A Proposed Exogenous Cause of the Global Temperature Hiatus
Abstract
:1. Introduction
1.1. Background
1.2. Repeated Hiatus Periods from a 60-year Oscillation
1.3. A Parameterization of Tidal Forces
2. Materials and Methods
3. Results
3.1. A Simulation of the ~60-year GMST Oscillation
- (a)
- a coupled model study by Huang et al. [42] that showed an increase in global AAM from an acceleration of zonal mean zonal wind in the tropical-subtropical troposphere;
- (b)
- AAM increases from the redistribution of mass when evaporation occurs over the oceans;
- (c)
- GMST rise is faster in zonal than in meridional regimes;
- (d)
- the appearance of similar 60-year cycles in the AAM, LOD, ACI and the multidecadal tidal oscillation, sometimes with small time lags between them, referenced above;
- (e)
- (f)
- striking similarities in the interannual variation in GMST anomalies, atmospheric carbon dioxide concentrations and proposed tidal oscillations (T17).
3.2. On the Timing and Duration of the Recent Hiatus
3.3. An Interdecadal Pacific Oscillation (IPO) Reconstruction from an Antarctic Ice Core
3.4. A Pacific Decadal Oscillation (PDO) Reconstruction
3.5. Multidecadal Correlation Patterns in Ocean Basin Oscillations
4. Discussion
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AAM | atmospheric angular momentum |
ACI | atmospheric circulation index (Klyashtorin [20]) |
AMO | Atlantic Multidecadal Oscillation |
AGW | anthropogenic global warming |
AMOC | Atlantic Meridional Overturning Oscillation |
CMIP5 | the Coupled Model Intercomparison Project Phase 5 |
δ18O | a measure of the ratio of oxygen-18 and oxygen-16 isotopes |
DT | decision tree (Vance et al.), an independent nonlinear multivariate regression technique |
ENSO | El Niño-Southern Oscillation |
GCM | general circulation model |
GHG | greenhouse gas |
GMST | global mean surface temperature |
HadCRUT4 | Hadley Centre Climate Research Unit version 4 global temperature data set |
IPCC AR5 | United Nations Intergovernmental Panel on Climate Change Fifth Assessment Report |
IPO | Interdecadal Pacific Oscillation |
LOD | length of day |
NAO | North Atlantic Oscillation |
PDO | Pacific Decadal Oscillation |
PLF | piece-wise linear fit (Vance et al.), an independent nonlinear multivariate regression technique |
POGA | Pacific Ocean-Global Atmosphere experiment |
SST | sea surface temperature |
T02 | Treloar 2002 paper [36] |
T17 | Treloar 2017 paper [37] |
TW | terawatts |
Z–M | zonal minus meridional (calculation), after Klyashtorin [20] |
References
- Lewandowsky, S.; Risbey, J.S.; Oreskes, N. On the definition and identifiability of the alleged “hiatus” in global warming. Sci. Rep. 2015. [Google Scholar] [CrossRef] [PubMed]
- Trenberth, K.E.; Fasullo, T. An apparent hiatus in global warming? Earth’s Future 2013, 1, 19–32. [Google Scholar] [CrossRef] [Green Version]
- Meehl, G.A.; Arblaster, J.M.; Fasullo, J.T.; Hu, A.; Trenberth, K.E. Model-based evidence of deep-ocean heat uptake during surface temperature hiatus periods. Nat. Clim. Chang. 2011, 1, 360–364. [Google Scholar] [CrossRef]
- Yan, X.-H.; Boyer, T.; Trenberth, K.; Karl, T.R.; Xie, S.-P.; Nieves, V.; Tung, K.-K.; Roemmich, D. The global warming hiatus: Slowdown or redistribution? Earth’s Future 2016, 4, 472–482. [Google Scholar] [CrossRef] [Green Version]
- Drijfhout, S.S.; Blaker, A.T.; Josey, S.A.; Nurser, A.J.G.; Sinha, B.; Balmaseda, M.A. Surface warming hiatus caused by increased heat uptake across multiple ocean basins. Geophys. Res. Lett. 2014, 41, 7868–7874. [Google Scholar] [CrossRef] [Green Version]
- Kosaka, Y.; Xie, S.-P. Recent global warming hiatus tied to equatorial Pacific surface cooling. Nature 2013, 501, 403–407. [Google Scholar] [CrossRef] [PubMed]
- Kosaka, Y.; Xie, S.-P. The tropical Pacific as a key pacemaker of the variable rates of global warming. Nat. Geosci. 2016, 9, 669–673. [Google Scholar] [CrossRef]
- von Känel, L.; Fröhlicher, T.L.; Gruber, N. Hiatus-like decades in the absence of equatorial Pacific cooling and accelerated global ocean uptake. Geophy. Res. Lett. 2017, 44, 7909–7918. [Google Scholar] [CrossRef]
- Trenberth, K.E. Has there been a hiatus? Science 2015, 349, 691–692. [Google Scholar] [CrossRef] [Green Version]
- Yao, S.-L.; Huang, G.; Wu, R.-G.; Qu, X. The global warming hiatus–A natural product of interactions of a secular warming trend and a multi-decadal oscillation. Theor. Appl. Climatol. 2016, 123, 349–360. [Google Scholar] [CrossRef]
- Brown, P.T.; Li, W.; Xie, S.P. Regions of significant influence on unforced global mean surface air temperature variability in climate models. J. Geophys. Res. Atmos. 2014, 120, 480–494. [Google Scholar] [CrossRef]
- Meehl, G.A.; Arblaster, J.M.; Bitz, C.M.; Chung, T.Y.; Teng, H. Antarctic sea-ice expansion between 2000 and 2014 driven by tropical Pacific decadal climate variability. Nat. Geosci. 2016, 9, 590–595. [Google Scholar] [CrossRef]
- Kincer, J.B. Our changing climate. Eos Trans. AGU 1946, 27, 342–347. [Google Scholar] [CrossRef]
- Wigley, T.M.L.; Angell, J.K.; Jones, P.D. Analysis of the temperature record. In Detecting the Climatic Effects of Increasing Carbon Dioxide; MacCracken, M.C., Luther, F.M., Eds.; (DOE/ER-0235); U.S. Department of Energy, Carbon Dioxide Research Division: Washington, DC, USA, 1985; pp. 55–90. [Google Scholar]
- Easterling, D.R.; Wehner, M.F. Is the climate warming or cooling? Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef] [Green Version]
- Lovejoy, S. Return periods of global climate fluctuations and the pause. Geophys. Res. Lett. 2014, 41. [Google Scholar] [CrossRef]
- England, M.H.; McGregor, S.; Spence, P.; Meehl, G.A.; Timmerman, A.; Cai, W.; Gupta, A.S.; McPhaden, M.J.; Purich, A.; Santoso, A. Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat. Clim. Chang. 2014, 4, 222–227. [Google Scholar] [CrossRef] [Green Version]
- Schlesinger, M.E.; Ramankutty, N. An oscillation in the global climate system of period 65–70 years. Nature 1994, 367, 723–726. [Google Scholar] [CrossRef]
- Schlesinger, M.E.; Lindner, D.; Ring, M.J.; Cross, E.F. A simple deconstruction of the HADCRU global-mean near-surface temperature observations. Atmos. Clim. Sci. 2013, 3, 348–354. [Google Scholar] [CrossRef]
- Klyashtorin, L.B. Climate Change and Long-Term Fluctuations of Commercial Catches: The Possibility of Forecasting; UN FAO Fisheries Technical Paper 410; Food and Agriculture Organization of the United Nations: Rome, Italy, 2001. [Google Scholar]
- Mann, K.; Lazier, J.R.N. Variability in ocean circulation: Its biological consequences. In Dynamics of Marine Ecosystems: Biological-Physical Interactions in the Oceans, 3rd ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2006. [Google Scholar]
- Oviatt, C.; Smith, L.; McManus, M.C.; Hyde, K. Decadal patterns of westerly winds, temperatures, ocean gyre circulations and fish abundance: A review. Climate 2015, 3, 833–857. [Google Scholar] [CrossRef]
- Knight, J.R.; Allan, R.J.; Folland, C.K.; Vellinga, M.; Mann, M.E. A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys. Res. Lett. 2005, 32, 475–480. [Google Scholar] [CrossRef]
- Mann, M.E.; Bradley, R.S.; Hughes, M.K. Global-scale temperature patterns and climate forcing over the last six centuries. Nature 1998, 392, 779–787. [Google Scholar] [CrossRef]
- Delworth, T.L.; Mann, M.E. Observed and simulated multidecadal variability in the Northern Hemisphere. Clim. Dyn. 2000, 16, 661–676. [Google Scholar] [CrossRef]
- Chambers, D.P.; Merrifield, M.A.; Nerem, R.S. Is there a 60-year oscillation in global sea level? Geophys. Res. Lett. 2012, 39, L18607. [Google Scholar] [CrossRef]
- Moore, G.W.K.; Halfar, J.; Majeed, H.; Adey, W.; Kronz, A. Amplification of the Atlantic Multidecadal Oscillation associated with the onset of the industrial-era warming. Nat. Sci. Rep. 2017, 7. [Google Scholar] [CrossRef] [PubMed]
- Knudsen, M.F.; Seidenkrantz, M.-S.; Jacobsen, B.H.; Kuijpers, A. Tracking the Atlantic Multidecadal Oscillation through the last 8000 years. Nat. Commun. 2011, 2. [Google Scholar] [CrossRef]
- Kilbourne, K.H.; Quinn, T.M.; Webb, R.; Guilderson, T.; Nyberg, J. Paleoclimate proxy perspective on Caribbean climate since the year 1751: Evidence of cooler temperatures and multidecadal variability. Paleoceanography 2008, 23, PA3220. [Google Scholar] [CrossRef]
- Kuhlbrodt, T.; Griesel, A.; Montoya, M.; Levermann, A.; Hofmann, M.; Rahmstorf, S. On the driving processes of the Atlantic Meridional Overturning Circulation. Rev. Geophys. 2007, 45. [Google Scholar] [CrossRef]
- Doodson, A.T. The harmonic development of the tide-generating potential. Proc. R. Soc. A Math. Phys. Eng. Sci. 1921, 100, 305–329. [Google Scholar] [CrossRef]
- Cartwright, D.E.; Taylor, R.J. New computations of the tide generating potential. Geophys. J. R. Astron. Soc. 1971, 23, 45–74. [Google Scholar] [CrossRef]
- Keeling, C.D.; Whorf, T.P. Possible forcing of global temperatures by the oceanic tides. Proc. Natl. Acad. Sci. USA 1997, 94, 8321–8328. [Google Scholar] [CrossRef]
- Keeling, C.D.; Whorf, T.P. The 1800-year oceanic tidal cycle: A possible cause of rapid climate change. Proc. Natl. Acad. Sci. USA 2000, 97, 3814–3819. [Google Scholar] [CrossRef] [PubMed]
- Munk, W.H.; Wunsch, C. Abyssal recipes II: Energetics of tidal and wind mixing. Deep Sea Res. I 1998, 45, 1977–2010. [Google Scholar] [CrossRef]
- Treloar, N.C. Luni-solar influences on climate variability. Int. J. Climatol. 2002, 22, 1527–1542. [Google Scholar] [CrossRef]
- Treloar, N.C. Deconstructing global temperature anomalies: An hypothesis. Climate 2017, 5, 83. [Google Scholar] [CrossRef]
- Wood, F.J. Tidal Dynamics: Coastal Flooding, and Cycles of Gravitational Force; D. Reidel: Norwell, MA, USA, 1996. [Google Scholar]
- Schlesinger, M.E. 2016 evaluation of Fair Plan 3: Outlook for global temperature change throughout the 21st century. J. Environ. Prot. 2017, 8, 426–435. [Google Scholar] [CrossRef]
- U.S. Climate Change Science Program. Scenarios of Greenhouse Gas Emissions and Atmospheric Concentrations; U.S. Climate Change Science Program: Washington, DC, USA, 2007.
- Lacis, A.A.; Schmidt, G.A.; Rind, D.; Ruedy, R.A. Atmospheric CO2: Principal control knob governing Earth’s temperature. Science 2010, 330, 356–359. [Google Scholar]
- Huang, H.P.; Weickmann, K.M.; Hsu, C.J. Trend in atmospheric angular momentum in a transient climate change simulation with greenhouse gas and aerosol forcing. J. Clim. 2001, 14, 1525–1534. [Google Scholar] [CrossRef]
- Philander, S.G.H. El Niño and the Southern Oscillation; Academic Press: New York, NY, USA, 1990. [Google Scholar]
- Hide, D.; Dickey, J.O. Earth’s variable rotation. Science 1991, 253, 629–637. [Google Scholar] [CrossRef]
- Morice, C.P.; Kennedy, J.J.; Rayner, N.A.; Jones, P.D. Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 dataset. J. Geophys. Res. 2012, 117, D08101. [Google Scholar] [CrossRef]
- Vance, T.R.; Roberts, J.L.; Plummer, C.T.; Kiem, A.S.; van Ommen, T.D. Interdecadal Pacific variability and eastern Australian megadroughts over the last millennium. Geophys. Res. Lett. 2014, 42, 129–137. [Google Scholar] [CrossRef]
- MacFarling Meure, C.; Etheridge, D.; Trudinger, C.; Steele, P.; Langenfelds, R.; van Ommen, T.; Smith, A.; Elkins, J. Law Dome CO2, CH4 and N2O ice core record extended to 2000 years BP. Geophys. Res. Lett. 2006, 33, L14810. [Google Scholar] [CrossRef]
- Gedalof, Z.; Mantua, N.; Peterson, D.L. A multi-century perspective of variability in the Pacific Decadal Oscillation: New insights from tree rings and coral. Geophys. Res. Lett. 2002, 29, 2204. [Google Scholar] [CrossRef]
- Kipfmueller, K.F.; Larson, E.R.; St. George, S. Does proxy uncertainty affect the relations inferred between the Pacific Decadal Oscillation and wildfire activity in the western United States? Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef] [Green Version]
- MacDonald, G.M.; Case, R.A. Variations in the Pacific Decadal Oscillation over the past millennium. Geophys. Res. Lett. 2005, 32, L08703. [Google Scholar] [CrossRef]
- Shen, C.; Wang, W.-C.; Gong, W.; Hao, Z. A Pacific Decadal Oscillation record since 1470 AD reconstructed from proxy data of summer rainfall over eastern China. Geophys. Res. Lett. 2006, 33, L03702. [Google Scholar] [CrossRef]
- Henley, B.J.; Gergis, J.; Karoly, D.J.; Power, S.B.; Kennedy, J.; Folland, C.K. A tripole index for the Interdecadal Pacific Oscillation. Clim. Dyn. 2015, 45, 3077–3090. [Google Scholar] [CrossRef]
- National Oceanic and Atmospheric Administration (NOAA). National Centers for Environmental Information (NCEI, formerly National Climatic Data Center, NCDC) PDO Data. Available online: https://www.ncdc.noaa.gov/teleconnections/pdo/data.csv (accessed on 13 December 2018).
- Biondi, F.; Gershunov, A.; Cayan, D.R. North Pacific decadal climate variability since 1661. J. Clim. 2001, 14, 5–10. [Google Scholar] [CrossRef]
- Gedalof, Z.; Smith, D.J. Interdecadal climate variability and regime-scale shifts in Pacific North America. Geophys. Res. Lett. 2001, 28, 1515–1518. [Google Scholar] [CrossRef] [Green Version]
- Jones, P.D.; Jonsson, T.; Wheeler, D.A. Extension to the North Atlantic Oscillation using early instrumental pressure observations from Gibraltar and South-West Iceland. Int. J. Climatol. 1997, 17, 1433–1450. [Google Scholar] [CrossRef]
- Vinther, B.M.; Johnsen, S.J.; Andersen, K.K.; Clausen, H.B.; Hansen, A.W. NAO signal recorded in the stable isotopes of Greenland ice cores. Geophys. Res. Lett. 2003, 30, 1387. [Google Scholar] [CrossRef]
- Luterbacher, J.; Xoplaki, E.; Dietrich, D.; Jones, P.D.; Davies, T.D.; Portis, D.; Gonzalez-Rouco, J.F.; von Storch, H.; Gyalistras, D.; Casty, C.; Wanner, H. Extending North Atlantic Oscillation reconstructions back to 1500. Atmos. Sci. Lett. 2002, 2, 114–124. [Google Scholar] [CrossRef]
- Glueck, M.F.; Stockton, C.W. Reconstruction of the North Atlantic Oscillation, 1429–1983. Int. J. Climatol. 2001, 12, 1453–1465. [Google Scholar] [CrossRef]
- Cook, E.R.; D’Arrigo, R.D.; Mann, M.E. Well Verified Winter North Atlantic Oscillation Index Reconstruction; IGBP PAGES/World Data Center for Paleoclimatology Data Contribution Series #2002-059; NOAA/NGDC Paleoclimatology Program: Boulder CO, USA, 2002.
- Schiller, A.; Fiedler, R. Explicit tidal forcing in an ocean general circulation model. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Liu, H.; Lan, J. The influence of explicit tidal forcing in a climate circulation model. Acta Oceanol. Sin. 2016, 35, 42–50. [Google Scholar] [CrossRef]
- National Oceanic and Atmospheric Administration (NOAA); National Centers for Environmental Information (NCEI). Global Climate Report for October 2018. Published Online November 2018. Available online: https://www.ncdc.noaa.gov/sotc/global/201810 (accessed on 12 December 2018).
- Lewandowsky, S.; Cowtan, K.; Risbey, J.S.; Mann, M.E.; Steinman, B.A.; Oreskes, N.; Rahmstorf, S. The ‘pause’ in global warming in historical context: (II). Comparing models to observations. Environ. Res. Lett. 2018, 13, 123007. [Google Scholar] [CrossRef]
Oscillation | Data Source | Data Length (yr), Frequency | 186.0 yr | 86.81 yr | 59.75 yr |
---|---|---|---|---|---|
IPO | Vance et al. PLF [DT-median] [46] | 998, yearly | + + + + [+ + + + ] | – – – [– – – –] | + [+ +] |
IPO-TPI | Henley et al. [52] | 141, monthly | + + | – – – – | + |
PDO | NOAA / NCEI [53] | 163, monthly | + + | – – | + + + |
PDO | Shen et al. [51] | 529, yearly | – | + + | + + |
PDO | Biondi et al. [54] | 331, yearly | – | – | + + |
PDO | Gedalof et al. [48] | 157, yearly | + + | – – – | + + |
PDO | Gedalof and Smith [55] | 385, yearly | – | – | – |
PDO | MacDonald and Case [50] | 1004, yearly | + + | + | + + |
NAO | Jones et al. [56] | 177, yearly | + | – – – – | + + + |
NAO | Vinther et al. [57] | 726, yearly | + | – | + + |
NAO | Luterbacher et al. [58] | 491, yearly | + + | – – | + + |
NAO | Glueck and Stockton [59] | 525, yearly | + | – – – – | + + |
NAO | Cook et al. [60] | 580, yearly | + | – – | – |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Treloar, N.C. A Proposed Exogenous Cause of the Global Temperature Hiatus. Climate 2019, 7, 31. https://doi.org/10.3390/cli7020031
Treloar NC. A Proposed Exogenous Cause of the Global Temperature Hiatus. Climate. 2019; 7(2):31. https://doi.org/10.3390/cli7020031
Chicago/Turabian StyleTreloar, Norman C. 2019. "A Proposed Exogenous Cause of the Global Temperature Hiatus" Climate 7, no. 2: 31. https://doi.org/10.3390/cli7020031
APA StyleTreloar, N. C. (2019). A Proposed Exogenous Cause of the Global Temperature Hiatus. Climate, 7(2), 31. https://doi.org/10.3390/cli7020031