In this section, the findings are reported in three main parts, including: (1) Climate variability and its trend; (2) farmers’ perceptions of climate variability; and (3) factors influencing farmers’ perceptions on climate.
3.1. Climate Variability and its Trend
In this subsection, we report on the variability and trends of precipitation, temperature, and local climate stress.
3.1.1. Precipitation Variability and its Trend
The distribution and density of precipitation were analyzed by the rainfall anomaly index (RAI) and cumulative departure index (CDI).
Figure 2 shows the rainfall anomaly index (RAI) with five year moving averages for annual precipitation density (annual rainfall amount) in the ShweBo and KyautSe townships.
In accordance with the rainfall anomaly index, there were noticeable variabilities of annual precipitation in both ShweBo and KyautSe. The positive variabilities were observed in the year 1988, 2006, 2010, and 2017 in ShweBo, and 1992, 2006, and 2011 in KyautSe. Moreover, it was observed that those years were recorded as flood years in the study area. The five-point moving average of annual rainfall showed that approximately two-thirds of the years from 1987 to 2017 were below the 30-year average annual precipitation, in both cases. Specifically, the annual rainfalls before 2006 were lower than the 30-year average, then after 2006 it fluctuated, but with increasing trends.
Figure 3 explains the pattern and distribution of rainfall in the ShweBo and KyautSe areas. The rainfall distributions of these areas were observed as a bimodal pattern, indicating two important durations for agriculture: early monsoon (April, May, June) and late monsoon (August, September, October). The dry spell or drought normally occurred in July in the study area and is called the “July Drought” by the local people. However, during the years 2013 to 2017, drought was observed earlier than July in both the ShweBo and KyautSe areas. In terms of the duration of rain during the most recent five-year period of 2013–2017, it is observed that there were less rainy days in the early monsoon and more rainy days in the late monsoon season than the 30 year average (1987–2017).
Figure 4 presents the trends of rainfall within a growing season by the cumulative departure index. The cumulative departure index of ShweBo revealed that the early growing season rainfalls (EGS CDI) were above the normal in the earlier period of 1987 to 1999, then fluctuated in the late period during 2000 to 2017, and overall had a decreasing trend.
There was a decreasing trend of rainfall in the early growing season of ShweBo. However, observation of the trend of rainfall in the late growing season (LGS CDI) showed the opposite. Most of the seasonal precipitation in earlier years (1989–1999) was below the normal level, fluctuated during 2000–2010, then was above the normal from the year 2011 to 2017. Generally, it was concluded that there was an increasing trend of the late growing season rainfall in ShweBo. In the case of KyautSe, although the precipitation in both the early growing season and late growing season fluctuated throughout the study period, the negative values of EGS CDI indicated that the rainfall during the early growing season was reduced, and the positive values of LGS CD indicated the rainfall in the late growing season was increased. It was also observed that there was an increasing trend of late growing season rainfall, and a slightly decreasing trend of early growing season rainfall.
3.1.2. Temperature Variability and its Trend
Figure 5 shows the temperature anomaly index (TAI) with five year moving averages in the study area. The TAI index indicated the noticeable temperature variabilities throughout the 30 year period (1987–2017). The five-year moving average line revealed that the temperatures were above normal generally, although temperature in some years were below the normal line. It was found that the temperatures within the last five years (2013–2017) were obviously above normal.
In particular, it was also observed that the seasonal temperatures within the last five years (2013–2017) were higher than the 30-year average temperature and five-year average of 2008–2012, as shown in in
Figure 6. It stated that the 2013–2017’s temperatures of summer, monsoon and winter periods of ShweBo and KyautSe had an were higher than the previous five years.
Figure 7 describes the season temperature fluctuation by the cumulative departure index (CDI) during 1987 to 2017. It was observed that the summer temperature trends (Summer CDI) of ShweBo and KyautSe were above the normal; the monsoon temperature trends (Monsoon CDI) fluctuated throughout the 30-year period; and the winter temperature trends (Winter CDI) were nearly normal in both ShweBo and KyautSe. Generally, the summer and monsoon temperature had visible increasing trends, but slightly increasing trend for winter temperature was also observed.
3.1.3. Local Climate Stress in Agriculture
There were three types of climate stress observed in the farming system: (a) dry spell periods during the crop growing season, which 91% of the rainfed farming and 27% of the irrigated farming areas reported that they suffered within last five years, (b) unexpected rain during critical crop growth stages, happening to 95% of rainfed farms and 85% of irrigated farms, and (c) serious flood during crop season, suffering by 86% of rainfed farms and 46% of irrigated farms (
Figure 8). Specifically, these three climate stresses were detailed by the different levels of occurrence within the last five years in the study area.
As shown in
Figure 8, unexpected rain in a critical crop growth stage was the most serious climate stress in the study area, and there were three categories of unexpected rain events. The first was a high frequency of unexpected rain, which occurred almost every season. The second was unexpected rain events, which happened in three- to four-season intervals. The last was a lower frequency of unexpected rain, which occurred in more than five season intervals. In the case of unexpected rain, 27% of rainfed farmers and 47% of irrigated farmers reported they suffered unexpected rain in a critical crop growth stage, especially during seeding time and harvesting time, in almost every season. Specifically, 41% of KyautSe irrigated farms and 43% of ShweBo irrigated farms experienced a high frequency of unexpected rain.
The study highlighted that irrigated farms had a high frequency of unexpected rain in critical crop growth stages because irrigated farming followed the irrigation schedule of the local department of irrigation and did not adjust their farming activities in accordance with the monsoon onset and offset periods. To reduce a high frequency of unexpected rain in irrigated farms, the irrigation schedule of the department should be adjusted with the local monsoon onset conditions.
The dry spell period was grouped into three levels; (i) longer dry spell, which occurred for more than 45 days in a growing season, (ii) dry spell periods, which had a duration of between 30 to 45 days, and (iii) short dry spells, which lasted for less than 30 days in a season. In the study, dry spell periods were the second major climate stress. It was observed that 56% of the rainfed farms encountered a longer dry spell period in a growing season, including 60% of the KyautSe rainfed farms and 50% of the ShweBo rainfed farms.
Unexpected flood was also one of the climate stresses in the study area, and 56% of irrigated farms and 30% of rainfed farms reported that this occurred in 3- to 4-year intervals, with 71% of KyautSe irrigated farms and 41% of ShweBo irrigated farms reporting these events. The study observed that an unexpected flood event was more likely to occur in irrigated farming, as there was poor maintenance of irrigation infrastructure and a lack of drainage systems on the farms, resulting in serious flash flooding if there was an excessive amount of rain water overflow from the canal.
3.2. Farmers’ Perceptions of Climate Variability
To observe farmers’ perceptions of climate variability, this study collected data from sampled farms, which were rice-based farming households including irrigated and rainfed farming in two locations, ShweBo township and KyautSe township. The socioeconomic characteristics of the irrigated and rainfed farm households are listed in
Table 3. The descriptive analysis showed that the average age of the farmers was 50.64 years, ranging from 28 to 74 years, for the total sample. The average age was 50.52 years for the irrigated farmers and 50.86 years for the rainfed farmers. The average schooling years of the farmers was nearly the same for all categories; 5.82 years for the total sample, 5.89 years for the irrigated farmers, and 5.71 years for the rainfed farmers, ranging from 0 to 16 years. The average family size for the whole sample, irrigated farm households, and rainfed farm households was about 4.6, the average family labor was 2.3, and the average farm size was 7.45 ac for the whole sample, 7.65 ac for the irrigated farms, and 7.10 ac for the rainfed farms. These variables were not significantly different in between the irrigated and rainfed farms. However, the rice farming experience, non-rice farming experience, and livestock farming experience of both groups were significantly different at the 1% level. The average rice farming experience of the irrigated farm households was 27 years, higher than that of the rainfed farmers (22 years). The average non-rice farming experience of the irrigated farmers was 7 years, lower than that of the rainfed farmers (15 years). For livestock farming, it was observed that only rainfed farm households had any livestock farming experience, and there were very few commercial livestock farms in the study area.
Considering climate perceptions of farmers, this study revealed that farmers had a wide variation in climate perceptions (
Table 4.). According to the nine perception indicators, as discussed earlier, the local farmers had more accurate perceptions of the changes in rainfall duration within a season. Generally, it was observed that 85% of the farmers perceived the changing climatic patterns in their environment as either increasing or decreasing trends of rainfall and temperature, 10–15% of the farmers reported that they did not know the rainfall trends, and 15–21% of farmer did not perceive any changes of temperature in the monsoon and winter period. In this study, the analysis of farmers’ perception was, more than in the general trends of climate change, emphasized the in-seasonal nature of rainfall (early, mid and late-monsoon periods), and the seasonal nature of temperature (summer, monsoon, and winter).
Specifically, the study revealed that 49% of the farmers perceived a decreasing trend of rainy days in the early-monsoon period, 34% of farmers perceived an increasing trend in the mid-monsoon period, and 45% of farmers perceived a decreasing trend of rain duration in the late-monsoon period. These results corresponded to the findings of the previous meteorological data analysis, showing the majority of local farmers had an accurate perception of the rainy-day changes within a season.
However, regarding the perception to the change in rainfall intensity within a season, the farmers had an accurate perception mainly in the early-monsoon period and late-monsoon period. It was found that 33% of farmer perceived a decreasing trend of rainfall intensity in the early-monsoon period, and 28% of farmers perceived an increasing trend in the late-monsoon period, as observed in meteorological records.
In terms of the perception of temperature, most of the farmers had an accurate perception in the summer period; 58% of the farmers perceived the increasing trend of temperature in that period, in line with the results of historical temperature analysis.
It was observed that 42% of farmers thought there was an irregular change in the monsoon temperature, and 39% of farmers perceived an irregular temperature trend in the winter period. These perceptions, however, were inconsistent with the findings of meteorological data analysis. Only a few farmers had the same perception as the historical data analysis.
In these cases, lack of location specified climate information distribution would be the reason for inconsistent perception issues. Detailed changes of the climate during specific periods were difficult for the farmer to realize themselves, without knowing accurate weather information. Moreover, the weather focused news the farmers accessed only covered the regional situation generally, and was not for their specific location.
Overall, the farmers had a more accurate perception of the changes in rainfall, in terms of intensity and duration, than the changes in temperature. It can be concluded that the majority of farmers perceived the actual trends of rainfall changes in the early, mid, and late-monsoon periods, and also temperature changes in the summer period. These results were in line with the findings of Ayanlade, Radeny [
10]. They also compared the farmers’ perceptions of climate variability with the results of historical trends from meteorological data. Their study indicated that most of the farmers perceived the changes in onset of rainfall (40% of farmers) and drought and long dry spells (50.6% of the farmers), but fewer perceived the temperature changes (only 35% of the farmers). Moreover, the results of this study were in agreement with the McKinley, Catharine [
17] report of “Climate Change Perceptions and Policies in Myanmar, 2014”. In their report to Climate Change, Agriculture and Food Security (CCAFS), rainfall trends, flood events, extreme heat stresses, and temperature trends were threatening the agriculture sector and farming community, and most of the farmers perceived more accurately the rainfall trends than the temperature trends.
The findings of (a) the high accuracy of farmers’ perceptions of the precipitation in the early monsoon period, mid-monsoon period, and late-monsoon period, and the temperature in summer, and (b) the low accuracy of farmers’ perceptions of the temperature in the monsoon and winter periods, were not the same as found in other studies in different countries. The study by Abid, Scheffran [
5] showed a high accuracy of perceptions of temperature changes (75% of farmers had accurate perceptions), and less accuracy of perceptions of precipitation (lower than 30%). In the study by Gebrehiwot and van der Veen [
11], the farmers’ perceptions of the changes in temperature and precipitation were also confirmed by the historical meteorological data analysis. Their study showed that 78% of the farmers perceived an increase in the temperature, and 69% of the farmers perceived a decrease in rainfall, corresponding accurately to the climate data analysis. Moreover, in the study by Aymone Gbetibouo [
9], 91% of farmers perceived the increasing temperature trend and 81% perceived the decreasing trend of precipitation, and these perceptions were verified by the recorded meteorological data. Msafiri Y. and Xinhua [
18] also proved that the farmers’ perceptions of temperature and rainfall were in line with the meteorological data analysis, with 80% of the farmers perceiving the increasing trend of temperature and 60% of the farmers perceiving the decreasing trend of rainfall. In the study by Sahu and Mishra [
13], 48% of the farmers noticed an erratic pattern of rainfall, and 98% of the farmers perceived an increase in temperature; the same result as the recorded data analysis.
In this study, the percentages of farmers whose perceptions were consistent with the meteorology data seemed to be lower than that of other studies, because this study focused on the details of in-season trends and seasonal trends, rather than annual trends as in other studies. However, it was clearly observed that there was a need to improve the accuracy of farmers’ perceptions of climate variability, and sharing of specific local weather information with the community would be one possible way of solving this issue. A daily rainfall and temperature recording system of the Department of Agriculture already exists in each township.
After comparison of the farmers’ perceptions with the historical data analysis, the individual farmer’s perceptions were categorized into three levels; (a) low consistency of farmers’ perception, (b) medium consistency of farmers’ perception, and (c) high consistency of farmers’ perception, to the recorded climate trends, according to the frequency and distribution of their scores.
Table 5 shows the farmer perception consistency for the total sample, irrigated farm households, and rainfed farm households in the study. It reveals that 45% of the total sample, including 60% of irrigated farms and 20% of rainfed farms, were in the group of low perception of climate variability level. A total of 25% of total households, together with 14% of irrigated farms and 44% of rainfed farms, were in the high perception group. The results indicated that rainfed farmers had a higher perception to local climate variability than the irrigated farmers, as rainfed farmers rely on the climate conditions more, especially the local precipitation. Then, these three consistency levels of farmers’ perceptions were analyzed in the ordered probit model, to assess the factors influencing farmers’ perception.
3.3. Factors Influencing Farmers’ Perceptions of the Climate
Table 6 shows the results of the ordered probit model, examining the factors influencing farmers’ perceptions. In this study, three ordered probit models were utilized to observe the farmers’ perceptions in the full sample, irrigated farm households, and rainfed farm households. All models performed well according to the values of Pseudo R
2, with 0.5956, 0.6042, and 0.6484 in the models of the full sample, irrigated farm households, and rainfed farm households, respectively. For the factors influencing the perception consistency level, the study observed the following:
1. Farming experience, education and gender: It was assumed that more experienced and educated farmers would have more accurate perceptions of climate change. The positive significant values of FEX and EDU of the total sample and irrigated farm household analysis proved that assumption. Farming experience (FEX) was highly significant at the 1% level in the total sample and significant at the 5% level in irrigated farms, meaning that experienced farmers of the total sample and irrigated farms were likely to have a high consistent perception of climate change. The farmers’ education variable was significant at the 1% level in irrigated farms, and at the 5% level was significant for the total sample, indicating that educated farmers were likely to have highly accurate perceptions. The dummy for gender (GEN) was significant at the 5% level in irrigated farms only. This means that male famers were likely to have more accurate perceptions. These three variables, however, were not statistically significant in the rainfed farms model.
2. Primary occupation, major crops grown: Although the study initially expected that higher consistency of perception would occur in the farmer group if their primary occupation was in farming activities (POF=1), or if their crops grown were cash crops (MCF = 1 i.e., if major crop of farm (MCF) was cash crop, highly profitable to the farmers, the farmers would pay more attention on the production of such a cash crop and he might be more aware on the production reequipment of that crops including farm management and weather condition), non-significant values of POF and MCF in all three models did not support this assumption.
3. Farm-income share and farm size: The positive significant value of FIS in the total sample model indicated that the farmers were more likely to have a higher consistent perception of climate change if their farm income share was a greater proportion of their family income. Agricultural land operated (ALO) was highly significant in the irrigated farms and rainfed farms models. Its negative value in irrigated farms indicated that the small-scale irrigated farmers were likely to have more accurate perceptions of climate change. The positive value of ALO in rainfed farms suggested the large-scale rainfed farmers were more likely to perceive the actual trends of climate change.
4. Weather information, agricultural extension service, agricultural training participation: The study expected that farmers who have access to weather information and agricultural training would have a higher consistent perception of climate change as there were regular broadcasting of daily weather news and weekly focus by the radio and TV channel for the regional situation, and agricultural training programs offered by the Department of Agriculture and some other NGOs in the study area. The empirical results of ordered probit analysis verified this initial statement. Regular access to weather information (RAW) was 1 if the famers noticed and paid attention to the regular broadcasting of weekly weather focus by the radio and TV channel, and if not, 0. In this case, RAW was positively significant at the 1% level in the total sample and irrigated farms, and at the 5% level in rainfed farms, meaning that the farmers were likely to have a high consistent perception of climate change if they had regular access to weather information. Participation in agricultural training meant the farmers were also more likely to have a high consistent perception of climate change, as the PAT values were positively significant at the 1% level in all three cases. However, AAE was negatively significant in rainfed farms, and indicated that the rainfed farmers were more likely to have a high consistency of perception if there were fewer farming problems to be given to extension agents.
5. Irrigation: Farmers’ perceptions were influenced by the infrastructure. Irrigation infrastructure is arguably an important management strategy that farmers utilize to cope with climatic constraints. Irrigation can provide additional water to crops and overcome sporadic shortfalls in soil moisture for growing crops, consequently resulting in low awareness of climate conditions whenever there are irrigation facilities. In the study, the negative values of ISL were highly significant at the 1% level, and supported this statement. This means that irrigated farmers were likely to have low perception levels compared with rainfed farmers.
6. Experience of dry-spell periods, unexpected rain and flood events: It was clearly observed that farmers’ experience of unexpected rain in critical crop growth stages, and experience of flood events during a growing season, were influencing their perception of climate change. Positive values of EUR and EFE were statistically significant in all three cases and indicated that if the farmer had an experience of an unexpected rain or flood event during a crop season, they were more likely to perceive the changing climatic conditions. However, experience of a dry-spell period was not significant in the analysis, as it was a less visible event to the farmer.
7. Holistic affect: Farmer perceptions of climate change and their concern over specific climate variability were also systematically related to personal beliefs about climate change. The empirical results showed that those farmers who believed climate change is occurring and that its impacts are positive for farming, were more likely to have a lower perception of climate change, as per the statistically significant values of HLA (–0.6884 for the total sample and –0.9341 for irrigated farms).
8. Location: The positive significant value of LDA in the total sample analysis showed that the farmers in ShweBo were more likely to perceive the changes of temperature and rainfall in their area.
From these empirical results, it was revealed that farming experience, education and gender of the farmer, their farm size and farm income share, regular access to weather information, agricultural training participation, experience of unexpected rain and floods, irrigation infrastructure, holistic considerations of climate change, and location were the major factors influencing on farmers’ perceptions of climate change. The results were consistent with other studies. Gutu, Bezabih [
19] also found that a high level of perception was a result of access to awareness raising activity, weather information, agricultural extension services, educational level, and age of household heads. Furthermore, Aymone Gbetibouo [
9] pointed out more specifically that the farming experience of the farmer is a more critical factor in the perception of temperature changes, and education level is a significant factor to perceive rainfall changes. Patrick, Edilegnaw [
12] also observed that age, individual experience, and gender of the farmer positively influenced their perception, and educational level has a negative effect as more educated farmers relied more on non-farm income.
3.4. Marginal Effects of Ordered Probit Models
Table 7 indicates the results of the marginal effects of the ordered probit model for the total sample households.
In this model, the significant marginal effect of farmers’ experience (FEX) shows that a year’s increase in experience decreases the probability of having low level of perception consistency by 0.0136, while increasing the probability of having medium and high perception by 0.0106 and 0.0029, respectively. The marginal effects of education level of the farmer (EDU) were significant in the model, indicating that a year increase in education reduces the probability of having low consistency of perception by 0.0355.
On the other hand, it increases the probability of having medium perception by 0.0277, and the probability of having high consistency of perception by 0.0077. The significant MCF values in the model showed the probability of having a low perception will be decreased by 0.1591, and the probability of having medium perception will be increased by 0.1065 if the major crop of farming is a cash crop.
If there is a change in access to weekly weather information (RAW), it decreases the probability of having low perception by 0.3748, and increases the probability of having medium and high consistencies of perception by 0.3009 and 0.0738, respectively. One time participation in an agricultural training program (ATP) increases the probability of having medium consistency of perception by 0.2430, and the probability of having high consistency of perception by 0.0675, but decreases the probability of having low perception by 0.3105. A one percent increase in irrigation area in the total farm land (ISL) increases the probability of having low consistency of perception, and decreases the probability of having medium consistency of perception and high consistency of perception by 0.0045 and 0.0013, respectively.
A year’s increase in the experience of unexpected rain (EUR) decreases the probability of having low perception by 0.1341, and increases the probability of having medium perception by 0.1049 and high perception by 0.0292. Similarly, a year’s increase in flood experience (EFE) decreases the probability of having low consistency of perception by 0.0746, while increasing the probability of having medium and high consistencies of perception by 0.0584 and 0.0162, respectively. If the farmer’s opinion changes regarding the belief that the impacts of climate change are positive (HAF), it will increase the probability of having low perception by 0.2433, but decrease the probability of having medium perception by 0.1904 and high perception by 0.0529.
Table 8 describes the marginal effects of ordered probit models for irrigated-farm households. A year’s increase in experience (FEX) of irrigated farmers decreases the probability of having low perception by 0.0107, but increases the probability of having medium perception by 0.0105. Similarly, a year’s increase in irrigated farmers’ education (EDU) decreases the probability of having low perception by 0.0683, but increases the probability of having medium perception by 0.0671.
If a farmer is a male farmer (GEN), there will be a decrease in the probability of having low perception by 0.3404, and an increase in the probability of having medium perception by 0.337. A one hectare increases in farm size (FSZ) increases the probability of having low consistency of perception by 0.1375, and decreases the probability of having medium consistency of perception by 0.1351 for irrigated farm households. If the irrigated farmer has more access to the weekly weather information (RAW), this would decrease the probability of having low perception by 0.3567, and increase the probability of having medium perception by 0.3486. Moreover, one additional participation in agricultural training (ATP) decreases the low perception probability by 0.5735, and increases the probability of having medium perception by 0.5635. A year’s increase in the experience of unexpected rain (EUR) decreases the probability of having low consistency of perception by 0.1339, and increases the probability of having medium consistency of perception by 0.1316 for the irrigated farm households. In the same way, a year’s increase in flood experience (EFE) decreases the probability of having low consistency of perception by 0.0873, while increasing the probability of having medium consistency of perception by 0.0857. If the farmer’s opinion changes regarding the impacts of climate change being positive (HAF), it will increase the probability of having low perception by 0.3676, but decrease the probability of having medium perception by 0.3611.
Table 9 shows the marginal effects of the ordered probit models for rainfed-farm households. The results of this rainfed farms model observed that ALO, RAW, AAE, EUR, and EFE were statistically significant at the 1% level, and ATP was significant at the 5% level, for the probabilities of medium and high perception levels.
In rainfed farming, if there is a one hectare increase in the rainfed farm size, it will decrease the probability of having medium consistency of perception by 0.2427, and increase the probability of having high consistency of perception by 0.2505. If the access of the rainfed farmer to weekly weather information changes, there will be a decrease in the probability of having medium consistency of perception by 0.2385, and an increase in the probability of having high consistency of perception by 0.2975. Moreover, a one-time increases in the participation in an agricultural training program decreases the probability of having medium consistency of perception by 0.2319 and increases the probability of having high consistency of perception by 0.2394 in the rainfed farming community. A year’s increase in the unexpected rain experience decreases the probability of having medium consistency of perception by 0.1926, and the probability of having high consistency of perception by 0.1987. Similarly, a year’s increase in the flood event experience increases the probability of having high consistency of perception by 0.1846, but decreases the probability of having medium consistency of perception by 0.1789. In the rainfed farming households, if there is an increase farming issues requiring contact with an extension, meaning the farmer could not solve their faming problem, it decreases the probability of having high perception by 0.1461, and increases the probability of having medium consistency of perception by 0.1415.