Integrating Agriculture and Ecosystems to Find Suitable Adaptations to Climate Change
Abstract
:1. Introduction
2. Literature Review
2.1. Agricultural Studies
2.2. Ecological Studies
2.3. Summary Table
3. Need for an Integrated Approach
4. Sustainable Adaptation Challenges and Solutions
Solutions: Improving Modeling Efforts
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zillman, J.W. A history of climate activities. WMO Bull. 2009, 58, 141. [Google Scholar]
- Ricketts, T.H.; Dinerstein, E.; Olson, D.M.; Loucks, C.J.; Eichbaum, W.; DellaSala, D.; Kavanagh, K.; Hedao, P.; Hurley, P.T.; Carney, K.M.; et al. Terrestrial Ecoregions of North America: A Conservation Assessment; Island Press: Washington, DC, USA, 1999. [Google Scholar]
- Schmidly, D.J. Texas Natural History: A Century of Change; Texas Tech University Press: Lubbock, TX, USA, 2002. [Google Scholar]
- U.S. Environmental Protection Agency. What Climate Change Means for Texas. Available online: https://www.epa.gov/sites/production/files/2016-09/documents/climate-change-tx.pdf (accessed on 25 September 2019).
- U.S. Environmental Protection Agency. Climate Change Indicators: Heavy Precipitation. Available online: https://www.epa.gov/climate-indicators/climate-change-indicators-heavy-precipitation (accessed on 25 September 2019).
- Melillo, J.M.; Richmond, T.T.; Yohe, G. Climate change impacts in the United States. Third Natl. Clim. Assess. 2014, 52. [Google Scholar] [CrossRef]
- Rittenhouse, C.D.; Pidgeon, A.M.; Albright, T.P.; Culbert, P.D.; Clayton, M.K.; Flather, C.H.; Masek, J.G.; Radeloff, V.C. Land-cover change and avian diversity in the conterminous United States. Conserv. Biol. 2012, 26, 821–829. [Google Scholar] [CrossRef]
- Karatayev, A.Y.; Burlakova, L.E.; Miller, T.D.; Perrelli, M.F. Reconstructing historical range and population size of an endangered mollusc: Long-term decline of Popenaias popeii in the Rio Grande, Texas. Hydrobiologia 2018, 810, 333–349. [Google Scholar] [CrossRef]
- Flockhart, D.T.T.; Pichancourt, J.B.; Norris, D.R.; Martin, T.G. Unravelling the annual cycle in a migratory animal: Breeding-season habitat loss drives population declines of monarch butterflies. J. Anim. Ecol. 2015, 84, 155–165. [Google Scholar] [CrossRef] [PubMed]
- Diffenbaugh, N.S.; Stone, D.A.; Thorne, P.; Giorgi, F.; Hewitson, B.C.; Jones, R.G.; van Oldenborgh, G.J. 2014: Cross-chapter box on the regional climate summary figures. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Field, C.B., Barros, V.R., Dokken, D.J., Mach, K.J., Mastrandrea, M.D., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 137–141. [Google Scholar]
- Wuebbles, D.J.; Kunkel, K.; Wehner, M.; Zobel, Z. Severe weather in the United States under a changing climate. Eos Trans. AGU 2014, 95, 149–150. [Google Scholar] [CrossRef] [Green Version]
- Shafer, M.; Ojima, D.; Antle, J.M.; Kluck, D.; McPherson, R.A.; Petersen, S.; Scanlon, B.; Sherman, K. Great Plains. In Climate Change Impacts in the United States: The Third National Climate Assessment; Melillo, J.M., Richmond, T., Yohe, G.W., Eds.; USA Global Change Research Program: Washington, DC, USA, 2014; pp. 441–461. [Google Scholar] [CrossRef]
- Williams, J.W.; Jackson, S.T.; Kutzbach, J.E. Projected distributions of novel and disappearing climates by 2100 AD. Proc. Natl. Acad. Sci. USA 2007, 104, 5738–5742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kardol, P.; Reynolds, W.N.; Norby, R.J.; Classen, A.T. Climate change effects on soil microarthropod abundance and community structure. Appl. Soil Ecol. 2011, 47, 37–44. [Google Scholar] [CrossRef]
- Chen, C.C.; McCarl, B.A. Hurricanes and Possible Intensity Increases: Effects on and Reactions From US Agriculture. Am. J. Agric. Econ. 2009, 41, 125–144. [Google Scholar] [CrossRef] [Green Version]
- Schlenker, W.; Roberts, M.J. Nonlinear temperature effects indicate severe damages to U.S. crop yields under climate change. Proc. Natl. Acad. Sci. USA 2009, 106, 15594–15598. [Google Scholar] [CrossRef] [Green Version]
- Lobell, D.B.; Hammer, G.L.; McLean, G.; Messina, C.; Roberts, M.J.; Schlenker, W. The critical role of extreme heat for maize production in the United States. Nat. Clim. Chang. 2013, 3, 497–501. [Google Scholar] [CrossRef]
- Lobell, D.B.; Schlenker, W.; Costa-Roberts, J. Climate trends and global crop production since 1980. Science 2011, 333, 616–620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, S.J.; McCarl, B.A. Climate change influences on crop mix shifts in the United States. Sci. Rep. 2017, 7, 40845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Camara, K.M.; Payne, W.A.; Rasmussen, P.E. Long-term effects of tillage, nitrogen, and rainfall on winter wheat yields in the Pacific Northwest. Agron. J. 2003, 95, 828–835. [Google Scholar] [CrossRef] [Green Version]
- Leakey, A.D.; Uribelarrea, M.; Ainsworth, E.A.; Naidu, S.L.; Rogers, A.; Ort, D.R.; Long, S.P. Photosynthesis, productivity, and yield of maize are not affected by open-air elevation of CO2 concentration in the absence of drought. Plant Physiol. 2006, 140, 779–790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fei, C.J.; McCarl, B.A.; Thayer, A.W. Estimating the impacts of climate change and potential adaptation strategies on cereal grains in the United States. Front. Ecol. Evol. 2017, 5, 62. [Google Scholar] [CrossRef] [Green Version]
- McCarl, B.A.; Villavicencio, X.; Wu, X. Climate change and future analysis: Is stationarity dying? Am. J. Agric. Econ. 2008, 90, 1241–1247. [Google Scholar] [CrossRef]
- Long, S.P.; Ainsworth, E.A.; Leakey, A.D.; Nösberger, J.; Ort, D.R. Food for thought: Lower-than-expected crop yield stimulation with rising CO2 concentrations. Science 2006, 312, 1918–1921. [Google Scholar] [CrossRef]
- Attavanich, W.; McCarl, B.A. How is CO2 affecting yields and technological progress? A statistical analysis. Clim. Chang. 2014, 124, 747–762. [Google Scholar] [CrossRef]
- Chen, C.C.; Gillig, D.; McCarl, B.A. Effects of climatic change on a water dependent regional economy: A study of the Texas Edwards aquifer. Clim. Chang. 2001, 49, 397–409. [Google Scholar] [CrossRef]
- Kapilakanchana, M. The Effect of Technological Progress, Demand, and Energy Policy on Agricultural and Bioenergy Markets. Ph.D. Thesis, Texas A&M University, College Station, TX, USA, 2016. [Google Scholar]
- Chen, C.C.; McCarl, B.A. An investigation of the relationship between pesticide usage and climate change. Clim. Chang. 2001, 50, 475–487. [Google Scholar] [CrossRef]
- Wang, Z. Three Essays on Climate Change, Renewable Energy, and Agriculture in the US. Ph.D. Thesis, Texas A&M University, College Station, TX, USA, 2018. [Google Scholar]
- Steiner, J.L.; Briske, D.D.; Brown, D.P.; Rottler, C.M. Vulnerability of Southern Plains agriculture to climate change. Clim. Chang. 2018, 146, 201–218. [Google Scholar] [CrossRef] [Green Version]
- Cook, B.I.; Ault, T.R.; Smerdon, J.E. Unprecedented 21st century drought risk in the American Southwest and Central Plains. Sci. Adv. 2015, 1, e1400082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walthall, C.L.; Hatfield, J.; Backlund, P.; Lengnick, L.; Marshall, E.; Walsh, M.; Adkins, S.; Aillery, M.; Ainsworth, E.A.; Ammann, C.; et al. Climate Change and Agriculture in the United States: Effects and Adaptation; Technical Bulletin 1935; U.S. Department of Agriculture: Washington, DC, USA, 2012.
- Rötter, R.; Van de Geijn, S.C. Climate change effects on plant growth, crop yield and livestock. Clim. Chang. 1999, 43, 651–681. [Google Scholar] [CrossRef]
- St. Pierre, N.R.; Cobanov, B.; Schnitkey, G. Economic losses from heat stress by US livestock industries. J. Dairy Sci. 2003, 86, E52–E77. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, F.C.; Gennari, R.S.; Dahl, G.E.; De Vries, A. Economic feasibility of cooling dry cows across the United States. J. Dairy Sci. 2016, 99, 9931–9941. [Google Scholar] [CrossRef]
- Yu, C.H.; Park, S.C.; McCarl, B.; Amosson, S.H. Feedlots, Air Quality and Dust Control-Benefit Estimation under Climate Change. In 2012 Annual Meeting, August 12–14, 2012, Seattle, Washington (No. 124736); Agricultural and Applied Economics Association: Milwaukee, WI, USA, 2012. [Google Scholar]
- Yu, C.H. Case Studies on the Effects of Climate Change on Water, Livestock and Hurricanes. Ph.D. Thesis, Texas A&M University, College Station, TX, USA, 2014. [Google Scholar]
- Derner, J.; Briske, D.; Reeves, M.; Brown-Brandl, T.; Meehan, M.; Blumenthal, D.; Travis, W.; Augustine, D.; Wilmer, H.; Scasta, D.; et al. Vulnerability of grazing and confined livestock in the Northern Great Plains to projected mid-and late-twenty-first century climate. Clim. Chang. 2018, 146, 19–32. [Google Scholar] [CrossRef]
- Craine, J.M.; Elmore, A.; Angerer, J.P. Long-term declines in dietary nutritional quality for North American cattle. Environ. Res. Lett. 2017, 12, 044019. [Google Scholar] [CrossRef] [Green Version]
- Briske, D.D.; Joyce, L.A.; Polley, H.W.; Brown, J.R.; Wolter, K.; Morgan, J.A.; McCarl, B.A.; Bailey, D.W. Climate-change adaptation on rangelands: Linking regional exposure with diverse adaptive capacity. Front. Ecol. Environ. 2015, 13, 249–256. [Google Scholar] [CrossRef] [Green Version]
- Mu, J.E.; McCarl, B.A.; Wein, A.M. Adaptation to climate change: Changes in farmland use and stocking rate in the USA. Mitig. Adapt. Strateg. Glob. Chang. 2013, 18, 713–730. [Google Scholar] [CrossRef] [Green Version]
- Porter, J.R.; Xie, L.; Challinor, A.J.; Cochrane, K.; Howden, S.M.; Iqbal, M.M.; Lobell, D.B.; Travasso, M.I. Food security and food production systems. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Field, C.B., Barros, V.R., Dokken, D.J., Mach, K.J., Mastrandrea, M.D., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge UK; New York, NY, USA, 2014; pp. 485–533. [Google Scholar]
- Antle, J.M.; Capalbo, S.M. Adaptation of agricultural and food systems to climate change: An economic and policy perspective. Appl. Econ. Perspect. Policy 2010, 32, 386–416. [Google Scholar] [CrossRef] [Green Version]
- Schmidhuber, J.; Tubiello, F.N. Global food security under climate change. Proc. Natl. Acad. Sci. USA 2007, 104, 19703–19708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Attavanich, W.; McCarl, B.A.; Ahmedov, Z.; Fuller, S.W.; Vedenov, D.V. Effects of climate change on US grain transport. Nat. Clim. Chang. 2013, 3, 638. [Google Scholar] [CrossRef]
- Butt, T.A.; McCarl, B.A.; Angerer, J.; Dyke, P.T.; Stuth, J.W. The economic and food security implications of climate change in Mali. Clim. Chang. 2005, 68, 355–378. [Google Scholar] [CrossRef]
- Ahmed, S.A.; Diffenbaugh, N.S.; Hertel, T.W. Climate volatility deepens poverty vulnerability in developing countries. Environ. Res. Lett. 2009, 4, 034004. [Google Scholar] [CrossRef] [Green Version]
- McCarl, B.A.; Hertel, T.W. Climate change as an agricultural economics research topic. Appl. Econ. Perspect. Policy 2018, 40, 60–78. [Google Scholar] [CrossRef]
- Kjellstrom, T.; Kovats, R.S.; Lloyd, S.J.; Holt, T.; Tol, R.S.J. The direct impact of climate change on regional labor productivity. Arc. Environ. Occup. Health 2009, 64, 217–227. [Google Scholar] [CrossRef]
- Hertel, T.W.; Rosch, S.D. Climate Change, Agriculture and Poverty; Policy Working Paper; The World Bank: Washington, DC, USA, 2010. [Google Scholar]
- Parmesan, C.; Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 2003, 421, 37–42. [Google Scholar] [CrossRef]
- Lawing, A.M.; Polly, P.D.; Hews, D.K.; Martins, E.P. Including fossils in phylogenetic climate reconstructions: A deep time perspective on the climatic niche evolution and diversification of spiny lizards (Sceloporus). Am. Nat. 2016, 188, 133–148. [Google Scholar] [CrossRef] [Green Version]
- Bellard, C.; Bertelsmeier, C.; Leadley, P.; Thuiller, W.; Courchamp, F. Impacts of climate change on the future of biodiversity: Biodiversity and climate change. Ecol. Lett. 2012, 15, 365–377. [Google Scholar] [CrossRef] [Green Version]
- Urban, M.C.; Bocedi, G.; Hendry, A.P.; Mihoub, J.B.; Peer, G.; Singer, A.; Bridle, J.R.; Crozier, L.G.; De Meester, L.; Godsoe, W.; et al. Improving the forecast for biodiversity under climate change. Science 2016, 353, aad8466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, R.P. Harnessing the world’s biodiversity data: Promise and peril in ecological niche modeling of species distributions. Ann. N. Y. Acad. Sci. 2012, 1260, 66–80. [Google Scholar] [CrossRef] [PubMed]
- Amatulli, G.; Domisch, S.; Tuanmu, M.N.; Parmentier, B.; Ranipeta, A.; Malczyk, J.; Jetz, W. A suite of global, cross-scale topographic variables for environmental and biodiversity modeling. Sci. Data 2018, 5, 180040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Hengl, T.; de Jesus, J.M.; Heuvelink, G.B.; Gonzalez, M.R.; Kilibarda, M.; Blagotić, A.; Shangguan, W.; Wright, M.N.; Geng, X.; Bauer-Marschallinger, B.; et al. SoilGrids250 m: Global gridded soil information based on machine learning. PLoS ONE 2017, 12, e0169748. [Google Scholar] [CrossRef] [Green Version]
- Harris, R.M.; Grose, M.R.; Lee, G.; Bindoff, N.L.; Porfirio, L.L.; Fox-Hughes, P. Climate projections for ecologists. Wiley Interdiscip. Rev. Clim. Chang. 2014, 5, 621–637. [Google Scholar] [CrossRef]
- Bagchi, R.; Hole, D.G.; Butchart, S.H.M.; Collingham, Y.C.; Fishpool, L.D.; Plumptre, A.J.; Owiunji, I.; Mugabe, H.; Willis, S.G. Forecasting potential routes for movement of endemic birds among important sites for biodiversity in the Albertine Rift under projected climate change. Ecography 2018, 41, 401–413. [Google Scholar] [CrossRef] [Green Version]
- Thomas, C.D.; Franco, A.M.; Hill, J.K. Range retractions and extinction in the face of climate warming. Trends Ecol. Evol. 2006, 21, 415–416. [Google Scholar] [CrossRef]
- Telwala, Y.; Brook, B.W.; Manish, K.; Pandit, M.K. Climate-induced elevational range shifts and increase in plant species richness in a Himalayan biodiversity epicentre. PLoS ONE 2013, 8, e57103. [Google Scholar] [CrossRef] [Green Version]
- Bell, D.M.; Bradford, J.B.; Lauenroth, W.K. Early indicators of change: Divergent climate envelopes between tree life stages imply range shifts in the western United States: Early indications of tree range shift. Glob. Ecol. Biogeogr. 2014, 23, 168–180. [Google Scholar] [CrossRef]
- Freeman, B.G.; Freeman, A.M.C. Rapid upslope shifts in New Guinean birds illustrate strong distributional responses of tropical montane species to global warming. Proc. Natl. Acad. Sci. USA 2014, 111, 4490–4494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Röpke, C.P.; Amadio, S.; Zuanon, J.; Ferreira, E.J.G.; de Deus, C.P.; Pires, T.H.S.; Winemiller, K.O. Simultaneous abrupt shifts in hydrology and fish assemblage structure in a floodplain lake in the central Amazon. Sci. Rep. 2017, 7, 40170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moritz, C.; Patton, J.L.; Conroy, C.J.; Parra, J.L.; White, G.C.; Beissinger, S.R. Impact of a century of climate change on small-mammal communities in Yosemite National Park, USA. Science 2008, 322, 261–264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sgrò, C.M.; Lowe, A.J.; Hoffmann, A.A. Building evolutionary resilience for conserving biodiversity under climate change: Conserving biodiversity under climate change. Evol. Appl. 2011, 4, 326–337. [Google Scholar] [CrossRef]
- Foster, C.R.; Amos, A.F.; Fuiman, L.A. Phenology of six migratory coastal birds in relation to climate change. Wilson J. Ornithol. 2010, 122, 116–125. [Google Scholar] [CrossRef]
- Cameron, G.N.; Scheel, D. Getting warmer: Effect of global climate change on distribution of rodents in Texas. J. Mammal. 2001, 82, 652–680. [Google Scholar] [CrossRef] [Green Version]
- Dantas-Torres, F.; Chomel, B.B.; Otranto, D. Ticks and tick-borne diseases: A One Health perspective. Trends Parasitol. 2012, 28, 437–446. [Google Scholar] [CrossRef]
- Feria-Arroyo, T.P.; Castro-Arellano, I.; Gordillo-Perez, G.; Cavazos, A.L.; Vargas-Sandoval, M.; Grover, A.; Torres, J.; Medina, R.F.; Pérez de León, A.A.; Esteve-Gassent, M.D. Implications of climate change on the distribution of the tick vector Ixodes scapularis and risk for Lyme disease in the Texas-Mexico transboundary region. Parasit. Vectors 2014, 7, 199. [Google Scholar] [CrossRef] [Green Version]
- Pérez de León, A.A.; Teel, P.D.; Auclair, A.N.; Messenger, M.T.; Guerrero, F.D.; Schuster, G.; Miller, R.J. Integrated strategy for sustainable cattle fever tick eradication in USA is required to mitigate the impact of global change. Front. Physiol. 2012, 3, 195. [Google Scholar] [CrossRef] [Green Version]
- Castellanos, A.A.; Medeiros, M.C.I.; Hamer, G.L.; Teel, P.D.; Hamer, S.A.; Eubanks, M.D.; Morrow, M.E.; Light, J.E. Decreased small mammal and on-host tick abundance in association with invasive red imported fire ants (Solenopsis invicta). Biol. Lett. 2016, 12, 20160463. [Google Scholar] [CrossRef] [Green Version]
- Grime, J.P. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am. Nat. 1977, 111, 1169–1194. [Google Scholar] [CrossRef]
- Huston, M.A. Biological Diversity: The Coexistence of Species; Cambridge University Press: Cambridge, UK, 1994. [Google Scholar]
- Allen, C.D.; Macalady, A.K.; Chenchouni, H.; Bachelet, D.; McDowell, N.; Vennetier, M.; Kitzberger, T.; Rigling, A.; Breshears, D.D.; Hogg, E.H.; et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manag. 2010, 259, 660–684. [Google Scholar] [CrossRef] [Green Version]
- Aragón-Gastélum, J.L.; Flores, J.; Yáñez-Espinosa, L.; Badano, E.; Ramírez-Tobías, H.M.; Rodas-Ortíz, J.P.; González-Salvatierra, C. Induced climate change impairs photosynthetic performance in Echinocactus platyacanthus, an especially protected Mexican cactus species. Flora-Morphol. Distrib. Funct. Ecol. Plants 2014, 209, 499–503. [Google Scholar] [CrossRef]
- Islam, A.; Ahuja, L.R.; Garcia, L.A.; Ma, L.; Saseendran, A.S. Modeling the effect of elevated CO2 and climate change on reference evapotranspiration in the semi-arid Central Great Plains. Trans. ASABE 2012, 55, 2135–2146. [Google Scholar] [CrossRef]
- Hernandez, E.A.; Uddameri, V. Standardized precipitation evaporation index (SPEI)-based drought assessment in semi-arid South Texas. Environ. Earth Sci. 2014, 71, 2491–2501. [Google Scholar] [CrossRef]
- Heisler-White, J.L.; Blair, J.M.; Kelly, E.F.; Harmoney, K.; Knapp, A.K. Contingent productivity responses to more extreme rainfall regimes across a grassland biome. Glob. Chang. Biol. 2009, 15, 2894–2904. [Google Scholar] [CrossRef]
- Serra-Diaz, J.M.; Maxwell, C.; Lucash, M.S.; Scheller, R.M.; Laflower, D.M.; Miller, A.D.; Tepley, A.J.; Epstein, H.E.; Anderson-Teixeira, K.J.; Thompson, J.R. Disequilibrium of fire-prone forests sets the stage for a rapid decline in conifer dominance during the 21st century. Sci. Rep. 2018, 8, 6749. [Google Scholar] [CrossRef] [Green Version]
- Young, A.M.; Higuera, P.E.; Duffy, P.A.; Hu, F.S. Climatic thresholds shape northern high-latitude fire regimes and imply vulnerability to future climate change. Ecography 2017, 40, 606–617. [Google Scholar] [CrossRef]
- Allen, C.D.; Breshears, D.D. Drought-induced shift of a forest-woodland ecotone: Rapid landscape response to climate variation. Proc. Natl. Acad. Sci. USA 1998, 95, 14839–14842. [Google Scholar] [CrossRef] [Green Version]
- Breshears, D.D.; Cobb, N.S.; Rich, P.M.; Price, K.P.; Allen, C.D.; Balice, R.G.; Romme, W.H.; Kastens, J.H.; Floyd, M.L.; Belnap, J.; et al. Regional vegetation die-off in response to global-change-type drought. Proc. Natl. Acad. Sci. USA 2005, 102, 15144–15148. [Google Scholar] [CrossRef] [Green Version]
- Richter, B.D. Ecologically sustainable water management: Managing river flows for ecological integrity. Ecol. Appl. 2003, 13, 206–224. [Google Scholar] [CrossRef]
- Perkin, J.S.; Gido, K.B.; Costigan, K.H.; Daniels, M.D.; Johnson, E.R. Fragmentation and drying ratchet down Great Plains stream fish diversity. Aquat. Conserv. Mar. Freshw. Ecosyst. 2015, 25, 639–655. [Google Scholar] [CrossRef]
- Postel, S.; Carpenter, S. Freshwater ecosystem services. In Nature’s Services: Societal Dependence on Natural Ecosystems; Daily, G.C., Ed.; Island Press: Washington, DC, USA, 1997; pp. 195–214. ISBN 9781559634762. [Google Scholar]
- Durham, B.W.; Wilde, G.R. Influence of stream discharge on reproductive success of a prairie stream fish assemblage. Trans. Am. Fish Soc. 2006, 135, 1644–1653. [Google Scholar] [CrossRef]
- Rypel, A.L.; Haag, W.R.; Findlay, R.H. Pervasive hydrologic effects on freshwater mussels and riparian trees in southeastern floodplain ecosystems. Wetlands 2009, 29, 497–504. [Google Scholar] [CrossRef]
- Roach, K.A. Texas water wars: How politics and scientific uncertainty influence environmental flow decision-making in the Lone Star state. Biodivers. Conserv. 2013, 22, 545–565. [Google Scholar] [CrossRef]
- Roelke, D.L.; Brooks, B.W.; Grover, J.P.; Gable, G.M.; Schwierzke-Wade, L.; Hewitt, N.C. Anticipated human population and climate change effects on algal blooms of a toxic haptophyte in the south-central USA. Can. J. Fish. Aquat. Sci. 2012, 69, 1389–1404. [Google Scholar] [CrossRef]
- Roelke, D.L.; Barkoh, A.; Brooks, B.W.; Grover, J.P.; Hambright, K.D.; La Claire, J.W., II; Moeller, P.D.R.; Patino, R. A chronicle of a killer alga in the west: Ecology, assessment and management of Prymnesium parvum blooms. Hydrobiologia 2016, 764, 29–50. [Google Scholar] [CrossRef]
- Schriever, C.A.; Liess, M. Mapping ecological risk of agricultural pesticide runoff. Sci. Total Environ. 2007, 384, 264–279. [Google Scholar] [CrossRef]
- Fulton, M.H.; Moore, D.W.; Wirth, E.F.; Chandler, G.T.; Key, P.B.; Daugomah, J.W.; Strozier, E.D.; Devane, J.; Clark, J.R.; Lewis, M.A.; et al. Assessment of risk reduction strategies for the management of agricultural nonpoint source pesticide runoff in estuarine ecosystems. Toxicol. Ind. Health 1999, 15, 201–214. [Google Scholar] [CrossRef]
- Derner, J.D.; Johnson, H.B.; Kimball, B.A.; Pinter, P.J.; Polley, H.W.; Tischler, C.R.; Boutton, T.W.; LaMorte, R.L.; Wall, G.W.; Adam, N.R.; et al. Above-and below-ground responses of C3–C4 species mixtures to elevated CO2 and soil water availability. Glob. Chang. Biol. 2003, 9, 452–460. [Google Scholar] [CrossRef] [Green Version]
- Power, A.G. Ecosystem services and agriculture: Tradeoffs and synergies. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 2959–2971. [Google Scholar] [CrossRef] [PubMed]
- Nelson, E.; Mendoza, G.; Regetz, J.; Polasky, S.; Tallis, H.; Cameron, D.R.; Chan, K.M.; Daily, G.C.; Goldstein, J.; Kareiva, P.M.; et al. Modeling multiple ecosystem services, biodiversity conservation, commodity production, and tradeoffs at landscape scales. Front. Ecol. Environ. 2009, 7, 4–11. [Google Scholar] [CrossRef]
- Sandhu, H.S.; Wratten, S.D.; Cullen, R. From poachers to gamekeepers: Perceptions of farmers towards ecosystem services on arable farmland. Int. J. Agric. Sustain. 2007, 5, 39–50. [Google Scholar] [CrossRef] [Green Version]
- Costanza, R.; d’Arge, R.; De Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Benton, T.G. Managing farming’s footprint on biodiversity. Science 2007, 315, 341–342. [Google Scholar] [CrossRef]
- Tsiafouli, M.A.; Thébault, E.; Sgardelis, S.P.; De Ruiter, P.C.; Van Der Putten, W.H.; Birkhofer, K.; Hemerik, L.; De Vries, F.T.; Bardgett, R.D.; Brady, M.V.; et al. Intensive agriculture reduces soil biodiversity across Europe. Glob. Chang. Biol. 2015, 21, 973–985. [Google Scholar] [CrossRef]
- Dale, V.H.; Polasky, S. Measures of the effects of agricultural practices on ecosystem services. Ecol. Econ. 2007, 64, 286–296. [Google Scholar] [CrossRef]
- Sandhu, H.S.; Wratten, S.D.; Cullen, R. Organic agriculture and ecosystem services. Environ. Sci. Policy 2010, 13, 1–7. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. Climate Change Adaptation Plan. Available online: https://www.epa.gov/sites/production/files/2015-08/documents/adaptationplans2014_508.pdf (accessed on 25 September 2019).
- Zhang, Y.W.; Hagerman, A.D.; McCarl, B.A. Influence of Climate Factors on Spatial Distribution of Texas Cattle Breeds. Clim. Chang. 2013, 118, 183–195. [Google Scholar] [CrossRef]
- Torell, L.A.; Murugan, S.; Ramirez, O.A. Economics of flexible versus conservative stocking strategies to manage climate variability risk. Rangel. Ecol. Manag. 2010, 63, 415–425. [Google Scholar] [CrossRef]
- Colby, B.G. Economic impacts of water law—State law and water market development in the southwest. Nat. Resour. J. 1988, 28, 721–749. [Google Scholar]
- Falco, S.D.; Adinolfi, F.; Bozzola, M.; Capitanio, F. Crop insurance as a strategy for adapting to climate change. J. Agric. Econ. 2014, 65, 485–504. [Google Scholar] [CrossRef]
- Mendelsohn, R. Efficient adaptation to climate change. Clim. Chang. 2000, 45, 583–600. [Google Scholar] [CrossRef]
- Hanley, N.; Shogren, J.F.; White, B. Environmental Economics: In Theory an Practice, 2nd ed.; Palgrave Macmillan: New York, NY, USA, 2007; ISBN 978-033-397-137-6. [Google Scholar]
- Magnan, A.K.; Schipper, E.L.; Burkett, M.; Bharwani, S.; Burton, I.; Eriksen, S.; Gemenne, F.; Schaar, J.; Ziervogel, G. Addressing the risk of maladaptation to climate change. Wiley Interdiscip. Rev. Clim. Chang. 2016, 7, 646–665. [Google Scholar] [CrossRef]
- Butt, T.A.; Mccarl, B.A.; Kergna, A.O. Policies for Reducing Agricultural Sector Vulnerability to Climate Change in Mali. Clim. Policy 2006, 5, 583–598. [Google Scholar] [CrossRef]
- Seo, S.N.; McCarl, B.A.; Mendelsohn, R.O. From beef cattle to sheep under global warming? An analysis of adaptation by livestock species choice in South America. Ecol. Econ. 2010, 69, 2486–2494. [Google Scholar] [CrossRef]
- Zhang, Y.W.; McCarl, B.A.; Jones, J.P.H. An Overview of Mitigation and Adaptation Needs and Strategies for the Livestock Sector. Climate 2017, 5, 95. [Google Scholar] [CrossRef] [Green Version]
- Seo, S.N.; Mendelsohn, R.O.; Dinar, A.; Kurukulasuriya, P. Adapting to climate change mosaically: An analysis of African livestock management by agro-ecological zones. BE J. Econ. Anal. Policy 2009, 9. [Google Scholar] [CrossRef]
- Fuhlendorf, S.D.; Engle, D.M. Restoring heterogeneity on rangelands: Ecosystem management based on evolutionary grazing patterns: We propose a paradigm that enhances heterogeneity instead of homogeneity to promote biological diversity and wildlife habitat on rangelands grazed by livestock. BioScience 2001, 51, 625–632. [Google Scholar] [CrossRef]
- Megersa, B.; Markemann, A.; Angassa, A.; Ogutu, J.O.; Piepho, H.P.; Zárate, A.V. Livestock diversification: An adaptive strategy to climate and rangeland ecosystem changes in southern Ethiopia. Hum. Ecol. 2014, 42, 509–520. [Google Scholar] [CrossRef]
- Pequeño-Ledezma, M.; Alanís-Rodríguez, E.; Molina-Guerra, V.M.; Mora-Olivo, A.; Alcalá-Rojas, A.G.; Martínez-Ávalos, J.G.; Garza-Ocañas, F. Plant composition and structure of two post-livestock areas of Tamaulipan thornscrub, Mexico. Rev. Chil. Hist. Natl. 2018, 91, 4. [Google Scholar] [CrossRef] [Green Version]
- Joyce, L.A.; Briske, D.D.; Brown, J.R.; Polley, H.W.; McCarl, B.A.; Bailey, D.W. Climate change and North American rangelands: Assessment of mitigation and adaptation strategies. Rangel. Ecol. Manag. 2013, 66, 512–528. [Google Scholar] [CrossRef] [Green Version]
- Derner, J.D.; Boutton, T.W.; Briske, D.D. Grazing and ecosystem carbon storage in the North American Great Plains. Plant Soil 2006, 280, 77–90. [Google Scholar] [CrossRef]
- Derner, J.D.; Schuman, G.E. Carbon sequestration and rangelands: A synthesis of land management and precipitation effects. J. Soil Water Conserv. 2007, 62, 77–85. [Google Scholar]
- Rocha, J.F.; Martínez, R.; López-Villalobos, N.; Morris, S.T. Tick burden in Bos taurus cattle and its relationship with heat stress in three agroecological zones in the tropics of Colombia. Parasites Vectors 2019, 12, 73. [Google Scholar] [CrossRef]
- Nyamushamba, G.B.; Mapiye, C.; Tada, O.; Halimani, T.E.; Muchenje, V. Conservation of indigenous cattle genetic resources in Southern Africa’s smallholder areas: Turning threats into opportunities—A review. Asian Australas. J. Anim. Sci. 2017, 30, 603. [Google Scholar] [CrossRef]
- Adams, R.; McCarl, B.; Segerson, K.; Rosenzweig, C.; Bryant, K.; Dixon, B.; Conner, R.; Evenson, R.; Ojima, D. The economic effect of climate change on US agriculture. In The Economic Impact of Climate Change on the United States Economy; Mendelsohn, R., Neumann, J., Eds.; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Chen, C.C.; McCarl, B.A.; Chang, C.C. Climate Change, Sea Level Rise and Rice: Global Market Implications. Clim. Chang. 2012, 110, 543–560. [Google Scholar] [CrossRef] [Green Version]
- Karlen, D.L.; Cambardella, C.A.; Kovar, J.L.; Colvin, T.S. Soil quality response to long-term tillage and crop rotation practices. Soil Till. Res. 2013, 133, 54–64. [Google Scholar] [CrossRef] [Green Version]
- Page, K.; Dang, Y.; Dalal, R. Impacts of conservation tillage on soil quality, including soil-borne crop diseases, with a focus on semi-arid grain cropping systems. Australas. Plant Pathol. 2013, 42, 363–377. [Google Scholar] [CrossRef]
- Barbet-Massin, M.; Thuiller, W.; Jiguet, F. The fate of European breeding birds under climate, land-use and dispersal scenarios. Glob. Chang. Biol. 2012, 18, 881–890. [Google Scholar] [CrossRef]
- Mantyka-Pringle, C.S.; Visconti, P.; Di Marco, M.; Martin, T.G.; Rondinini, C.; Rhodes, J.R. Climate change modifies risk of global biodiversity loss due to land-cover change. Biol. Conserv. 2015, 187, 103–111. [Google Scholar] [CrossRef] [Green Version]
- Brosi, B.J.; Briggs, H.M. Single pollinator species losses reduce floral fidelity and plant reproductive function. Proc. Natl. Acad. Sci. USA 2013, 110, 13044–13048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allen-Wardell, G.; Bernhardt, P.; Bitner, R.; Burquez, A.; Buchmann, S.; Cane, J.; Cox, P.A.; Dalton, V.; Feinsinger, P.; Ingram, M.; et al. The Potential Consequences of Pollinator Declines on the Conservation of Biodiversity and Stability of Food Crop Yields. Conserv. Biol. 1998, 12, 8–17. [Google Scholar]
- Rathcke, B.J.; Jules, E.S. Habitat fragmentation and plant-pollinator interactions. Curr. Sci. 1993, 65, 273–277. [Google Scholar]
- Martin, J.M.; Mead, J.I.; Barboza, P.S. Bison body size and climate change. Ecol. Evol. 2018, 8, 4564–4574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torell, G.; Lee, K. Impact of Climate Change on Livestock Returns and Rangeland Ecosystem Sustainability in the Southwest. Agric. Resour. Econ. Rev. 2018, 47, 336–356. [Google Scholar] [CrossRef] [Green Version]
- Geruo, A.; Velicogna, I.; Kimball, J.S.; Du, J.; Kim, Y.; Colliander, A.; Njoku, E. Satellite-observed changes in vegetation sensitivities to surface soil moisture and total water storage variations since the 2011 Texas drought. Environ. Res. Lett. 2017, 12, 054006. [Google Scholar] [CrossRef] [Green Version]
- Schwantes, A.M.; Swenson, J.J.; González-Roglich, M.; Johnson, D.M.; Domec, J.C.; Jackson, R.B. Measuring canopy loss and climatic thresholds from an extreme drought along a fivefold precipitation gradient across Texas. Glob. Chang. Biol. 2017, 5120–5135. [Google Scholar] [CrossRef]
- McDonald, R.I.; Girvetz, E.H. Two Challenges for USA Irrigation Due to Climate Change: Increasing Irrigated Area in Wet States and Increasing Irrigation Rates in Dry States. PLoS ONE 2001, 8, e65589. [Google Scholar] [CrossRef]
- Rodríguez-Díaz, J.A.; Weatherhead, E.K.; Knox, J.W.; Camacho, E. Climate change impacts on irrigation water requirements in the Guadalquivir river basin in Spain. Reg. Environ. Chang. 2007, 7, 149–159. [Google Scholar] [CrossRef]
- Mainali, K.P.; Warren, D.L.; Dhileepan, K.; McConnachie, A.; Strathie, L.; Hassan, G.; Karki, D.; Shrestha, B.B.; Parmesan, C. Projecting future expansion of invasive species: Comparing and improving methodologies for species distribution modeling. Glob. Chang. Biol. 2015, 21, 4464–4480. [Google Scholar] [CrossRef] [PubMed]
- Burlakova, L.E.; Karatayev, A.Y.; Karatayev, V.A.; May, M.E.; Bennett, D.L.; Cook, M.J. Biogeography and conservation of freshwater mussels (Bivalvia: Unionidae) in Texas: Patterns of diversity and threats. Divers. Distrib. 2011, 17, 393–407. [Google Scholar] [CrossRef]
- Wolfe, D.W.; Ziska, L.; Petzoldt, C.; Seaman, A.; Chase, L.; Hayhoe, K. Projected change in climate thresholds in the Northeastern, USA: Implications for crops, pests, livestock, and farmers. Mitig. Adapt. Strateg. Glob. Chang. 2008, 13, 555–575. [Google Scholar] [CrossRef] [Green Version]
- Smith, R.G.; Menalled, F.D. Integrated Strategies for Managing Agricultural weeds: Making Cropping Systems Less Susceptible to Weed Colonization and Establishment Department of Land Resources and Environmental Sciences; Montana State University Extension: Bozeman, MT, USA, 2006. [Google Scholar]
- Lehikoinen, A.; Jaatinen, K. Delayed autumn migration in northern European waterfowl. J. Ornithol. 2012, 153, 563–570. [Google Scholar] [CrossRef]
- Schummer, M.L.; Coluccy, J.M.; Mitchell, M.; Van Den Elsen, L. Long-term trends in weather severity indices for dabbling ducks in eastern North America. Wildl. Soc. Bull. 2017, 41, 615–623. [Google Scholar] [CrossRef]
- Rand, P.S.; Hinch, S.G.; Morrison, J.; Foreman, M.G.G.; MacNutt, M.J.; MacDonald, J.S.; Healey, M.C.; Farrell, A.P.; Higgs, D.A. Effects of river discharge, temperature, and future climates on energetics and mortality of adult migrating Fraser River sockeye salmon. Trans. Am. Fish. Soc. 2016, 135, 655–667. [Google Scholar] [CrossRef]
- MacFarlane, R.B. Energy dynamics and growth of Chinook salmon (Oncorhynchus tshawytscha) from the Central Valley of California during the estuarine phase and first ocean year. Can. J. Fish. Aquat. Sci. 2010, 67, 1549–1565. [Google Scholar] [CrossRef]
- Todd, C.D.; Hughes, S.L.; Marshall, C.T.; MacLean, J.C.; Lonergan, M.E.; Biuw, E.M. Detrimental effects of recent ocean surface warming on growth condition of Atlantic salmon. Glob. Chang. Biol. 2008, 14, 958–970. [Google Scholar] [CrossRef]
- Sheridan, J.A.; Bickford, D. Shrinking body size as an ecological response to climate change. Nat. Clim. Chang. 2011, 1, 401. [Google Scholar] [CrossRef]
- Jonsson, B.; Jonsson, N. Factors affecting marine production of Atlantic salmon (Salmo salar). Can. J. Fish. Aquat. Sci. 2004, 61, 2369–2383. [Google Scholar] [CrossRef]
- Tscharntke, T.; Batáry, P.; Dormann, C.F. Set-aside management: How do succession, sowing patterns and landscape context affect biodiversity? Agric. Ecosyst. Environ. 2011, 143, 37–44. [Google Scholar] [CrossRef]
- Palm, C.; Blanco-Canqui, H.; DeClerck, F.; Gatere, L.; Grace, P. Conservation agriculture and ecosystem services: An overview. Agric. Ecosyst. Environ. 2014, 187, 87–105. [Google Scholar] [CrossRef] [Green Version]
- Busari, M.A.; Kukal, S.S.; Kaur, A.; Bhatt, R.; Dulazi, A.A. Conservation tillage impacts on soil, crop and the environmentInt. Soil Water Conserv. Res. 2015, 3, 119–129. [Google Scholar] [CrossRef] [Green Version]
- Seufert, V.; Ramankutty, N.; Foley, J.A. Comparing the yields of organic and conventional agriculture. Nature 2012, 485, 229. [Google Scholar] [CrossRef] [PubMed]
- Gebbers, R.; Adamchuk, V.I. Precision agriculture and food security. Science 2010, 327, 828–831. [Google Scholar] [CrossRef]
- Bongiovanni, R.; Lowenberg-DeBoer, J. Precision agriculture and sustainability. Precis. Agric. 2004, 5, 359–387. [Google Scholar] [CrossRef]
- Lipper, L.; Thornton, P.; Campbell, B.M.; Baedeker, T.; Braimoh, A.; Bwalya, M.; Caron, P.; Cattaneo, A.; Garrity, D.; Henry, K.; et al. Climate-smart agriculture for food security. Nat. Clim. Chang. 2014, 4, 1068–1072. [Google Scholar] [CrossRef]
- Campbell, B.; Thornton, P.; Zougmore, D.; van Asten, P.; Lipper, L. Sustainable intensification: What is its role in climate smart agriculture? Curr. Opin. Environ. Sustain. 2014, 8, 39–43. [Google Scholar] [CrossRef] [Green Version]
- Thorpe, A.S.; Barnett, D.T.; Elmendorf, S.C.; Hoekman, D.; Jones, K.D.; Levan, K.E.; Stanish, L.F. Introduction to the sampling designs of the National Ecological Observatory Network Terrestrial Observation System. Ecosphere 2016, 7, e01627. [Google Scholar] [CrossRef]
- Trivedi, P.; Delgado-Baquerizo, M.; Anderson, I.C.; Singh, B.K. Response of soil properties and microbial communities to agriculture: Implications for primary productivity and soil health indicators. Front. Plant Sci. 2016, 7, 990. [Google Scholar] [CrossRef] [Green Version]
- Baltensperger, A.P.; Huettmann, F. Predicted shifts in small mammal distributions and biodiversity in the altered future environment of Alaska: An open access data and machine learning perspective. PLoS ONE 2018, 13, e0194377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beck, J.; Sieber, A. Is the spatial distribution of mankind’s most basic economic traits determined by climate and soil alone? PLoS ONE 2010, 5, e10416. [Google Scholar] [CrossRef] [PubMed]
- Davis, A.P.; Gole, T.W.; Baena, S.; Moat, J. The impact of climate change on indigenous Arabica coffee (Coffea arabica): Predicting future trends and identifying priorities. PLoS ONE 2012, 7, e47981. [Google Scholar] [CrossRef] [PubMed]
- Curtis-Robles, R.; Wozniak, E.J.; Auckland, L.D.; Hamer, G.L.; Hamer, S.A. Combining public health education and disease ecology research: Using citizen science to assess Chagas disease entomological risk in Texas. PLoS Negl. Trop. Dis. 2015, 9, e0004235. [Google Scholar] [CrossRef] [Green Version]
- Meierhofer, M.B.; Johnson, J.S.; Leivers, S.J.; Pierce, B.L.; Evans, J.E.; Morrison, M.L. Winter habitats of bats in Texas. PLoS ONE 2019, 14, e0220839. [Google Scholar] [CrossRef] [Green Version]
- Ikard, W. Encouraging Conservation in the Lone Star State: How Texas Can Improve Incentives for Landowners to Preserve Private Property from Development. Tex. Envtl. LJ 2008, 39, 147–166. [Google Scholar]
- Sorice, M.G.; Haider, W.; Conner, J.R.; Ditton, R.B. Incentive structure of and private landowner participation in an endangered species conservation program. Conserv. Biol. 2011, 25, 587–596. [Google Scholar] [CrossRef]
- Kreuter, U.P.; Wolfe, D.W.; Hays, K.B.; Conner, J.R. Conservation credits—Evolution of a market-oriented approach to recovery of species of concern on private land. Rangel. Ecol. Manag. 2017, 70, 264–272. [Google Scholar] [CrossRef]
- Agrawal, A. The Role of Local Institutions in Adaptation to Climate Change; World Bank: Washington, DC, USA, 2008. [Google Scholar] [CrossRef]
- Marshall, N.A.; Smajgl, A. Understanding variability in adaptive capacity on rangelands. Rangel. Ecol. Manag. 2013, 66, 88–94. [Google Scholar] [CrossRef]
- Polasky, S.; Carpenter, S.R.; Folke, C.; Keeler, B. Decision-making under great uncertainty: Environmental management in an era of global change. Trends Ecol. Evol. 2011, 26, 398–404. [Google Scholar] [CrossRef]
Climate Impacts on Agriculture | Citations | |
---|---|---|
Crops | Crop mixes and distributions are shifting northward to higher elevation | [19,22] |
Future crop productivity (1) limited by increased variability in weather and physical growing conditions, (2) differentially impacted by carbon dioxide concentrations, (3) limited by dwindling water availability, (4) limited by slowing technological progress, and (5) limited by increased pesticide costs. | [23,24,25,26,27,28] | |
Texas: warmer and drier climate-reduced crop yields and increased losses due to extreme weather events | [29,30] | |
Texas: lower soil moisture leading to increased aquifer pumping and water stress | [31] | |
Texas: increased frequency of pest, disease, and invasive species which raises crop management costs | [28,32] | |
Livestock | Increased heat stress and reduced forage and feed growth | [33] |
Livestock losses from decreased reproduction rates, feed consumption, and feed efficiency affecting animal growth rates | [34,35,36,37] | |
Lower forage and feed quality due to increased temperatures affecting growth and nutrient availability | [38,39] | |
Texas: lower stocking rates and reduced per animal production due to warmer and drier conditions | [33] | |
Texas: increased supplemental feeding due to lower grassland growth rates, quality, and acreage with the expansion of woody plants | [40] | |
Texas: decreased animal productivity due to the expansion and greater incidence of disease, ectoparasites, and other pests | [30,40,41] | |
Supply Chain | Input sourcing, packaging, and processing affected by climate change | [42] |
Additional storage and cooling facilities necessary to maintain food safety and reduce spoilage from increased temperatures | [42,43,44] | |
Shifting US production capacity will change transportation routes and methods | [45] | |
Altered comparative advantages, international trading routes, partnerships, and trade agreements due to shifts in production | [42] | |
Difficulty in determining the direction, magnitude, and associated changes to producer and consumer welfare | [46,47,48] | |
Agricultural labor supply is predicted to be impacted, and with it rural incomes | [49,50] | |
Changes in agricultural land values as historic land use shifts | [48] | |
Climate Impacts on Ecosystems | Citations | |
Fauna | Biodiversity is threatened due to the trend and magnitude of rapid changes over a short timeline | [53] |
Extirpation due to varied capacity of species to adapt to environmental changes brought about by climate change | [54] | |
Organisms respond to inhospitable physical climate conditions by shifting, expanding, or contracting their historic ranges | [60,61] | |
Barriers to dispersal that reduce gene flow in landscapes which limit potential for natural adaptation | [67] | |
Texas: migration patterns for resident birds have been impacted | [68] | |
Texas: some rodent species will go extinct and geographic shifts of 54% or more will occur | [69] | |
Texas: tick vectors are shifting and will likely bring diseases into new regions impacting humans and wildlife, resulting in more complex eradication and control strategies | [70,71,72,73] | |
Flora | Altered vegetation composition, productivity, and distribution due to climate-induced stress and disturbance | [74,75] |
Limited plant growth due to changes in temperature, precipitation, or the incidence of climatic extremes | [76,77] | |
Texas: reduced plant productivity due to increasing evapotranspiration | [78,79] | |
Altered prevalence and distribution of fires, floods, hurricanes, and insect outbreaks forces communities into a stressed state which can lead to permanent changes to vegetation | [81,82,83,84] | |
Aquatic and Riparian | Hydrological environment areas that cycle nutrients, maintain water quality, and moderate lifecycle events such as spawning and recruitment are disrupted by climate changes | [85,86,87,88] |
Dewatered channel segments leading to habitat fragmentation due to reduced flows | [86,89] | |
Texas: disrupted productivity and biodiversity of stressed freshwater inflows due to human appropriation | [90] | |
Increased algal blooms due to warmer water temperatures and changes in rainfall | [91,92] |
Climate Stressor | Agricultural Adaptation | Ecosystem Service Externality |
---|---|---|
1. Increased temperature and drought | Diversifying livestock species [113,114,115] | Altered plant biodiversity and productivity [116,117,118] |
Crop land shift to grazing [19,41,119] | Increased root production in upper soil levels and carbon sequestration [120,121] | |
2. Increased temperature | Heat-tolerant animal breeds [103] | Dilution of disease prevalence [103,122,123] |
3. Increased drought | Changing crop mix and rotation [19,124,125] | Increased soil quality [126,127] |
Climate Stressor | Ecosystem Adaptation | Agriculture System Externality |
4. Shifts in temperature and rainfall patterns | Land vegetative change and habitat fragmentation [128,129] | Reduction in pollinators and pollination [100,130,131,132] |
5. Increased temperature | Reduced animal body size [133] | Altered diets and rangeland economic productivity such as stocking rates [41,114,134] |
6. Increased drought | Shift in vegetation productivity and water retention [135,136] | Altered water supply and increased demand for irrigation [137,138] |
7. Increased temperature and altered rainfall | Shifting species distribution [139,140] | Increased pesticide and herbicide costs [28,141,142] |
8. Increased water temperature | Change in phenology [143,144] | Reduced fish survival [145,146,147,148,149] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thayer, A.W.; Vargas, A.; Castellanos, A.A.; Lafon, C.W.; McCarl, B.A.; Roelke, D.L.; Winemiller, K.O.; Lacher, T.E. Integrating Agriculture and Ecosystems to Find Suitable Adaptations to Climate Change. Climate 2020, 8, 10. https://doi.org/10.3390/cli8010010
Thayer AW, Vargas A, Castellanos AA, Lafon CW, McCarl BA, Roelke DL, Winemiller KO, Lacher TE. Integrating Agriculture and Ecosystems to Find Suitable Adaptations to Climate Change. Climate. 2020; 8(1):10. https://doi.org/10.3390/cli8010010
Chicago/Turabian StyleThayer, Anastasia W., Aurora Vargas, Adrian A. Castellanos, Charles W. Lafon, Bruce A. McCarl, Daniel L. Roelke, Kirk O. Winemiller, and Thomas E. Lacher. 2020. "Integrating Agriculture and Ecosystems to Find Suitable Adaptations to Climate Change" Climate 8, no. 1: 10. https://doi.org/10.3390/cli8010010
APA StyleThayer, A. W., Vargas, A., Castellanos, A. A., Lafon, C. W., McCarl, B. A., Roelke, D. L., Winemiller, K. O., & Lacher, T. E. (2020). Integrating Agriculture and Ecosystems to Find Suitable Adaptations to Climate Change. Climate, 8(1), 10. https://doi.org/10.3390/cli8010010