Past, Present and Future Climate Trends Under Varied Representative Concentration Pathways for a Sub-Humid Region in Uganda
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Climate Data
2.3. Historical Trend Analysis
2.4. Present and Future Climate Prediction for Karamoja Sub-Region
3. Results
3.1. Historical Rainfall and Temperature Trend (1980–2009) in Karamoja Sub-Region
3.2. Near Future Rainfall and Temperature Trends in Karamoja Sub-Region
3.3. Projected Rainfall in Mid and End Century in Karamoja Sub-Region
3.4. Projected Temperature in Mid- and End-Century in Karamoja Sub-Region
4. Discussion
4.1. Historical Trend in Rainfall and Temperature
4.2. Present-Near Future Trend in Rainfall and Temperature
4.3. Mid- and End-Century Rainfall and Temperature Trends in Karamoja Sub-Region
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Annual, Long and Short Rainfall Trends 1980–2009
References
- Maestre, F.T.; Delgado-Baquerizo, M.; Jeffries, T.C.; Eldridge, D.J.; Ochoa, V.; Gozalo, B.; Bowker, M.A. Increasing aridity reduces soil microbial diversity and abundance in global drylands. Proc. Natl. Acad. Sci. USA 2015, 112, 15684–15689. [Google Scholar] [CrossRef] [PubMed]
- Gamo, M.; Shinoda, M.; Maeda, T. Classification of arid lands, including soil degradation and irrigated areas, based on vegetation and aridity indices. Int. J. Remote Sens. 2013, 34, 6701–6722. [Google Scholar] [CrossRef]
- Gaur, M.K.; Squires, V.R. (Eds.) Climate Variability Impacts on Land Use and Livelihoods in Drylands; Springer International Publishing: New York, NY, USA, 2018. [Google Scholar]
- Feng, S.; Fu, Q. Expansion of global drylands under a warming climate. Atmos. Chem. Phys. 2013, 13, 10081–10094. [Google Scholar] [CrossRef]
- Huang, J.; Yu, H.; Guan, X.; Wang, G.; Guo, R. Accelerated dryland expansion under climate change. Nat. Clim. Chang. 2016, 2, 166. [Google Scholar] [CrossRef]
- Huang, J.; Fu, C. Future Looks Drier as Drylands Continue to Expand; EOS: Washington, DC, USA, 2017; Volume 98. [Google Scholar]
- D’Odorico, P.; Bhattachan, A. Hydrologic variability in dryland regions: Impacts on ecosystem dynamics and food security. Philos. Trans. R Soc. B 2012, 367, 3145–3157. [Google Scholar] [CrossRef] [PubMed]
- Maestre, F.T.; Salguero-Gómez, R.; Quero, J.L. It is getting hotter in here: Determining and projecting the impacts of global environmental change on drylands. Philos. Trans. R Soc. B 2012, 367, 3062–3075. [Google Scholar] [CrossRef] [PubMed]
- Crockett, J.L.; Westerling, A.L. Greater temperature and precipitation extremes intensify Western US droughts, wildfire severity, and Sierra Nevada tree mortality. J. Clim. 2018, 31, 341–354. [Google Scholar] [CrossRef]
- Yuan, X.; Wang, L.; Wood, E.F. Anthropogenic intensification of southern African flash droughts as exemplified by the 2015/16 season. Bull. Am. Meteorol. Soc. 2018, 99, 586–590. [Google Scholar] [CrossRef]
- Ji, F.; Wu, Z.; Huang, J.; Chassignet, E.P. Evolution of land surface air temperature trend. Nat. Clim. Chang. 2014, 4, 462–466. [Google Scholar] [CrossRef]
- Dai, A. Increasing drought under global warming in observations and models. Nat. Clim. Chang. 2013, 3, 52–58. [Google Scholar] [CrossRef]
- Mwangi, M. Diverse Drought Spatiotemporal Trends, Diverse Etic-Emic Perceptions and Knowledge: Implications for Adaptive Capacity and Resource Management for Indigenous Maasai-Pastoralism in the Rangelands of Kenya. Climate 2016, 4, 22. [Google Scholar] [CrossRef]
- Held, I.M.; Soden, B.J. Robust responses of the hydrological cycle to global warming. J. Clim. 2006, 19, 5686–5699. [Google Scholar] [CrossRef]
- Seager, R.; Naik, N.; Vecchi, G.A. Thermodynamic and dynamic mechanisms for large-scale changes in the hydrological cycle in response to global warming. J. Clim. 2010, 23, 4651–4668. [Google Scholar] [CrossRef]
- Ruppert, J.C.; Harmoney, K.; Henkin, Z.; Snyman, H.A.; Sternberg, M.; Willms, W.; Linstädter, A. Quantifying drylands’ drought resistance and recovery: The importance of drought intensity, dominant life history and grazing regime. Glob. Chang. Biol. 2015, 21, 1258–1270. [Google Scholar] [CrossRef] [PubMed]
- Daryanto, S.; Wang, L.; Jacinthe, P.A. Global synthesis of drought effects on maize and wheat production. PLoS ONE 2016, 11, E0156362. [Google Scholar] [CrossRef] [PubMed]
- El Bastawesy, M.; White, K.; Nasr, A. Integration of remote sensing and GIS for modelling flash floods in Wadi Hudain catchment, Egypt. Hydrol. Process. 2009, 23, 1359–1368. [Google Scholar] [CrossRef]
- Armon, M.; Dente, E.; Smith, J.A.; Enzel, Y.; Morin, E. Synoptic-scale control over modern rainfall and flood patterns in the Levant drylands with implications for past climates. J. Hydrometeorol. 2018, 19, 1077–1096. [Google Scholar] [CrossRef]
- Cartwright, A.; Blignaut, J.; De Wit, M.; Goldberg, K.; Mander, M.; O’Donoghue, S.; Roberts, D. Economics of climate change adaptation at the local scale under conditions of uncertainty and resource constraints: The case of Durban, South Africa. Environ. Urban. 2013, 25, 139–156. [Google Scholar] [CrossRef]
- Landauer, M.; Juhola, S.; Klein, J. The role of scale in integrating climate change adaptation and mitigation in cities. J. Environ. Plan. Manag. 2018, 1–25. [Google Scholar] [CrossRef]
- Lorenz, S.; Dessai, S.; Forster, P.M.; Paavola, J. Adaptation planning and the use of climate change projections in local government in England and Germany. Reg. Environ. Chang. 2017, 17, 425–435. [Google Scholar] [CrossRef]
- Fussel, H.M. Adaptation planning for climate change: Concepts, assessment approaches, and key lessons. Sustain. Sci. 2007, 2, 265–275. [Google Scholar] [CrossRef]
- Francisco, E.; Guerrero, V.M. A new methodology for building local climate change scenarios: A case study of monthly temperature projections for Mexico City. Atmósfera 2014, 27, 429–449. [Google Scholar] [CrossRef]
- Funk, C.; Rowland, J.; Eilerts, G.; White, L. Climate Trend Analysis of Uganda [Internet]. USGS; 2012. Available online: https://pubs.usgs.gov/fs/2012/3062/FS2012-3062.pdf (accessed on 11 November 2018).
- Nimusiima, A.L.E.X.; Basalirwa, C.; Majaliwa, J.; Mbogga, S.; Mwavu, E.; Namaalwa, J.; Okello-Onen, J. Analysis of future climate scenarios over central Uganda cattle corridor. J. Earth Sci. Clim. Chang. 2014, 5, 10. [Google Scholar]
- Rautenbach, H. Regional Scale Climate Change Projections of Annual, Seasonal and Monthly Near-Surface Temperatures and Rainfall in Uganda [Internet]. University of Pretoria. 2014. Available online: https://news.mak.ac.ug/sites/default/files/downloads/Rautenbach_IPCC_5AR_Regional-scale climate change projections temp and rainfall in Uganda.pdf (accessed on 23 March, 2018).
- Chaplin, D.; Byekwaso, F.; Semambo, M.; Mujuni, G.; Bantaze, J.; Nyasimi, M.; Wabyona, E.; Krishnaswamy, S. The Impacts of Climate Change on Food Security and Livelihoods in Karamoja; CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS): Copenhagen, Denmark, 2017. [Google Scholar]
- Mubiru, D.N. Climate Change and Adaptation Options in Karamoja. In Organic Food and Agriculture; Food and Agriculture Organisation of the United Nations: Kampala, Uganda, 2010. [Google Scholar]
- Egeru, A.; Osaliya, R.; MacOpiyo, L.; Mburu, J.; Wasonga, O.; Barasa, B.; Said, M.; Aleper, D.; Mwanjalolo, G.-J.M. Assessing the spatio-temporal climate variability in semi-arid Karamoja sub-region in north-eastern Uganda. Int. J. Environ. Stud. 2014, 71, 490–509. [Google Scholar] [CrossRef]
- Schreck, J.C.; Semazzi, F.H.M. Variability of the recent climate of East Africa. Int. J. Climatol. 2004, 24, 681–701. [Google Scholar] [CrossRef]
- Rienecker, M.M.; Suarez, M.J.; Gelaro, R.; Todling, R.; Bacmeister, J.; Liu, E.; Bosilovich, M.G.; Schubert, S.D.; Takacs, L.; Kim, G.K.; et al. MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Clim. 2011, 24, 3624–3648. [Google Scholar] [CrossRef]
- Wu, M.-L.C.; Reale, O.; Schubert, S.D. A Characterization of African Easterly Waves on 2.5–6-Day and 6–9-Day Time Scales. J. Clim. 2013, 26, 6750–6774. [Google Scholar] [CrossRef]
- McLeod, A.I. Kendall Rank Correlation and Mann-Kendall Trend Test; R Package Kendal; University of Western Ontario: London, ON, Canada, 2005. [Google Scholar]
- Wang, X.L.; Wen, Q.H.; Wu, Y. Penalized maximal t test for detecting undocumented mean change in climate data series. J. Appl. Meteorol. Climatol. 2007, 46, 916–931. [Google Scholar] [CrossRef]
- Weldegerima, T.M.; Zeleke, T.T.; Birhanu, B.S.; Zaitchik, B.F.; Fetene, Z.A. Analysis of Rainfall Trends and Its Relationship with SST Signals in the Lake Tana Basin, Ethiopia. Adv. Meteorol. 2018, 2018, 5869010. [Google Scholar] [CrossRef]
- Asfaw, A.; Simane, B.; Hassen, A.; Bantider, A. Variability and time series trend analysis of rainfall and temperature in northcentral Ethiopia: A case study in Woleka sub-basin. Weather Clim. Extrem. 2018, 19, 29–41. [Google Scholar] [CrossRef]
- Taxak, A.K.; Murumkar, A.R.; Arya, D.S. Long term spatial and temporal rainfall trends and homogeneity analysis in Wainganga basin, Central India. Weather Clim. Extrem. 2014, 4, 50–61. [Google Scholar] [CrossRef]
- Rosenzweig, C.; Jones, J.; Hatfield, J.; Ruane, A.; Boote, K.; Thorburn, P.; Antle, J.; Nelson, G.; Porter, C.; Janssen, S.; et al. The agricultural model intercomparison and improvement project (AgMIP): Protocols and pilot studies. Agric. For. Meteorol. 2013, 170, 166–182. [Google Scholar] [CrossRef]
- Ramirez-Villegas, J.; Jarvis, A. Downscaling Global Circulation Model Outputs: The Delta Method Decision and Policy Analysis [Internet]. Report No. 1, Cali, Colombia. 2010. Available online: http://www.ccafs-climate.org/downloads/docs/Downscaling-WP-01.pdf (accessed on 14 March 2014).
- Wayne, G.P. The Beginner’s Guide to Representative Concentration Pathways [Internet]. Skeptical Scienc. 2013. Available online: https://skepticalscience.com/docs/RCP_Guide.pdf (accessed on 20 July 2018).
- van Vuuren, D.P.; Edmonds, J.; Kainuma, M.; Riahi, K.; Thomson, A.; Hibbard, K.; Hurtt, G.C.; Kram, T.; Krey, V.; Lamarque, J.F.; et al. The representative concentration pathways: An overview. Clim. Chang. 2011, 109, 5–31. [Google Scholar] [CrossRef]
- Wise, M.; Calvin, K.; Thomson, A.; Clarke, L.; Bond-Lamberty, B.; Sands, R.; Smith, S.J.; Janetos, A.; Edmonds, J. Implications of limiting CO2 concentrations for land use and energy. Science 2009, 324, 1183–1186. [Google Scholar] [CrossRef] [PubMed]
- Riahi, K.; Grübler, A.; Nakicenovic, N. Scenarios of long-term socio-economic and environmental development under climate stabilization. Technol. Forecast. Soc. Chang. 2007, 74, 887–935. [Google Scholar] [CrossRef]
- Schwinning, S.; Sala, O.E.; Loik, M.E.; Ehleringer, J.R. Thresholds, memory, and seasonality: Understanding pulse dynamics in arid/semi-arid ecosystems. Oecologia 2004, 141, 191–193. [Google Scholar] [CrossRef] [PubMed]
- Jenerette, G.D.; Barron-Gafford, G.A.; Guswa, A.J.; McDonnell, J.J.; Villegas, J.C. Organization of complexity in water limited ecohydrology. Ecohydrology 2012, 5, 184–199. [Google Scholar] [CrossRef]
- Rao, B.B.; Chowdary, P.S.; Sandeep, V.M.; Rao VU, M.; Venkateswarlu, B. Rising minimum temperature trends over India in recent decades: Implications for agricultural production. Glob. Planet. Chang. 2014, 117, 1–8. [Google Scholar]
- Schlaepfer, D.R.; Bradford, J.B.; Lauenroth, W.K.; Munson, S.M.; Tietjen, B.; Hall, S.A.; Lkhagva, A. Climate change reduces extent of temperate drylands and intensifies drought in deep soils. Nat. Commun. 2017, 8, 14196. [Google Scholar] [CrossRef] [PubMed]
- Kahn, B. We Just Breached the 410 Parts Per Million Threshold [Internet]. Climate Central. 2017. Available online: http://www.climatecentral.org/news/we-just-breached-the-410-parts-per-million-threshold-21372 (accessed on 20 November 2018).
- Jones, N. How the World Passed a Carbon Threshold and Why It Matters [Internet]. Yale Environment 360. 2017. Available online: https://e360.yale.edu/features/how-the-world-passed-a-carbon-threshold-400ppm-and-why-it-matters (accessed on 22 November 2018).
- NOAA-N. 2017 Was 3rd Warmest Year on Record for the Globe [Internet]. NOAA; 2018. Available online: https://www.noaa.gov/news/noaa-2017-was-3rd-warmest-year-on-record-for-globe (accessed on 22 November 2018).
- Diffenbaugh, N.S.; Scherer, M. Observational and model evidence of global emergence of permanent, unprecedented heat in the 20th and 21st centuries. Clim. Chang. 2011, 107, 615–624. [Google Scholar] [CrossRef] [PubMed]
- Pipatsawet, J.; Podisuk, M. Temperature Rise of the Earth. Procedia-Soc. Behav. Sci. 2013, 88, 220–224. [Google Scholar] [CrossRef]
- Gao, Y.; Gao, X.; Zhang, X. The 2 C global temperature target and the evolution of the long-term goal of addressing climate change from the United Nations Framework Convention on Climate Change to the Paris Agreement. Engineering 2017, 3, 272–278. [Google Scholar] [CrossRef]
- Masih, I.; Maskey, S.; Mussá, F.E.F.; Trambauer, P. A review of droughts on the African continent: A geospatial and long-term perspective. Hydrol. Earth Syst. Sci. 2014, 18, 3635–3649. [Google Scholar] [CrossRef]
- Epule, T.E.; Ford, J.D.; Lwasa, S.; Lepage, L. Vulnerability of maize yields to droughts in Uganda. Water 2017, 9, 181. [Google Scholar] [CrossRef]
- Mulinde, C.; Majaliwa, M.; Twesigomwe, E.; Egeru, A. Meteorological Drought Occurrence and Severity in Uganda. In Disasters and Climate Resilience in Uganda: Processes, Knowledge and Practices; Nakileza, B.R., Bamutaze, Y., Mukwaya, P., Eds.; UNDP: Kampala, Uganda, 2016; pp. 185–215. [Google Scholar]
- Dunning, C.M.; Black, E.; Allan, R.P. Later wet seasons with more intense rainfall over Africa under future climate change. J. Clim. 2018. [Google Scholar] [CrossRef]
- Malherbe, J.; Engelbrecht, F.A.; Landman, W.A. Projected changes in tropical cyclone tracks over the southwestern Indian ocean under enhanced anthropogenic forcing. Clim. Dyn. 2012, 40, 2867–2886. [Google Scholar] [CrossRef]
- Engelbrecht, F.A.; McGregor, J.L.; Engelbrecht, C.J. Dynamics of the conformal-cubic atmospheric model projected climate-change signal over southern Africa. Int. J. Climatol. 2009, 29, 1013–1033. [Google Scholar] [CrossRef]
- Zickfeld, K.; Solomon, S.; Gilford, D.M. Centuries of thermal sea-level rise due to anthropogenic emissions of short-lived greenhouse gases. Proc. Natl. Acad. Sci. USA 2017, 114, 657–662. [Google Scholar] [CrossRef] [PubMed]
- Peacock, S. Projected twenty-first-century changes in temperature, precipitation, and snow cover over North America in CCSM4. J. Clim. 2012, 25, 4405–4429. [Google Scholar] [CrossRef]
- Thomson, A.M.; Calvin, K.V.; Smith, S.J.; Kyle, G.P.; Volke, A.; Patel, P.; Delgado-Arias, S.; Bond-Lamberty, B.; Wise, M.A.; Clarke, L.E.; et al. RCP4. 5: A pathway for stabilization of radiative forcing by 2100. Clim. Chang. 2011, 109, 77–94. [Google Scholar] [CrossRef]
- Nazarenko, L.; Schmidt, G.A.; Miller, R.L.; Tausnev, N.; Kelley, M.; Ruedy, R.; Russell, G.L.; Aleinov, I.; Bauer, M.; Bauer, S.; et al. Future climate change under RCP emission scenarios with GISS ModelE2. J. Adv. Model. Earth Syst. 2015, 7, 244–267. [Google Scholar] [CrossRef]
District | Historical Rainfall Mean | Historical Minimum Temperature (°C) | Historical Maximum Temperature (°C) | Historical Average Temperature (°C) |
---|---|---|---|---|
Abim | 1216.8 ± 127.0 | 17.7 ± 0.4 | 31.7 ± 0.4 | 33.6 ± 0.6 |
Amudat | 885.4 ± 125.6 | 16.2 ± 0.5 | 30.3 ± 0.4 | 31.3 ± 0.7 |
Kaabong | 728.4 ± 147.4 | 16.2 ± 0.5 | 29.8 ± 0.4 | 31.1 ± 0.7 |
Kotido | 701.6 ± 105.9 | 16.9 ± 0.5 | 30.2 ± 0.3 | 31.9 ± 0.6 |
Moroto | 855.7 ± 117.9 | 16.2 ± 0.5 | 29.9 ± 0.4 | 31.2 ± 0.7 |
Napak | 1167.5 ± 166.4 | 17.9 ± 0.5 | 31.7 ± 0.4 | 33.8 ± 0.8 |
Nakapiripirit | 885.4 ± 125.6 | 16.2 ± 0.5 | 30.3 ± 0.4 | 31.3 ± 0.7 |
Overall average | 920.1 ± 118.9 | 16.8 ± 0.5 | 30.6 ± 0.4 | 32.0 ± 0.7 |
District | Rainfall | Maximum Temperature | Minimum Temperature |
---|---|---|---|
1980–2009 | 1980–2009 | 1980–2009 | |
Abim | 0.39 | 1.14 | 2.71 * |
Amudat | 1.43 | 2.28 * | 1.14 |
Kaabong | 1.64 | 1.96 * | 3.64 * |
Kotido | 2.14 * | 2.31 * | 4.07 * |
Moroto | 1.89 | 2.99 * | 3.78 * |
Napak | 1.53 | 3.71 * | 3.57 * |
Nakapiripirit | 1.43 | 2.28 * | 3.78 * |
District | Tmax RCP4.5 | Tmax RCP8.5 | Tmin RCP4.5 | Tmin RCP8.5 | Rainfall RCP4.5 | Rainfall RCP8.5 |
---|---|---|---|---|---|---|
Abim | 32.3 ± 0.4 | 32.5 ± 0.4 | 18.6 ± 0.5 | 18.7 ± 0.5 | 1346.1 ± 142.1 | 1312.8 ± 137.3 |
Amudat | 31.0 ± 0.4 | 31.1 ± 0.4 | 17.1 ± 0.5 | 17.1 ± 0.5 | 972.5 ± 139.6 | 978.4 ± 142.3 |
Kaabong | 30.5 ± 0.4 | 30.6 ± 0.4 | 17.1 ± 0.5 | 17.2 ± 0.5 | 794.7 ± 164.3 | 775.5 ± 161.0 |
Kotido | 30.9 ± 0.3 | 31.0 ± 0.3 | 17.8 ± 0.5 | 17.9 ± 0.5 | 763.4 ± 116.7 | 746.5 ± 115.1 |
Moroto | 30.6 ± 0.4 | 30.8 ± 0.4 | 17.1 ± 0.5 | 17.3 ± 0.5 | 950.1 ± 133.2 | 931.8 ± 131.4 |
Nakapiripirit | 31.0 ± 0.4 | 31.1 ± 0.4 | 17.1 ± 0.5 | 17.1 ± 0.5 | 972.5 ± 139.6 | 978.4 ± 142.3 |
Napak | 32.3 ± 0.5 | 32.6 ± 0.5 | 18.8 ± 0.5 | 19.0 ± 0.5 | 1286.7 ± 188.3 | 1258.9 ± 183.8 |
Overall average | 31.2 ± 0.4 | 31.4 ± 0.4 | 17.7 ± 0.5 | 17.8 ± 0.5 | 1012.9 ± 146.3 | 997.5 ± 144.7 |
Analysis Time Slice | Projected Mean Annual Rainfall (mm) | Change in Rainfall (mm) | ||
---|---|---|---|---|
Sub-Region’s Average | RCP4.5 | RCP8.5 | RCP4.5 | RCP8.5 |
Mid-century (2040–2069) | 1084.7 ± 137.4 * | 1190.6 ± 166.3 * | 180.8 ± 180.5 | 206.6 ± 229.7 |
End-century (2070–2099) | 1107.5 ± 147.3 * | 1220.3 ± 165.1 * | 177.3 ± 203.7 | 210.0 ± 228.0 |
Century period (2040–2099) | 1084.7 ± 137.4 * | 1205.5 ± 164.9 * | 180.8 ± 180.5 | 244.9 ± 226.1 |
District level average | ||||
Mid-century (2040–2069) | ||||
Abim | 1401.9 ± 139.9 * | 1407.4 ± 143.2 * | −99.4 ± 223.2 | 33.6 ± 226.3 |
Amudat | 1024.5 ± 149.3 * | 1046.6 ± 154.2 * | 212.5 ± 200.8 | 236.1 ± 206.2 |
Kaabong | 829.6 ± 172.0 * | 1686.4 ± 350.2 * | 197.9 ± 235.5 | 428.3 ± 478.2 |
Kotido | 799.1 ± 123.2 * | 800.9 ± 124.9 * | 113.1 ± 153.6 | 123.1 ± 156.6 |
Moroto | 999.9 ± 141.8 * | 998.5 ± 143.9 * | 188.3 ± 184.9 | 202.3 ± 187.2 |
Nakapiripirit | 1024.5 ± 149.3 * | 1046.6 ± 154.2 * | 212.5 ± 200.8 | 236.1 ± 206.2 |
Napak | 1354.1 ± 196.9 * | 1348.0 ± 197.9 * | 174.5 ± 281.8 | 186.9 ± 282.5 |
End-century (2070–2099) | ||||
Abim | 1463.4 ± 151.3 * | 1610.8 ± 163.7 * | 25.4 ± 238.2 | 39.6 ± 258.8 |
Amudat | 1079.0 ± 158.2 * | 1248.9 ± 185.1 | 236.3 ± 210.3 | 293.1 ± 247.0 |
Kaabong | 856.8 ± 177.6 * | 949.3 ± 201.4 * | 217.9 ± 242.4 | 261.3 ± 274.4 |
Kotido | 827.7 ± 127.3 * | 924.9 ± 146.9 * | 126.9 ± 158.9 | 157.7 ± 185.2 |
Moroto | 1037.5 ± 147.6 * | 1165.8 ± 170.0 * | 207.0 ± 191.7 | 251.7 ± 221.5 |
Nakapiripirit | 1079.0 ± 158.2 * | 1248.6 ± 185.1 * | 236.3 ± 210.3 | 293.1 ± 247.0 |
Napak | 1408.8 ± 206.2 * | 1563.6 ± 231.4 * | 192.1 ± 293.8 | 230.4 ± 328.0 |
Analysis Time Slice | Projected Temperature (°C) | Change in Temperature (°C) | ||
---|---|---|---|---|
RCP4.5 | RCP8.5 | RCP4.5 | RCP8.5 | |
Mid-century (2040–2069) | ||||
Tmax | 31.9 ± 0.3 * | 32.3 ± 0.4 * | 0.8 ± 0.3 | 1.1 ± 0.4 |
Tmin | 18.5 ± 0.5 * | 18.9 ± 0.5 * | 1.2 ± 0.3 | 1.3 ± 0.4 |
Tmean | 25.2 ± 0.4 * | 25.6 ± 0.4 * | 0.9 ± 0.3 | 1.2 ± 0.3 |
End-century (2070–2099) | ||||
Tmax | 32.3 ± 0.4 * | 33.6 ± 0.5 * | 1.1 ± 0.4 | 1.3 ± 0.4 |
Tmin | 18.9 ± 0.5 * | 20.8 ± 0.5 * | 1.2 ± 0.4 | 0.2 ± 0.4 |
Tmean | 25.6 ± 0.4 * | 27.2 ± 0.4 * | 1.2 ± 0.3 | 0.7 ± 0.3 |
Long term period (2040–2099) | ||||
Tmax | 32.1 ± 0.4 * | 33.2 ± 0.7 * | 1.4 ± 0.4 | 1.4 ± 0.4 |
Tmin | 18.7 ± 0.5 * | 20.1 ± 1.0 * | 1.7 ± 0.3 | 3.0 ± 0.4 |
Tmean | 25.4 ± 0.4 * | 26.7 ± 0.9 * | 1.6 ± 0.3 | 2.2 ± 0.3 |
Projected Change in Minimum Temperature (°C) from Baseline (1980–2009) Period | ||||
RCP4.5 Mid | RCP8.5 Mid | RCP4.5 End | RCP8.5 End | |
Napak | 0.6 | 1.0 | 1.0 | 2.9 |
Abim | 0.8 | 1.2 | 1.2 | 3.1 |
Kotido | 1.6 | 2.0 | 2.0 | 3.9 |
Moroto | 2.3 | 2.7 | 2.7 | 4.6 |
Kaabong | 2.3 | 2.7 | 2.7 | 4.6 |
Amudat | 2.4 | 2.8 | 2.8 | 4.7 |
Nakapiripirit | 2.4 | 2.8 | 2.8 | 4.7 |
Sub-region’s average | 1.8 | 2.1 | 2.2 | 4.0 |
Projected Change in Maximum Temperature (°C) from Baseline (1980–2009) Period | ||||
RCP4.5 Mid | RCP8.5 Mid | RCP4.5 End | RCP8.5 End | |
Napak | 0.2 | 0.6 | 0.6 | 1.9 |
Abim | 0.2 | 0.6 | 0.6 | 1.9 |
Amudat | 1.6 | 2.0 | 2.0 | 3.3 |
Nakapiripirit | 1.6 | 2.0 | 2.0 | 3.3 |
Kotido | 1.7 | 2.1 | 2.1 | 3.4 |
Moroto | 2.0 | 2.4 | 2.4 | 3.7 |
Kaabong | 2.1 | 2.5 | 2.5 | 3.8 |
Sub-region’s average | 0.3 | 1.7 | 1.7 | 3.0 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Egeru, A.; Barasa, B.; Nampijja, J.; Siya, A.; Makooma, M.T.; Majaliwa, M.G.J. Past, Present and Future Climate Trends Under Varied Representative Concentration Pathways for a Sub-Humid Region in Uganda. Climate 2019, 7, 35. https://doi.org/10.3390/cli7030035
Egeru A, Barasa B, Nampijja J, Siya A, Makooma MT, Majaliwa MGJ. Past, Present and Future Climate Trends Under Varied Representative Concentration Pathways for a Sub-Humid Region in Uganda. Climate. 2019; 7(3):35. https://doi.org/10.3390/cli7030035
Chicago/Turabian StyleEgeru, Anthony, Bernard Barasa, Josephine Nampijja, Aggrey Siya, Moses Tenywa Makooma, and Mwanjalolo Gilbert Jackson Majaliwa. 2019. "Past, Present and Future Climate Trends Under Varied Representative Concentration Pathways for a Sub-Humid Region in Uganda" Climate 7, no. 3: 35. https://doi.org/10.3390/cli7030035
APA StyleEgeru, A., Barasa, B., Nampijja, J., Siya, A., Makooma, M. T., & Majaliwa, M. G. J. (2019). Past, Present and Future Climate Trends Under Varied Representative Concentration Pathways for a Sub-Humid Region in Uganda. Climate, 7(3), 35. https://doi.org/10.3390/cli7030035