Forecasting Intense Cut-Off Lows in South Africa Using the 4.4 km Unified Model
Abstract
:1. Introduction
2. Data and Methods
2.1. Methodology
2.2. Observed and Reanalysis Data
2.3. Model Description and Forecasts
2.4. Topography
3. Results
3.1. Event of 13–15 May 2016
3.2. Event of the 25–27 July 2016
3.3. Event of 10–11 October 2017
3.4. The Event of 15–17 November 2017
3.5. The Event of 22–24 April 2019
4. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Harisson, M.S.J. A generalized classification of South African summer rain-bearing systems. J. Climatol. 1984, 4, 547–560. [Google Scholar] [CrossRef]
- Hart, N.; Reason, C.J.C.; Fauchereau, N. Tropical–Extratropical Interactions over Southern Africa: Three Cases of Heavy Summer Season Rainfall. Mon. Weather Rev. 2010, 138, 2608–2623. [Google Scholar] [CrossRef]
- Hart, N.; Reason, C.J.C.; Fauchereau, N. Cloud bands over southern Africa: Seasonality, contribution to rainfall variability and modulation by the MJO. Clim. Dyn. 2012, 41, 1199–1212. [Google Scholar] [CrossRef]
- Grab, S.W.; Simpson, A.J. Climatic and environmental impacts of cold fronts over KwaZulu-Natal and the adjacent interior. S. Afr. J. Sci. 2000, 96, 602–608. [Google Scholar]
- Engelbrecht, C.J.; Landman, W.A. Interannual variability of seasonal rainfall over the Cape south coast of South Africa and synoptic type association. Clim. Dyn. 2015, 47, 295–313. [Google Scholar] [CrossRef]
- Mahlalela, P.T.; Blamey, R.C.; Reason, C.J.C. Mechanisms behind early winter rainfall variability in the southwestern Cape, South Africa. Clim. Dyn. 2018, 53, 21–39. [Google Scholar] [CrossRef]
- Singleton, A.T.; Reason, C.J.C. Variability in the characteristics of cut-off low pressure systems over subtropical southern Africa: Sensitivity to sea surface temperature and topography. Tellus 2006, 58, 355–367. [Google Scholar]
- Favre, A.; Hewitson, B.; Lennard, C.; Cerezo-Mota, R.; Tadross, M. Cut-off Lows in the South Africa region and their contribution to precipitation. Clim. Dyn. 2012, 41, 2331–2351. [Google Scholar] [CrossRef]
- Webster, E.M. A Synoptic Climatology of Continental Tropical Low-pressure Systems over Southern Africa and Their Contribution to Rainfall over South Africa. Master’s Thesis, University of Pretoria, Pretoria, South Africa, 2019. [Google Scholar]
- Rapolaki, R.S.; Blamey, R.C.; Hermes, J.C.; Reason, C.J.C. Moisture sources associated with heavy rainfall over the Limpopo River Basin, southern Africa. Clim. Dyn. 2020, 55, 1473–1487. [Google Scholar] [CrossRef]
- Blamey, R.C.; Reason, C.J.C. Mesoscale Convective Complexes over Southern Africa. J. Clim. 2012, 25, 753–766. [Google Scholar] [CrossRef] [Green Version]
- Reason, C.J.C.; Keibel, A. Tropical Cyclone Eline and Its Unusual Penetration and Impacts over the Southern African Mainland. Weather Forecast. 2004, 19, 789–805. [Google Scholar] [CrossRef]
- Malherbe, J.; Engelbrecht, F.; Landman, W.A.; Engelbrecht, C. Tropical systems from the southwest Indian Ocean making landfall over the Limpopo River Basin, southern Africa: A historical perspective. Int. J. Clim. 2011, 32, 1018–1032. [Google Scholar] [CrossRef] [Green Version]
- Chikoore, H.; Vermeulen, J.H.; Jury, M.R. Tropical cyclones in the Mozambique Channel: January–March 2012. Nat. Hazards 2015, 77, 2081–2095. [Google Scholar] [CrossRef]
- Ndarana, T.; Waugh, D.W. The link between cut-off lows and Rossby wave breaking in the Southern Hemisphere. Q. J. R. Meteorol. Soc. 2010, 136, 869–885. [Google Scholar] [CrossRef]
- Molekwa, S. Cut-off Lows over South Africa and Their Contribution to the Total Rainfall of the Eastern Cape Province. Master’s Thesis, University of Pretoria, Pretoria, South Africa, 2013. [Google Scholar]
- Pinheiro, H.R.; Hodges, K.I.; Gan, M.A.; Ferreira, N.J. A new perspective of the climatological features of upper-level cut-off lows in the Southern Hemisphere. Clim. Dyn. 2016, 48, 541–559. [Google Scholar] [CrossRef] [Green Version]
- Pinheiro, H.R.; Hodges, K.I.; Gan, M.A. An intercomparison of subtropical cut-off lows in the Southern Hemisphere using recent reanalyses: ERA-Interim, NCEP-CFRS, MERRA-2, JRA-55, and JRA-25. Clim. Dyn. 2019, 54, 777–792. [Google Scholar] [CrossRef] [Green Version]
- Barnes, M.A.; Ndarana, T.; Landman, W.A. Cut-off lows in the southern Hemisphere and their extension to the surface. Clim. Dyn. 2020. submitted. [Google Scholar]
- Hoskins, B.; McIntyre, M.; Robertson, A. On the use and significance of isentropic potential vorticity maps. Q. J. R. Meteorol. Soc. 1985, 111, 877–946. [Google Scholar] [CrossRef]
- Cook, C.; Reason, C.; Hewitson, B. Wet and dry spells within particularly wet and dry summers in the South African summer rainfall region. Clim. Res. 2004, 26, 17–31. [Google Scholar] [CrossRef] [Green Version]
- Dyson, L.L. A heavy rainfall sounding climatology over Gauteng, South Africa, using self-organising maps. Clim. Dyn. 2015, 45, 3051–3065. [Google Scholar] [CrossRef] [Green Version]
- Ndarana, T.; Mpati, S.; Bopape, M.; Engelbrecht, F.; Chikoore, H. The flow and moisture fluxes associated with ridging South Atlantic Ocean anticyclones during the subtropical southern African summer. Int. J. Clim. 2020. [Google Scholar] [CrossRef]
- Singleton, A.T.; Reason, C.J.C. A Numerical Model Study of an Intense Cutoff Low Pressure System over South Africa. Mon. Weather. Rev. 2007, 135, 1128–1150. [Google Scholar] [CrossRef]
- Xulu, N.G.; Chikoore, H.; Bopape, M.-J.; Nethengwe, N. Climatology of the Mascarene High and Its Influence on Weather and Climate over Southern Africa. Climate 2020, 8, 86. [Google Scholar] [CrossRef]
- Muñoz, C.; Schultz, D.M.; Vaughan, G. A Midlatitude Climatology and Interannual Variability of 200- and 500-hPa Cut-Off Lows. J. Clim. 2020, 33, 2201–2222. [Google Scholar] [CrossRef] [Green Version]
- Hu, K.; Lu, R.; Wang, N. Seasonal climatology of cut-off lows and associated precipitation patterns over Northeast China. Theor. Appl. Clim. 2009, 106, 37–48. [Google Scholar] [CrossRef]
- Zhao, S.; Sun, J. Study on cut-off low-pressure systems with floods over Northeast Asia. Theor. Appl. Clim. 2006, 96, 159–180. [Google Scholar] [CrossRef]
- Neiman, P.J.; Ralph, F.M.; Persson, P.O.G.; White, A.B.; Jorgensen, D.P.; Kingsmill, D.E. Modification of Fronts and Precipitation by Coastal Blocking during an Intense Landfalling Winter Storm in Southern California: Observations during CALJET. Mon. Weather Rev. 2004, 132, 242–273. [Google Scholar] [CrossRef]
- Walters, D.N.; Boutle, I.A.; Brooks, M.; Melvin, T.; Stratton, R.A.; Vosper, S.B.; Wells, H.; Williams, K.; Wood, N.; Allen, T.; et al. The Met Office Unified Model Global Atmosphere 6.0/6.1 and JULES Global Land 6.0/6.1 configurations. Geosci. Model Dev. 2017, 10, 1487–1520. [Google Scholar] [CrossRef] [Green Version]
- Speer, M.S.; Leslie, L.M. The prediction of two cases of severe convection: Implications for forecast guidance. Theor. Appl. Clim. 2002, 80, 165–175. [Google Scholar] [CrossRef]
- Done, J.; Davis, C.A.; Weisman, M. The next generation of NWP: Explicit forecasts of convection using the weather research and forecasting (WRF) model. Atmos. Sci. Lett. 2004, 5, 110–117. [Google Scholar] [CrossRef]
- Dedekind, Z.; Engelbrecht, F.A.; Van Der Merwe, J. Model simulations of rainfall over southern Africa and its eastern escarpment. Water SA 2016, 42, 129. [Google Scholar] [CrossRef] [Green Version]
- Keat, W.J.; Stein, T.H.M.; Phaduli, E.; Landman, S.; Becker, E.; Bopape, M.M.; Hanley, K.E.; Lean, H.W.; Webster, S. Convective initiation and storm life cycles in convection-permitting simulations of the Met Office Unified Model over South Africa. Q. J. R. Meteorol. Soc. 2019, 145, 1323–1336. [Google Scholar] [CrossRef] [Green Version]
- Sharma, K.; Ashrit, R.; Ebert, E.; Mitra, A.; Bhatla, R.; Iyengar, G.; Rajagopal, E.N. Assessment of Met Office Unified Model (UM) quantitative precipitation forecasts during the Indian summer monsoon: Contiguous Rain Area (CRA) approach. J. Earth Syst. Sci. 2018, 128, 4. [Google Scholar] [CrossRef] [Green Version]
- Chan, S.C.; Kendon, E.J.; Fowler, H.; Blenkinsop, S.; Roberts, N.M.; Ferro, C.A.T. The Value of High-Resolution Met Office Regional Climate Models in the Simulation of Multihourly Precipitation Extremes. J. Clim. 2014, 27, 6155–6174. [Google Scholar] [CrossRef] [Green Version]
- Prakash, S.; Mitra, A.K.; Rajagopal, E.N.; Pai, D.S. Assessment of TRMM-based TMPA-3B42 and GSMaP precipitation products over India for the peak southwest monsoon season. Int. J. Clim. 2015, 36, 1614–1631. [Google Scholar] [CrossRef]
- Stein, T.H.M.; Keat, W.; Maidment, R.I.; Landman, S.; Becker, E.; Boyd, D.F.A.; Bodas-Salcedo, A.; Pankiewicz, G.; Webster, S. An Evaluation of Clouds and Precipitation in Convection-Permitting Forecasts for South Africa. Weather Forecast. 2019, 34, 233–254. [Google Scholar] [CrossRef]
- Lean, H.W.; Clark, P.A.; Dixon, M.; Roberts, N.M.; Fitch, A.C.; Forbes, R.M.; Halliwell, C. Characteristics of High-Resolution Versions of the Met Office Unified Model for Forecasting Convection over the United Kingdom. Mon. Weather Rev. 2008, 136, 3408–3424. [Google Scholar] [CrossRef]
- Jayakumar, A.; Sethunadh, J.; Rakhi, R.; Arulalan, T.; Mohandas, S.; Iyengar, G.R.; Rajagopal, E.N. Behavior of predicted convective clouds and precipitation in the high-resolution Unified Model over the Indian summer monsoon region. Earth Space Sci. 2017, 4, 303–313. [Google Scholar] [CrossRef]
- Aranami, K.; Davies, T.; Wood, N. A mass restoration scheme for limited-area models with semi-Lagrangian advection. Q. J. R. Meteorol. Soc. 2014, 141, 1795–1803. [Google Scholar] [CrossRef]
- Omar, S.A.; Abiodun, B.J. Characteristics of cut-off lows during the 2015–2017 drought in the Western Cape. S. Afr. Atmos. Res. 2020, 235, 104772. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P. The ERA Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Davies, T.; Cullen, M.J.P.; Malcolm, A.J.; Mawson, M.H.; Staniforth, A.; White, A.A.; Wood, N. A new dynamical core for the Met Office’s global and regional modelling of the atmosphere. Q. J. R. Meteorol. Soc. 2005, 131, 1759–1782. [Google Scholar] [CrossRef]
- Clark, P.A.; Roberts, N.; Lean, H.; Ballard, S.P.; Charlton-Perez, C. Convection-permitting models: A step-change in rainfall forecasting. Meteorol. Appl. 2016, 23, 165–181. [Google Scholar] [CrossRef] [Green Version]
- Gregory, D.; Rowntree, P.R. A mass flux convection scheme with representation of cloud ensemble characteristics and stability-dependent closure. Mon. Weather Rev. 1990, 118, 1483–1506. [Google Scholar] [CrossRef]
- Wilson, D.R.; Ballard, S.P. A microphysically based precipitation scheme for the UK Meteorological Office Unified Model. Q. J. R. Meteorol. Soc. 1999, 125, 1607–1636. [Google Scholar] [CrossRef]
- Boutle, I.A.; Abel, S.J. Microphysical controls on the stratocumulus topped boundary-layer structure during VOCALS-REx. Atmos. Chem. Phys. 2012, 12, 2849. [Google Scholar] [CrossRef] [Green Version]
- Cassola, F.; Ferrari, F.; Mazzino, A. Numerical simulations of Mediterranean heavy precipitation events with the WRF model: A verification exercise using different approaches. Atmos. Res. 2015, 164, 210–225. [Google Scholar] [CrossRef]
- Engelbrecht, F.; Rautenbach, C.D.; McGregor, J.; Katzfey, J. January and July climate simulations over the SADC region using the limited-area model DARLAM. Water SA 2002, 28, 361–374. [Google Scholar] [CrossRef] [Green Version]
- Houze, R.A. Orographic effects on precipitating clouds. Rev. Geophys. 2012, 50. [Google Scholar] [CrossRef]
- EUMETSAT. Cut-off Low over South Africa. 2016. Available online: https://www.eumetsat.int/website/home/Images/ImageLibrary/DAT_3186903 (accessed on 9 May 2020).
- South African Weather Service (SAWS). Severe Weather Report: 25–28 July 2016. 2016. Available online: https://www.overstrand.gov.za/en/documents/strategic-documents/severe-weather/3414-severe-weather-25-28-july-2016/file (accessed on 9 May 2020).
- Met Office. Official Blog of the Met Office News Team. Available online: https://blog.metoffice.gov.uk/2016/07/26/record-breaking-rainfall-and-cold-weather-grips-south-africa (accessed on 13 February 2020).
- Traveller24. ALERT: Travellers to Expect Flight Delays at Durban Airport. 2017. Available online: https://m.traveller24.com/News/Alerts/travellers-to-expect-flight-delays-at-durban-airport-20171010 (accessed on 11 May 2020).
- ENCA. Travelers Warned as Wet Weather Continues in Parts of SA. 2019. Available online: https://www.enca.com/news/wet-weather-affect-many-travel-plans (accessed on 11 May 2020).
- CNN. 70 People Killed in South Africa Floods. 2019. Available online: https://edition.cnn.com/2019/04/24/africa/51-dead-south-africa-flood-intl/index (accessed on 11 May 2020).
- News24. Durban Floods Damage Estimated at over R650m. 2019. Available online: https://www.news24.com/news24/southafrica/news/durban-floods-damage-estimated-at-over-r650m-20190426 (accessed on 11 May 2020).
- South African Broadcast Corporation (SABC). Snow on Maluti Mountains, Warning of Cold Weather. 2019. Available online: https://www.sabcnews.com/sabcnews/snow-on-maluti-mountains-warning-of-cold-weather (accessed on 1 March 2020).
- Singleton, A.T.; Reason, C.J.C. Variability in the characteristics of cut-off low pressure systems over subtropical southern Africa. Int. J. Clim. 2007, 27, 295–310. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muofhe, T.P.; Chikoore, H.; Bopape, M.-J.M.; Nethengwe, N.S.; Ndarana, T.; Rambuwani, G.T. Forecasting Intense Cut-Off Lows in South Africa Using the 4.4 km Unified Model. Climate 2020, 8, 129. https://doi.org/10.3390/cli8110129
Muofhe TP, Chikoore H, Bopape M-JM, Nethengwe NS, Ndarana T, Rambuwani GT. Forecasting Intense Cut-Off Lows in South Africa Using the 4.4 km Unified Model. Climate. 2020; 8(11):129. https://doi.org/10.3390/cli8110129
Chicago/Turabian StyleMuofhe, Tshimbiluni Percy, Hector Chikoore, Mary-Jane Morongwa Bopape, Nthaduleni Samuel Nethengwe, Thando Ndarana, and Gift Tshifhiwa Rambuwani. 2020. "Forecasting Intense Cut-Off Lows in South Africa Using the 4.4 km Unified Model" Climate 8, no. 11: 129. https://doi.org/10.3390/cli8110129
APA StyleMuofhe, T. P., Chikoore, H., Bopape, M. -J. M., Nethengwe, N. S., Ndarana, T., & Rambuwani, G. T. (2020). Forecasting Intense Cut-Off Lows in South Africa Using the 4.4 km Unified Model. Climate, 8(11), 129. https://doi.org/10.3390/cli8110129