0.2941 | 0.7378 |
B5 | 0.0019 | −0.0002 |
B6 | 0.0085 | −0.0003 |
B7 | 0.0080 | −0.0004 |
B8 | 0.8896 | −0.4800 |
B8A | 0.0073 | −0.0004 |
B11 | 0.0051 | −0.0008 |
B12 | 0.0036 | −0.0006 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shandas, V.; Voelkel, J.; Williams, J.; Hoffman, J. Integrating Satellite and Ground Measurements for Predicting Locations of Extreme Urban Heat. Climate 2019, 7, 5. https://doi.org/10.3390/cli7010005
Shandas V, Voelkel J, Williams J, Hoffman J. Integrating Satellite and Ground Measurements for Predicting Locations of Extreme Urban Heat. Climate. 2019; 7(1):5. https://doi.org/10.3390/cli7010005
Chicago/Turabian StyleShandas, Vivek, Jackson Voelkel, Joseph Williams, and Jeremy Hoffman. 2019. "Integrating Satellite and Ground Measurements for Predicting Locations of Extreme Urban Heat" Climate 7, no. 1: 5. https://doi.org/10.3390/cli7010005
APA StyleShandas, V., Voelkel, J., Williams, J., & Hoffman, J. (2019). Integrating Satellite and Ground Measurements for Predicting Locations of Extreme Urban Heat. Climate, 7(1), 5. https://doi.org/10.3390/cli7010005