Impact of Climate Change on Twenty-First Century Crop Yields in the U.S.
Abstract
:1. Introduction
1.1. Impacts of Climate Change and the Social Cost of Carbon
1.2. Warming Temperatures Impact Agriculture
2. Methods
3. Results
3.1. Historical Correlations and Regressions
3.2. Prediction of Future Crop Yield
4. Discussion
Funding
Acknowledgments
Conflicts of Interest
References
- Shrestha, S.; Deb, P.; Bui, T.T.T. Adaptation strategies for rice cultivation under climate change in Central Vietnam. Mitig. Adapt. Strateg. Glob. Chang. 2016, 21, 15–37. [Google Scholar] [CrossRef]
- Deb, P.; Shrestha, S.; Babel, M.S. Forecasting climate change impacts and evaluation of adaptation options for maize cropping in the hilly terrain of Himalayas: Sikkim, India. Theor. Appl. Climatol. 2015, 121, 649–667. [Google Scholar] [CrossRef]
- IPCC. Summary for Policymakers. In Global Warming of 1.5 °C; An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, In the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; Intergovernmental Panel on Climate Change (IPCC): Geneva, Switzerland, 2018. [Google Scholar]
- Schiermeier, Q. Economists Who Changed Thinking on Climate Change Win Nobel Prize. Nature, 8 October 2018. [Google Scholar] [CrossRef]
- Nordhaus, W.D. Economic aspects of global warming in a post-Copenhagen environment. Proc. Natl. Acad. Sci. USA 2010, 107, 11721–11726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsiang, S.; Kopp, R.; Jina, A.; Rising, J.; Delgado, M.; Mohan, S.; Rasmussen, D.J.; Muir-Wood, R.; Wilson, P.; Oppenheimer, M.; et al. Estimating economic damage from climate change in the United States. Science 2017, 356, 1362–1369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moore, F.C.; Diaz, D.B. Temperature impacts on economic growth warrant stringent mitigation policy. Nat. Clim. Chang. 2015, 2015. 5, 127–131. [Google Scholar] [CrossRef]
- Schlenker, W.; Roberts, M.J. Nonlinear temperature effects indicate severe damages to U.S. crop yields under climate change. Proc. Natl. Acad. Sci. USA 2009, 106, 15594–15598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edgerton, M.D. Increasing Crop Productivity to Meet Global Needs for Feed, Food, and Fuel. Plant Physiol. 2009, 149, 7–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gerland, P.; Raftery, A.E.; Ševčíková, H.; Li, N.; Gu, D.; Spoorenberg, T.; Alkema, L.; Fosdick, B.K.; Chunn, J.; Lalic, N.; et al. World population stabilization unlikely this century. Science 2014, 346, 234–237. [Google Scholar] [CrossRef] [PubMed]
- Alston, J.M.; Beddow, J.M.; Pardey, P.G. Agricultural Research, Productivity, and Food Prices in the Long Run. Science 2009, 325, 1209–1210. [Google Scholar] [CrossRef]
- Singh, R.P.; Hodson, D.P.; Huerta-Espino, J.; Jin, Y.; Njau, P.; Wanyera, R.; Herrera-Foessel, S.A.; Ward, R.W. Will Stem Rust Destroy the World’s Wheat Crop? Adv. Agron. 2018, 98, 271–309. [Google Scholar] [CrossRef]
- Butler, E.E.; Huybers, P. Adaptation of US maize to temperature variations. Nat. Clim. Chang. 2013, 3, 68–72. [Google Scholar] [CrossRef]
- Liang, X.Z.; Wu, Y.; Chambers, R.G.; Schmoldt, D.L.; Gao, W.; Liu, C.; Liu, Y.A.; Sun, C.; Kennedy, J.A. Determining climate effects on US total agricultural productivity. Proc. Natl. Acad. Sci. USA 2017, 114, E2285–E2292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tebaldi, C.; Lobell, D. Estimated impacts of emission reductions on wheat and maize crops. Clim. Chang. 2015, 1–13. [Google Scholar] [CrossRef]
- Petersen, L.K. Real-Time Prediction of Crop Yields From MODIS Relative Vegetation Health: A Continent-Wide Analysis of Africa. Remote Sens. 2018, 10, 1726. [Google Scholar] [CrossRef]
- Ray, D.K.; Gerber, J.S.; MacDonald, G.K.; West, P.C. Climate variation explains a third of global crop yield variability. Nat. Commun. 2015, 6, 5989. [Google Scholar] [CrossRef] [Green Version]
- Ortiz-Bobea, A.; Just, R.E. Modeling the Structure of Adaptation in Climate Change Impact Assessment. Am. J. Agric. Econ. 2013, 95, 244–251. [Google Scholar] [CrossRef]
- Lobell, D.B.; Schlenker, W.; Costa-Roberts, J. Climate Trends and Global Crop Production Since 1980. Science 2011, 333, 616–620. [Google Scholar] [CrossRef] [PubMed]
- Kukal, M.S.; Irmak, S. Climate-Driven Crop Yield and Yield Variability and Climate Change Impacts on the U.S. Great Plains Agricultural Production. Sci. Rep. 2018, 8, 3450. [Google Scholar] [CrossRef]
- Najafi, E.; Devineni, N.; Khanbilvardi, R.M.; Kogan, F. Understanding the Changes in Global Crop Yields Through Changes in Climate and Technology. Earths Future 2018, 6, 410–427. [Google Scholar] [CrossRef]
- Peng, B.; Guan, K.; Chen, M.; Lawrence, D.M.; Pokhrel, Y.; Suyker, A.; Arkebauer, T.; Lu, Y. Improving maize growth processes in the community land model: Implementation and evaluation. Agric. For. Meteorol. 2018, 250–251, 64–89. [Google Scholar] [CrossRef]
- Sheng, M.; Liu, J.; Zhu, A.X.; Rossiter, D.G.; Zhu, L.; Peng, G. Evaluation of CLM-Crop for maize growth simulation over Northeast China. Ecol. Model. 2018, 377, 26–34. [Google Scholar] [CrossRef]
- Butler, E.E.; Huybers, P. Variations in the sensitivity of US maize yield to extreme temperatures by region and growth phase. Environ. Res. Lett. 2015, 10, 034009. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Zhang, J.; Guo, E.; Yan, D.; Sun, Z. The impacts of long-term and year-to-year temperature change on corn yield in China. Theor. Appl. Climatol. 2015, 119, 77–82. [Google Scholar] [CrossRef]
- Lobell, D.B.; Tebaldi, C. Getting caught with our plants down: the risks of a global crop yield slowdown from climate trends in the next two decades. Environ. Res. Lett. 2014, 9, 074003. [Google Scholar] [CrossRef] [Green Version]
- Tebaldi, C.; Lobell, D.B. Towards probabilistic projections of climate change impacts on global crop yields. Geophys. Res. Lett. 2008, 35, L08705. [Google Scholar] [CrossRef]
- Gornott, C.; Wechsung, F. Statistical regression models for assessing climate impacts on crop yields: A validation study for winter wheat and silage maize in Germany. Agric. For. Meteorol. 2016, 217, 89–100. [Google Scholar] [CrossRef]
- Tao, F.; Zhang, Z.; Zhang, S.; Ratter, R.P.; Shi, W.; Xiao, D.; Liu, Y.; Wang, M.; Liu, F.; Zhang, H. Historical data provide new insights into response and adaptation of maize production systems to climate change/variability in China. Field Crops Res. 2016, 185, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Ummenhofer, C.C.; Xu, H.; Twine, T.E.; Girvetz, E.H.; McCarthy, H.R.; Chhetri, N.; Nicholas, K.A. How Climate Change Affects Extremes in Maize and Wheat Yield in Two Cropping Regions. J. Clim. 2015, 28, 4653–4687. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, Z.; Song, X.; Chen, Y.; Wei, X.; Shi, P.; Tao, F. Temperature variations and rice yields in China: Historical contributions and future trends. Clim. Chang. 2014, 124, 777–789. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, Z.; Chen, Y.; Wei, X.; Feng, B.; Tao, F. How much yield loss has been caused by extreme temperature stress to the irrigated rice production in China? Clim. Chang. 2016, 134, 635–650. [Google Scholar] [CrossRef]
- Anderson, C.J.; Babcock, B.A.; Peng, Y.; Gassman, P.W.; Campbell, T.D. Placing bounds on extreme temperature response of maize. Environ. Res. Lett. 2015, 10, 124001. [Google Scholar] [CrossRef]
- Hamer, H.; Picanso, R.; Prusacki, J.J.; Rater, B.; Johnson, J.; Barnes, K.; Parsons, J.; Young, D.L. National Agricultural Statistics Service; United States Department of Agriculture: Washington, DC, USA, 2017. [Google Scholar]
- Menne, M.J.; Durre, I.; Vose, R.S.; Gleason, B.E.; Houston, T.G. An Overview of the Global Historical Climatology Network-Daily Database. J. Atmos. Ocean. Technol. 2012, 29, 897–910. [Google Scholar] [CrossRef]
- Hartmann, D.; Tank, A.K.; Rusticucci, M. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Technical Report; IPCC: Geneva, Switzerland, 2013. [Google Scholar]
- USDA. Field Crops: Usual Planting and Harvesting Dates; Technical Report; National Agricultural Statistics Service: Washington, DC, USA, 2010. [Google Scholar]
- Crow, E.L.; Davis, F.A.; Maxfield, M.W. Statistics Manual; Dover Publications, Inc.: Mineola, NY, USA, 1960. [Google Scholar]
- Gent, P.R.; Danabasoglu, G.; Donner, L.J.; Holland, M.M.; Hunke, E.C.; Jayne, S.R.; Lawrence, D.M.; Neale, R.B.; Rasch, P.J.; Vertenstein, M.; et al. The Community Climate System Model Version 4. J. Clim. 2011, 24, 4973–4991. [Google Scholar] [CrossRef] [Green Version]
- Taylor, K.E.; Stouffer, R.J.; Meehl, G.A. An Overview of CMIP5 and the Experiment Design. Bull. Am. Meteorol. Soc. 2011, 93, 485–498. [Google Scholar] [CrossRef]
- Abatzoglou, J.T.; Brown, T.J. A comparison of statistical downscaling methods suited for wildfire applications. Int. J. Climatol. 2012, 32, 772–780. [Google Scholar] [CrossRef]
- Abatzoglou, J.T. Development of gridded surface meteorological data for ecological applications and modelling. Int. J. Climatol. 2011, 33, 121–131. [Google Scholar] [CrossRef] [Green Version]
- Hayhoe, K.; Edmonds, J.; Kopp, R.; LeGrande, A.; Sanderson, B.; Wehner, M.; Wuebbles, D. Climate models, scenarios, and projections. 2017, 1, 133–160. [Google Scholar] [CrossRef]
- Tebaldi, C.; Lobell, D. Differences, or lack thereof, in wheat and maize yields under three low-warming scenarios. Environ. Res. Lett. 2018, 13, 065001. [Google Scholar] [CrossRef] [Green Version]
- Jones, J.W.; Hoogenboom, G.; Porter, C.H.; Boote, K.J.; Batchelor, W.D.; Hunt, L.A.; Wilkens, P.W.; Singh, U.; Gijsman, A.J.; Ritchie, J.T. The DSSAT cropping system model. Eur. J. Agron. 2003, 18, 235–265. [Google Scholar] [CrossRef]
- USDA, NASS. Agricultural Prices; USDA, NASS: Washington, DC, USA, 2018. [Google Scholar]
- USDA, NASS. Crop Production 2016 Summary; USDA, NASS: Washington, DC, USA, 2017. [Google Scholar]
- Högy, P.; Wieser, H.; Köhler, P.; Schwadorf, K.; Breuer, J.; Franzaring, J.; Muntifering, R.; Fangmeier, A. Effects of elevated CO2 on grain yield and quality of wheat: Results from a 3-year free-air CO2 enrichment experiment. Plant Biol. 2009, 11, 60–69. [Google Scholar] [CrossRef] [PubMed]
- Lobell, D.B.; Bänziger, M.; Magorokosho, C.; Vivek, B. Nonlinear heat effects on African maize as evidenced by historical yield trials. Nat. Clim. Chang. 2011, 1, 42–45. [Google Scholar] [CrossRef]
- Jin, Z.; Ainsworth, E.A.; Leakey, A.D.B.; Lobell, D.B. Increasing drought and diminishing benefits of elevated carbon dioxide for soybean yields across the US Midwest. Glob. Chang. Biol. 2018, 24, e522–e533. [Google Scholar] [CrossRef]
- Jin, Z.; Zhuang, Q.; Wang, J.; Archontoulis, S.V.; Zobel, Z.; Kotamarthi, V.R. The combined and separate impacts of climate extremes on the current and future US rainfed maize and soybean production under elevated CO2. Glob. Chang. Biol. 2017, 23, 2687–2704. [Google Scholar] [CrossRef] [PubMed]
- Obermeier, W.A.; Lehnert, L.W.; Kammann, C.I.; Müller, C.; Grünhage, L.; Luterbacher, J.; Erbs, M.; Moser, G.; Seibert, R.; Yuan, N.; et al. Reduced CO2 fertilization effect in temperate C3 grasslands under more extreme weather conditions. Nat. Clim. Chang. 2016, 7, 137. [Google Scholar] [CrossRef]
Measurement | Definition | Units |
---|---|---|
Average Yearly high | Average of all daily highs in a year | C |
Average Yearly low | Average of all daily lows in a year | C |
Summer Average | Average of all daily max temps over months June, July, and August | C |
Warmest Day | The warmest high in the growing season | C |
Coldest Day | The coldest high in the growing season | C |
Warmest Night | The warmest low in the growing season | C |
Coldest Night | The coldest low in the growing season | C |
Heat Waves of highs | Frequency of 3 daily highs in a row >90th percentile | #/year |
Heat Waves of lows | Frequency of 3 daily lows in a row >90th percentile | #/year |
Cold Spells of lows | Frequency of 3 daily lows in a row <10th percentile | #/year |
Cold Spells of highs | Frequency of 3 daily highs in a row <10th percentile | #/year |
Warm Days | Days when daily high >90th percentile | days/year |
Cold Days | Days when daily high <10th percentile | days/year |
Warm Nights | Days when daily low >90th percentile | days/year |
Cold Nights | Days when daily low <10th percentile | days/year |
Tropical Nights | Frequency of daily lows >20 C (68 F) | days/year |
Frost Nights | Frequency of daily lows <0 C (32 F) | days/year |
Growing Degree Days | Summation of daily highs above 10 C (50 F) | C*days |
Killing Degree Days | Summation of daily highs above 29 C (68 F) [13] | C |
Precipitation | Total precipitation | mm/year |
Corn | Soybeans | Rice | ||||
---|---|---|---|---|---|---|
Historical yield change/decade (%) | 23.7 | 17.7 | 17.4 | |||
Future: low emissions | no CO | with CO | no CO | with CO | no CO | with CO |
Yield change/decade (%) | −1.77 | −1.50 | −1.20 | +0.002 | −0.367 | 0.860 |
Projected yield diff to steady climate (%) | 87.9 | 90.0 | 92.3 | 101 | 98.6 | 108 |
Monetary loss or gain (billion 2019 US$) | −12.7 | −10.5 | −5.00 | +0.717 | −0.343 | +1.99 |
Future: high emissions | no CO | with CO | no CO | with CO | no CO | with CO |
Yield change/decade (%) | −3.78 | −3.41 | −2.40 | 0.96 | −0.830 | 3.09 |
Projected yield diff to steady climate (%) | 76.8 | 80.0 | 84.6 | 111 | 95.7 | 126 |
Monetary loss or gain (billion 2019 US$) | −24.3 | −21.0 | −10.0 | +7.29 | −1.06 | +6.42 |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petersen, L.K. Impact of Climate Change on Twenty-First Century Crop Yields in the U.S. Climate 2019, 7, 40. https://doi.org/10.3390/cli7030040
Petersen LK. Impact of Climate Change on Twenty-First Century Crop Yields in the U.S. Climate. 2019; 7(3):40. https://doi.org/10.3390/cli7030040
Chicago/Turabian StylePetersen, Lillian Kay. 2019. "Impact of Climate Change on Twenty-First Century Crop Yields in the U.S." Climate 7, no. 3: 40. https://doi.org/10.3390/cli7030040
APA StylePetersen, L. K. (2019). Impact of Climate Change on Twenty-First Century Crop Yields in the U.S. Climate, 7(3), 40. https://doi.org/10.3390/cli7030040