Sensor Applications in Agrifood Systems: Current Trends and Opportunities for Water Stewardship
Abstract
:1. Introduction
2. Sensor-Focused Decision Making in Food Supply Networks
3. Sensor Applications for Water Stewardship in Agrifood Systems
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- The State of Food and Agriculture 2018—Migration, Agriculture and Rural Development. Available online: http://www.fao.org/3/I9549EN/i9549en.pdf (accessed on 9 January 2019).
- Aivazidou, E.; Tsolakis, N.; Vlachos, D.; Iakovou, E. Water footprint management policies for agrifood supply chains: A critical taxonomy and a system dynamics modelling approach. Chem. Eng. Trans. 2015, 43, 115–120. [Google Scholar]
- Staniškis, J.K. Sustainable consumption and production: How to make it possible. Clean Technol. Environ. 2012, 14, 1015–1022. [Google Scholar] [CrossRef]
- Water Uses, AQUASTAT. Available online: www.fao.org/nr/water/aquastat/water_use/index.stm (accessed on 9 January 2019).
- Global Food Losses and Food Waste—Extent, Causes and Prevention. Available online: http://www.fao.org/3/a-i2697e.pdf (accessed on 9 January 2019).
- Govindan, K. Sustainable consumption and production in the food supply chain: A conceptual framework. Int. J. Prod. Econ. 2018, 195, 419–431. [Google Scholar] [CrossRef]
- Wunderlich, S.M.; Martinez, N.M. Conserving natural resources through food loss reduction: Production and consumption stages of the food supply chain. Int. Soil Water Conserv. Res. 2018, 6, 331–339. [Google Scholar] [CrossRef]
- Tsolakis, N.K.; Keramydas, C.A.; Toka, A.K.; Aidonis, D.A.; Iakovou, E.T. Agrifood supply chain management: A comprehensive hierarchical decision-making framework and a critical taxonomy. Biosyst. Eng. 2014, 120, 47–64. [Google Scholar] [CrossRef]
- Accorsi, R.; Cholette, S.; Manzini, R.; Tufano, A. A hierarchical data architecture for sustainable food supply chain management and planning. J. Clean. Prod. 2018, 203, 1039–1054. [Google Scholar] [CrossRef]
- Aivazidou, E.; Tsolakis, N.; Iakovou, E.; Vlachos, E. The emerging role of water footprint in supply chain management: A critical literature synthesis and a hierarchical decision-making framework. J. Clean. Prod. 2016, 137, 1018–1037. [Google Scholar] [CrossRef]
- Culman, M.; de Farias, C.M.; Bayona, C.; Cabrera Cruz, J.D. Using agrometeorological data to assist irrigation management in oil palm crops: A decision support method and results from crop model simulation. Agric. Water Manag. 2019, 213, 1047–1062. [Google Scholar] [CrossRef]
- Aivazidou, E.; Tsolakis, N.; Vlachos, D.; Iakovou, E. A water footprint management framework for supply chains under green market behaviour. J. Clean. Prod. 2018, 197, 592–606. [Google Scholar] [CrossRef]
- Papetti, A.; Marconi, M.; Rossi, M.; Germani, M. Web-based platform for eco-sustainable supply chain management. Sustain. Prod. Consum. 2019, 17, 215–228. [Google Scholar] [CrossRef]
- Galvez, J.F.; Mejuto, J.C.; Simal-Gandara, J. Future challenges on the use of blockchain for food traceability analysis. Trends Analyt. Chem. 2018, 107, 222–232. [Google Scholar] [CrossRef]
- Wang, X.; Fu, D.; Fruk, G.; Chen, E.; Zhang, X. Improving quality control and transparency in honey peach export chain by a multi-sensors-managed traceability system. Food Control 2018, 88, 169–180. [Google Scholar] [CrossRef]
- Zöller, S.; Wachtel, M.; Knapp, F.; Steinmetz, R. Going all the way—Detecting and transmitting events with wireless sensor networks in logistics. In Proceedings of the 8th IEEE Workshop on Practical Issues in Building Sensor Network Applications, Sydney, Australia, 21–24 October 2013. [Google Scholar]
- Paternoster, A.; Vanlanduit, S.; Springael, J.; Braet, J. Vibration and shock analysis of specific events during truck and train transport of food products. Food Packag. Shelf 2018, 15, 95–104. [Google Scholar] [CrossRef]
- Lea-Cox, J.D.; Bauerle, W.L.; van Iersel, M.W.; Kantor, G.F.; Bauerle, T.L.; Lichtenberg, E.; King, D.M.; Crawford, L. Advancing wireless sensor networks for irrigation management of ornamental crops: An overview. HortTechnology 2013, 23, 717–724. [Google Scholar] [CrossRef]
- Goap, A.; Sharma, D.; Shukla, A.K.; Krishna, C.R. An IoT based smart irrigation management system using Machine learning and open source technologies. Comput. Electron. Agric. 2018, 155, 41–49. [Google Scholar] [CrossRef]
- Bechtsis, D.; Tsolakis, N.; Vlachos, D.; Srai, J.S. Intelligent Autonomous Vehicles in digital supply chains: A framework for integrating innovations towards sustainable value networks. J. Clean. Prod. 2018, 181, 60–71. [Google Scholar] [CrossRef]
- Allahyari, M.S.; Ghavami, S.; Masuleh, Z.D.; Michailidis, A.; Nastis, S.A. Understanding farmers’ perceptions and adaptations to precipitation and temperature variability: Evidence from Northern Iran. Climate 2016, 4, 58. [Google Scholar] [CrossRef]
- De Marco, I.; Iannone, R. Production, packaging and preservation of semi-finished apricots: A comparative Life Cycle Assessment study. J. Food Eng. 2017, 206, 106–117. [Google Scholar] [CrossRef]
- Óskarsdóttir, K.; Oddsson, G.V. Towards a decision support framework for technologies used in cold supply chain traceability. J. Food Eng. 2019, 240, 153–159. [Google Scholar] [CrossRef]
- Mercier, S.; Uysal, I. Neural network models for predicting perishable food temperatures along the supply chain. Biosyst. Eng. 2018, 171, 91–100. [Google Scholar] [CrossRef]
- Aqeel-Ur-Rehman; Abbasi, A.Z.; Islam, N.; Shaikh, Z.A. A review of wireless sensors and networks’ applications in agriculture. Comput. Stand. Interfaces 2014, 36, 263–270. [Google Scholar] [CrossRef]
- Wang, J.; Wang, H.; He, J.; Li, L.; Shen, M.; Tan, X.; Min, H.; Zheng, L. Wireless sensor network for real-time perishable food supply chain management. Comput. Electron. Agric. 2015, 110, 196–207. [Google Scholar] [CrossRef]
- Ruiz-Garcia, L.; Lunadei, L.; Barreiro, P.; Robla, J.I. A review of wireless sensor technologies and applications in agriculture and food industry: State of the art and current trends. Sensors 2009, 9, 4728–4750. [Google Scholar] [CrossRef] [PubMed]
- Contò, F.; Faccilongo, N.; Dicecca, R.; Zaza, C.; La Sala, P. An innovative sensor in the agro-food supply Chain: A RFID technology model. CEUR Workshop Proc. 2015, 1498, 624–635. [Google Scholar]
- Li, D.; Wang, X. Dynamic supply chain decisions based on networked sensor data: An application in the chilled food retail chain. Int. J. Prod. Res. 2017, 55, 5127–5141. [Google Scholar] [CrossRef]
- Tamplin, M.L. Integrating predictive models and sensors to manage food stability in supply chains. Food Microbiol. 2018, 75, 90–94. [Google Scholar] [CrossRef]
- Moharana, S.; Dutta, S. Estimation of water stress variability for a rice agriculture system from space-borne hyperion imagery. Agric. Water Manag. 2019, 213, 260–269. [Google Scholar] [CrossRef]
- Withanachchi, S.S.; Köpke, S.; Withanachchi, C.R.; Pathiranage, R.; Ploeger, A. Water resource management in dry zonal paddy cultivation in mahaweli river basin, Sri Lanka: An analysis of spatial and temporal climate change impacts and traditional knowledge. Climate 2014, 2, 329–354. [Google Scholar] [CrossRef]
- Ojha, T.; Misra, S.; Raghuwanshi, N.S. Wireless sensor networks for agriculture: The state-of-the-art in practice and future challenges. Comput. Electron. Agric. 2015, 118, 66–84. [Google Scholar] [CrossRef]
- Sánchez-Molina, J.A.; Rodríguez, F.; Guzmán, J.L.; Ramírez-Arias, J.A. Water content virtual sensor for tomatoes in coconut coir substrate for irrigation control design. Agric. Water Manag. 2015, 151, 114–125. [Google Scholar] [CrossRef]
- Incrocci, L.; Marzialetti, P.; Incrocci, G.; Di Vita, A.; Balendonck, J.; Bibbiani, C.; Spagnol, S.; Pardossi, A. Sensor-based management of container nursery crops irrigated with fresh or saline water. Agric. Water Manag. 2019, 213, 49–61. [Google Scholar] [CrossRef]
- Fourati, M.A.; Chebbi, W.; Kamoun, A. Development of a web-based weather station for irrigation scheduling. In Proceedings of the 3rd International Colloquium in Information Science and Technology (CIST), Tetouan, Morocco, 20–22 October 2014. [Google Scholar]
- Nolz, R. A review on the quantification of soil water balance component as a basis for agricultural water management with a focus on weighing lysimeters and soil water sensors. Bodenkultur 2016, 67, 133–144. [Google Scholar]
- Ridoutt, B.G.; Juliano, P.; Sanguansri, P.; Sellahewa, J. The water footprint of food waste: Case study of fresh mango in Australia. J. Clean. Prod. 2010, 18, 1714–1721. [Google Scholar] [CrossRef]
- Tsolakis, N.; Srai, J.S. A System Dynamics approach to food security through smallholder farming in the UK. Chem. Eng. Trans. 2017, 57, 2023–2028. [Google Scholar]
- Geng, Q.; Ren, Q.; Nolan, R.H.; Wu, P.; Yu, Q. Assessing China’s agricultural water use efficiency in a green-blue water perspective: A study based on data envelopment analysis. Ecol. Ind. 2019, 96, 329–335. [Google Scholar] [CrossRef]
- Tsolakis, N.; Srai, J.S.; Aivazidou, E. Blue Water Footprint Management in a UK Poultry Supply Chain under Environmental Regulatory Constraints. Sustainability 2018, 10, 625. [Google Scholar] [CrossRef]
- Aivazidou, E.; Tsolakis, N. Assessing the water footprint of pets: The case of small breed dogs. Chem. Eng. Trans. 2017, 57, 517–522. [Google Scholar]
Reference | Sensor-Related Decisions | Supply Network Aim |
---|---|---|
Contò et al. [28] |
|
|
Li and Wang [29] |
|
|
Tamplin [30] |
|
|
Wang et al. [26] |
|
|
Moharana and Dutta [31] |
|
|
Monitored Parameter | Monitored Unit | Water Monitoring | References |
---|---|---|---|
Evapotranspiration | Crop | Direct | Sánchez-Molina et al. [34]; Incrocci et al. [35]; Fourati et al. [36]; Nolz [37] |
Precipitation | Crop | Direct | Fourati et al. [36]; Nolz [37] |
Soil Moisture Content | Crop | Direct | Sánchez-Molina et al. [34]; Fourati et al. [36]; Nolz [37] |
Leaf Water Content | Crop | Direct | Mohara and Dutta [31]; Sánchez-Molina et al. [34] |
Temperature | Vehicle; warehouse | Indirect | Wang et al. [26] |
Humidity | Vehicle; warehouse | Indirect | Wang et al. [26] |
CO2 Concentration | Vehicle; warehouse | Indirect | Wang et al. [26] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsolakis, N.; Aivazidou, E.; Srai, J.S. Sensor Applications in Agrifood Systems: Current Trends and Opportunities for Water Stewardship. Climate 2019, 7, 44. https://doi.org/10.3390/cli7030044
Tsolakis N, Aivazidou E, Srai JS. Sensor Applications in Agrifood Systems: Current Trends and Opportunities for Water Stewardship. Climate. 2019; 7(3):44. https://doi.org/10.3390/cli7030044
Chicago/Turabian StyleTsolakis, Naoum, Eirini Aivazidou, and Jagjit Singh Srai. 2019. "Sensor Applications in Agrifood Systems: Current Trends and Opportunities for Water Stewardship" Climate 7, no. 3: 44. https://doi.org/10.3390/cli7030044
APA StyleTsolakis, N., Aivazidou, E., & Srai, J. S. (2019). Sensor Applications in Agrifood Systems: Current Trends and Opportunities for Water Stewardship. Climate, 7(3), 44. https://doi.org/10.3390/cli7030044