The Indian Ocean Dipole: A Missing Link between El Niño Modokiand Tropical Cyclone Intensity in the North Indian Ocean
Abstract
:1. Introduction
- Section 2 discusses the datasets used (Section 2.1) and the methods (Section 2.2) employed in this study.
- Section 3 explains the observed results obtained from Empirical Mode Decomposition (EMD) (Section 3.1 and Section 3.2).
- Section 4 discusses the results with a possible explanation. This section also outlines the major conclusions of our investigation.
2. Data and Methods
2.1. Data
- Gridded monthly SST, Atmospheric Temperature (AT) profile, Relative Humidity (RH) profile, Sea Level Pressure (SLP) reanalysis dataset at 1°X1° from National Oceanic and Atmospheric Administration (NCEP-NCAR-R1) [22].
- The results are verified using three independent datasets as follows:
- Dataset 1: SST monthly dataset on a 2°X2° grid. The advantage of using this dataset is that it has improved spatial and temporal variability. This enhancement is done by (i) decreasing spatial filtering while training the reconstruction empirical orthogonal teleconnections, (ii) limiting high latitude damping in empirical orthogonal teleconnections, (iii) using unadjusted first guess instead of adjusted first guess [23,24]. (ftp://ftp.cdc.noaa.gov/Datasets/noaa.ersst.v5/sst.mnmean.nc)
- Dataset 2: The globally extended monthly ocean temperature derived from a more extensive ICOADS release-2.5. This dataset offers better data due to bias adjustments, infiltrating procedures, and quality control. This is highly suitable for studies of climate variability and change. (https://climatedataguide.ucar.edu/climate-data/sst-data-noaa-extended-reconstruction-ssts-version-4)
- Dataset 3: A global monthly SST analysis derived from the International Comprehensive Ocean-Atmosphere Data Set (ICOADS). The missing data is filled using statistical methods [25,26]. The data were interpolated in time and space by the providers. The data is taken from NOAA_ERSST_V3b data provided by the NOAA/OAR/ESRL PSD, Boulder, CO, USA, from their Web site at https://www.esrl.noaa.gov/psd/. The El Niño Modoki Index used here is defined as [14],
- TCPI: Defined as per potential maximum wind speeds, it is computed using SST (all three datasets as above), atmospheric temperature, relative humidity, and sea level pressure datasets. The TCPI is evaluated using a method developed and explained by Bister and Emanuel [27].
2.2. Methods
Empirical Mode Decomposition (EMD)
- Single extreme zero crossings
- Zero mean values.
3. Results
3.1. EMD Analysis
3.1.1. EMD Analysis of TCPI
- EMD analysis of TCPI using Dataset-1
- EMD analysis of TCPI using Dataset-2:
- EMD analysis of TCPI using Dataset-3:
3.1.2. EMD Analysis of El Niño Modoki:
3.1.3. EMD Analysis of DMI
- EMD analysis of DMI using Dataset-1:
- EMD analysis of DMI using Dataset-2:
- EMD analysis of DMI using Dataset-3:
3.2. Mode Comparison
3.2.1. Mode Comparison between TCPI, DMI and El Niño Modoki: Dataset-1
3.2.2. Mode Comparison between TCPI, DMI and El Niño Modoki: Dataset-2
3.2.3. Mode Comparison between TCPI, DMI and El Niño Modoki: Dataset-3
4. Discussion and Conclusions
5. Future Work
Author Contributions
Funding
Conflicts of Interest
References
- Landsea, C.W.; Nicholls, N.; Gray, W.M.; Avila, L.A. Downward trends in the frequency of intense Atlantic hurricanes during the past five decades. Geophys. Res. Lett. 1996, 3, 1697–1700. [Google Scholar] [CrossRef]
- Chan, J.C.L.; Shi, J.-E. Long-term trends and interannual variability in tropical cyclone activity over the western North Pacific. Geophys. Res. Lett. 1996, 23, 2765–2767. [Google Scholar] [CrossRef]
- Emanuel, K. Increasing destructiveness of tropical cyclones over the past 30 years. Nature 2005, 436. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, K. Projected response of tropical cyclone intensity and intensification in global climate model. AMS J. Clim. 2018. [Google Scholar] [CrossRef]
- Knutson, T.R.; McBride, J.L.; Chan, J.; Emanuel, K.; Holland, G.; Landsea, C.; Held, I.; Kossin, P.; Srivastava, K.; Sugi, M. Tropical cyclones and climate change. Nat. Geosci. 2010, 3, 157–163. [Google Scholar] [CrossRef] [Green Version]
- Lewis, S.C.; LeGrande, A.N. Stability of ENSO and its tropical Pacific teleconnections over the last millennium. Clim. Past 2015, 11, 1347–1360. [Google Scholar] [CrossRef]
- Arora, K.; Dash, P. Towards dependence of tropical cyclone intensity on sea surface temperature and its response in a warming world. Climate 2016, 4, 30. [Google Scholar] [CrossRef]
- Chan, J.C.L. Tropical cyclone activity in the northwest Pacific in relation to the El Nino/Southern Oscillation phenomenon. Mon. Weather Rev. 1985, 113, 599–606. [Google Scholar] [CrossRef]
- Wang, B.; Chan, J.C.L. How strong ENSO events affect tropical storm activity over the western North Pacific. J. Clim. 2002, 15, 1643–1658. [Google Scholar] [CrossRef]
- Chu, P.-S.; Murnane, R.J.; Liu, K.B. (Eds.) ENSO and Tropical Cyclone Activity. In Hurricanes and Typhoons: Past, Present, and Future; Columbia University Press: New York, NY, USA, 2004; pp. 297–332. [Google Scholar]
- Camargo, S.J.; Emanuel, K.A.; Sobel, A.H. Use of a genesis potential index to diagnose ENSO effects on tropical cyclone genesis. J. Clim. 2007, 20, 4819–4843. [Google Scholar] [CrossRef]
- Landsea, C.W.; Pielke, R.A., Jr.; Mestas-Nuñez, A.M.; Knaff, J.A. Atlantic basin hurricanes: Indices of climatic changes. Clim. Chang. 1999, 42, 89–129. [Google Scholar] [CrossRef]
- Elsner, J.B.; Kara, A.B. Hurricanes of the North Atlantic: Climate and Society; Oxford University Press: New York, NY, USA, 1999; 488p. [Google Scholar]
- Ashok, K.; Behera, S.K.; Rao, S.A.; Weng, H. El-Niño Modoki and its possible teleconnections. J. Geophys. Res. 2007, 112, C11007. [Google Scholar] [CrossRef]
- Weng, H.; Ashok, K.; Behera, S.K.; Rao, S.A.; Yamagata, T. Impacts of recent El Niño Modoki on dry/wet conditions in the Pacific rim during boreal summer. Clim. Dyn. 2007, 29, 113–129. [Google Scholar] [CrossRef] [Green Version]
- Cayan, D.R.; Dettinger, M.D.; Diaz, H.F.; Graham, N.E. Decadal variability Decadal variability of precipitation over western North America. J. Clim. 1998, 11, 3148–3166. [Google Scholar] [CrossRef]
- Barlow, M.; Nigam, S.; Berbery, E.H. ENSO, Pacific decadal variability, and U. S. summertime precipitation, drought, and stream flow. J. Clim. 2001, 14, 2105–2128. [Google Scholar] [CrossRef]
- Hu, Q.; Feng, S. Variations of teleconnection of ENSO and interannual variation in summer rainfall in the central United States. J. Clim. 2001, 14, 2469–2480. [Google Scholar] [CrossRef]
- Seager, R.; Kushnir, Y.; Herweijer, C.; Niak, N.; Velez, J. Modeling of tropical forcing of persistent droughts and pluvials over western North America: 1856–2000. J. Clim. 2005, 18, 4065–4088. [Google Scholar] [CrossRef]
- Saji, N.H.; Goswami, B.N.; Vinayachandran, P.N.; Yamagata, T. A dipole mode in the tropical Indian Ocean. Nature 1999, 401, 360–363. [Google Scholar] [CrossRef] [PubMed]
- Sumesh, K.G.; Kumar, M.R.R. Tropical cyclones over north Indian Ocean during El-Niño Modoki years. Nat. Hazards 2013, 68, 1057–1074. [Google Scholar] [CrossRef]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR 40 year reanalysis project. Bull. Am. Meteorol. Soc. 1996. [Google Scholar] [CrossRef]
- Huang, B.; Banzon, V.F.; Freeman, E.; Lawrimore, J.; Liu, W.; Peterson, T.C.; Smith, T.M.; Thorne, P.W.; Woodruff, S.D.; Zhang, H.-M. Extended Reconstructed Sea Surface Temperature version 4 (ERSST.v4): Part I. Upgrades and intercomparisons. J. Clim. 2014, 28, 911–930. [Google Scholar] [CrossRef]
- Liu, W.; Huang, B.; Thorne, P.W. Extended Reconstructed Sea Surface Temperature version 4 (ERSST.v4): Part II. Parametric and structural uncertainty estimations. J. Clim. 2014, 28, 931–951. [Google Scholar] [CrossRef]
- Smith, T.M.; Reynolds, R.W.; Peterson, T.C.; Lawrimore, J. Improvements NOAAs Historical Merged Land–Ocean Temp Analysis (1880–2006). J. Clim. 2008, 21, 2283–2296. [Google Scholar] [CrossRef]
- Xue, Y.; Smith, T.M.; Reynolds, R.W. Interdecadal Changes of 30-Yr SST Normals during 1871–2000. J. Clim. 2003, 16, 1601–1612. [Google Scholar] [CrossRef]
- Bister, M.; Emanuel, K.A. Dissipative heating and hurricane intensity. Meteorol. Atmos. Phys. 1998, 55, 233–240. [Google Scholar] [CrossRef]
- Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.-C.; Tung, C.C.; Liu, H.H. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. 1998, 454, 903–993. [Google Scholar] [CrossRef]
- Huang, N.E.; Shen, Z.; Long, S.R. A new view of nonlinear water waves-The Hilbert spectrum. Annu. Rev. Fluid Mech. 1999, 31, 417–457. [Google Scholar] [CrossRef]
- Peng, Z.K.; Tse Peter, W.; Chu, F.L. A comparison study of improved Hilbert Huang transform and wavelet transform: Application to fault diagnostics for rolling bearing. Mech. Syst. 2005, 19, 974–988. [Google Scholar] [CrossRef]
- Emanuel, K.A. An air-sea interaction theory for tropical cyclones, Part 1. J. Atmos. Sci. 1986, 42, 1062–1071. [Google Scholar] [CrossRef]
- Emanuel, K.; Ravela, S.; Vivant, E.; Risi, C. A combined statistical-deterministic approach of hurricane risk assessment. Unpublished manuscript. 2005. [Google Scholar]
- Emanuel, K.A. The behavior of a simple hurricane model using a convective scheme based on sub-cloud layer entropy equilibrium. J. Atmos. 1995, 52, 3960–3968. [Google Scholar] [CrossRef]
- Montgomery, M.T.; Smith, R.K.; Nguyen, S.V. Sensitivity of tropical-cyclone modelsto the surface drag coefficient. RMetS 2010, 136, 1945–1953. [Google Scholar]
- Powell, M.D.; Vickery, P.J.; Reinhold, T.A. Reduced drag coefficient for high wind speeds in tropical cyclones. Nature 2003, 422, 279–283. [Google Scholar] [CrossRef] [PubMed]
Signal-Mode Number | CC |
---|---|
Signal, IMF-1 | 0.4725 |
Signal, IMF-2 | 0.3382 |
Signal, IMF-3 | 0.4992 |
Signal, IMF-4 | 0.0753 |
Signal, IMF-5 | 0.0882 |
Signal, IMF-6 (Trend) | 0.4853 |
Signal-Mode Number | CC |
---|---|
Signal, IMF-1 | 0.3582 |
Signal, IMF-2 | 0.4054 |
Signal, IMF-3 | 0.1858 |
Signal, IMF-4 | 0.8298 |
Signal, IMF-5 | 0.0692 |
Signal, IMF-6 (Trend) | 0.5029 |
Signal-Mode Number | CC |
---|---|
Signal, IMF-1 | 0.5319 |
Signal, IMF-2 | 0.3904 |
Signal, IMF-3 | 0.7451 |
Signal, IMF-4 | 0.0622 |
Signal, IMF-5 | 0.0698 |
Signal, IMF-6 (Trend) | 0.0277 |
Signal-Mode Number | CC |
---|---|
Signal, IMF-1 | 0.5010 |
Signal, IMF-2 | 0.6623 |
Signal, IMF-3 | 0.2448 |
Signal, IMF-4 | 0.0863 |
Signal, IMF-5 | 0.0074 |
Signal, IMF-6 (Trend) | 0.2065 |
Signal-Mode Number | CC |
---|---|
Signal, IMF-1 | 0.6952 |
Signal, IMF-2 | 0.0932 |
Signal, IMF-3 | 0.1922 |
Signal, IMF-4 | 0.2649 |
Signal, IMF-5 | 0.2873 |
Signal, IMF-6 (Trend) | −0.1133 |
Signal-Mode Number | CC |
---|---|
Signal, IMF-1 | 0.6921 |
Signal, IMF-2 | 0.2627 |
Signal, IMF-3 | 0.1661 |
Signal, IMF-4 | 0.2483 |
Signal, IMF-5 | 0.2759 |
Signal, IMF-6 (Trend) | 0.0303 |
Signal-Mode Number | CC |
---|---|
Signal, IMF-1 | 0.7190 |
Signal, IMF-2 | 0.4684 |
Signal, IMF-3 | 0.2175 |
Signal, IMF-4 | 0.2271 |
Signal, IMF-5 | 0.1278 |
Signal, IMF-6 (Trend) | 0.2225 |
EMI Maxima | 7 | 19 | 32 |
DMI minima | 14 | 23 | 34 |
TCPI minima | 20 | 34 | 67+ |
Interval DMI-EMI: | 7 | 4 | 2 |
Interval TCPI-DMI: | 6 | 11 | NA |
Interval TCPI-EMI: | 13 | 15 | NA |
EMI minima | 12 | 26 |
DMI maxima | 19 | 28 |
TCPI maxima | 25 | 54 |
Interval DMI-EMI: | 7 | 2 |
Interval TCPI-DMI: | 6 | 26 |
Interval TCPI-EMI: | 13 | 28 |
EMI maxima | 7 | 19 | 32 | 48 |
DMI minima | 14 | 23 | 37 | 60 |
TCPI minima | 20 | 28 | 46 | 65 |
Interval DMI-EMI: | 7 | 4 | 5 | 12 |
Interval TCPI-DMI: | 6 | 5 | 9 | 5 |
Interval TCPI-EMI: | 13 | 9 | 14 | 17 |
EMI minima | 12 | 26 | 39 |
DMI maxima | 19 | 29 | 42 |
TCPI maxima | 25 | 31 | 55 |
Interval DMI-EMI: | 7 | 3 | 3 |
Interval TCPI-DMI: | 6 | 2 | 13 |
Interval TCPI-EMI: | 13 | 5 | 16 |
EMI maxima | 7 | 19 |
DMI minima | 13 | 29 |
TCPI minima | 35 | 67+ |
Interval DMI-EMI: | 6 | 10 |
Interval TCPI-DMI: | 22 | NA |
Interval TCPI-EMI: | 28 | NA |
EMI minima | 12 |
DMI maxima | 22 |
TCPI maxima | 56 |
Interval DMI-EMI: | 10 |
Interval TCPI-DMI: | 34 |
Interval TCPI-EMI: | 44 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arora, K.; Dash, P. The Indian Ocean Dipole: A Missing Link between El Niño Modokiand Tropical Cyclone Intensity in the North Indian Ocean. Climate 2019, 7, 38. https://doi.org/10.3390/cli7030038
Arora K, Dash P. The Indian Ocean Dipole: A Missing Link between El Niño Modokiand Tropical Cyclone Intensity in the North Indian Ocean. Climate. 2019; 7(3):38. https://doi.org/10.3390/cli7030038
Chicago/Turabian StyleArora, Kopal, and Prasanjit Dash. 2019. "The Indian Ocean Dipole: A Missing Link between El Niño Modokiand Tropical Cyclone Intensity in the North Indian Ocean" Climate 7, no. 3: 38. https://doi.org/10.3390/cli7030038
APA StyleArora, K., & Dash, P. (2019). The Indian Ocean Dipole: A Missing Link between El Niño Modokiand Tropical Cyclone Intensity in the North Indian Ocean. Climate, 7(3), 38. https://doi.org/10.3390/cli7030038