Impacts of Agroclimatic Variability on Maize Production in the Setsoto Municipality in the Free State Province, South Africa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data and Data Management
2.3. Climatic Trend Analysis
2.4. The Crop Yield Anomalies and Correlation with Climate Variables
3. Results and Discussion
3.1. Variation in the Minimum and Maximum Temperatures during the Growing Period (October–April)
3.2. The Growing Period Rainfall from 1985 to 2016
3.3. Maize Crop Production 1985––2016
3.4. Climate Trend Analysis
3.4.1. Minimum and Maximum Temperature Trends
3.4.2. Rainfall Trend Analysis
3.5. Maize Yield Trends
3.6. Maize Yield Correlation with Climatic Variables
3.6.1. De-trended Maize Yield Correlation with rainfall, Tmin and Tmax Anomalies
3.6.2. Maize Yield Relationship with Rainfall, Minimum and Maximum Temperature Anomalies
3.6.3. Self-Calibrating Palmer Drought Stress Index
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Barros, V.; Field, C.; Dokke, D.; Mastrandrea, M.; Mach, K.; Bilir, T.E.; Ebi, K.L.; Estrada, Y.O.; Genova, R.C.; Girma, B.; et al. Climate Change 2014: Impacts, Adaptation, and Vulnerability-Part B: Regional Aspects-Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: New York, NY, USA, 2014. [Google Scholar]
- Clay, J. Freeze the footprint of food. Nat. Cell Biol. 2011, 475, 287–289. [Google Scholar] [CrossRef]
- Gornall, J.; Betts, R.; Burke, E.; Clark, R.; Camp, J.; Willett, K.; Wiltshire, A. Implications of climate change for agricultural productivity in the early twenty-first century. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 2973–2989. [Google Scholar] [CrossRef]
- Hatfield, J.L.; Boote, K.J.; Kimball, B.A.; Ziska, L.H.; Izaurralde, R.C.; Ort, D.; Thomson, A.M.; Wolfe, D. Climate impacts on agriculture: Implications for crop production. Agron. J. 2011, 103, 351–370. [Google Scholar] [CrossRef] [Green Version]
- Olesen, J.; Bindi, M. Consequences of climate change for European agricultural productivity, land use and policy. Eur. J. Agron. 2002, 16, 239–262. [Google Scholar] [CrossRef]
- Asam, S.; Callegari, M.; Matiu, M.; Fiore, G.; De Gregorio, L.; Jacob, A.W.; Menzel, A.; Zebisch, M.; Notarnicola, C. Relationship between spatiotemporal variations of climate, snow cover and plant phenology over the Alps—An Earth observation-based analysis. Remote. Sens. 2018, 10, 1757. [Google Scholar] [CrossRef] [Green Version]
- Engelbrecht, F.; Adegoke, J.; Bopape, M.-J.; Naidoo, M.; Garland, R.M.; Thatcher, M.; McGregor, J.; Katzfey, J.; Werner, M.; Ichoku, C.; et al. Projections of rapidly rising surface temperatures over Africa under low mitigation. Environ. Res. Lett. 2015, 10, 085004. [Google Scholar] [CrossRef]
- Tyson, P.D.; Dyer, T.G.; Mametse, M. Secular changes in South African rainfall: 1880 to 1972. Q. J. R. Meteorol. Soc. 1975, 101, 817–833. [Google Scholar] [CrossRef]
- Aguilar, E.; Barry, A.A.; Brunet, M.; Ekang, L.; Fernandes, A.; Massoukina, M.; Mbah, J.; Mhanda, A.; Nascimento, D.J.D.; Peterson, T.C.; et al. Changes in temperature and precipitation extremes in western central Africa, Guinea Conakry, and Zimbabwe, 1955–2006. J. Geophys. Res. Space Phys. 2009, 114. [Google Scholar] [CrossRef]
- Dasgupta, P.; Morton, J.F.; Dodman, D.; Karapinar, B.; Meza, F.; Rivera-Ferre, M.G.; Toure Sarr, A.; Vincent, K.E. Rural areas. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 613–657. [Google Scholar]
- Nicholson, S.E. Climate and climatic variability of rainfall over eastern Africa. Rev. Geophys. 2017, 55, 590–635. [Google Scholar] [CrossRef] [Green Version]
- Kruger, A.C.; Sekele, S.S. Trends in extreme temperature indices in South Africa: 1962–2009. Int. J. Clim. 2013, 33, 661–676. [Google Scholar] [CrossRef]
- Hulme, M. Rainfall changes in Africa: 1931–1960 to 1961–1990. Int. J. Climatol. 1992, 12, 685–699. [Google Scholar] [CrossRef]
- Tolba, M.K.; Cutajar, M.Z.; Pyhälä, M.; Ehhalt, D.H.; Obasi, G.O.P.; Killmann, W.; Briceño, S.; Virji, H.; Odada, E.; Olago, D.; et al. Climate change and Africa. Clim. Change Afr. 2008, 24, 337–353. [Google Scholar] [CrossRef]
- Conway, D.; Mould, C.; Bewket, W. Over one century of rainfall and temperature observations in Addis Ababa, Ethiopia. Int. J. Clim. 2004, 24, 77–91. [Google Scholar] [CrossRef]
- Van Wilgen, N. Climate Change: Briefings from Southern Africa. Trans. R. Soc. South Afr. 2016, 71, 205–206. [Google Scholar] [CrossRef]
- Moeletsi, M.E.; Walker, S.; Landman, W.A. ENSO and implications on rainfall characteristics with reference to maize production in the Free State Province of South Africa. Phys. Chem. Earth Parts A/B/C 2011, 36, 715–726. [Google Scholar] [CrossRef] [Green Version]
- Dube, S.; Scholes, R.J.; Nelson, G.C.; Mason-D’Croz, D.; Palazzo, A. South African food security and climate change: Agriculture futures. Econ. Open-Access Open-Assess. E-J. 2013, 7–9. [Google Scholar] [CrossRef] [Green Version]
- Wu, B.; Ma, Z.; Yan, N. Agricultural drought mitigating indices derived from the changes in drought characteristics. Remote Sens. Environ. 2020, 244, 111813. [Google Scholar] [CrossRef]
- Wang, W.; Ertsen, M.W.; Svoboda, M.D.; Hafeez, M. Propagation of drought: From meteorological drought to agricultural and hydrological drought. Adv. Meteorol. 2016, 2016, 1–5. [Google Scholar] [CrossRef]
- Wells, N.; Goddard, S.; Hayes, M.J. A self-calibrating Palmer drought severity index. J. Clim. 2004, 17, 2335–2351. [Google Scholar] [CrossRef]
- Dai, A.; Trenberth, K.E.; Qian, T. A global dataset of Palmer drought severity index for 1870–2002: Relationship with soil moisture and effects of surface warming. J. Hydrometeorol. 2004, 5, 1117–1130. [Google Scholar] [CrossRef]
- Dai, A. Drought under global warming: A review. Wiley Interdiscip. Rev. Clim. Chang. 2011, 2, 45–65. [Google Scholar] [CrossRef] [Green Version]
- Hansen, J.W.; Mason, S.J.; Sun, L.; Tall, A. Review of seasonal climate forecasting for agriculture in Sub-Saharan Africa. Exp. Agric. 2011, 47, 205–240. [Google Scholar] [CrossRef] [Green Version]
- Jones, P.G.; Thornton, P. Croppers to livestock keepers: Livelihood transitions to 2050 in Africa due to climate change. Environ. Sci. Policy 2009, 12, 427–437. [Google Scholar] [CrossRef]
- Hammer, G.L.; Van Oosterom, E.; McLean, G.; Chapman, S.C.; Broad, I.; Harland, P.; Muchow, R.C. Adapting APSIM to model the physiology and genetics of complex adaptive traits in field crops. J. Exp. Bot. 2010, 61, 2185–2202. [Google Scholar] [CrossRef] [Green Version]
- Landman, W.A.; Engelbrecht, F.; Hewitson, B.; Malherbe, J.; Van Der Merwe, J. Towards bridging the gap between climate change projections and maize producers in South Africa. Theor. Appl. Clim. 2017, 132, 1153–1163. [Google Scholar] [CrossRef] [Green Version]
- FAO/FAOSTAT. FAO Agriculture Department, Agricultural Production, Livestock Primary. Total World Meat 1970–2010, Food Balance Sheets, Japan, USA; FAO: Rome, Italy, 2012. [Google Scholar]
- Blignaut, J.; Ueckermann, L.; Aronson, J. Agriculture production’s sensitivity to changes in climate in South Africa. South. Afr. J. Sci. 2009, 105, 61–68. [Google Scholar] [CrossRef] [Green Version]
- De Jager, J.; Potgieter, A.; Berg, W.V.D. Framework for forecasting the extent and severity of drought in maize in the Free State Province of South Africa. Agric. Syst. 1998, 57, 351–365. [Google Scholar] [CrossRef]
- Smale, M.; Jayne, T. Maize in Eastern and Southern Africa: Seeds: Of success in retrospect. EPTD (Environment and Production Technology Division) Discussion Paper no. 97. International Food Policy Research Institute. 2014. Available online: www.fao.org/docs/eims/upload/166420 (accessed on 10 December 2020).
- Mukhala, E.; Groenewald, D. Experiences and perceptions of black small-scale irrigation farmers in the Free State. S. Afr. J. Agric. Ext. 1998, 27, 1–18. [Google Scholar]
- Cammarano, D.; Valdivia, R.O.; Beletse, Y.G.; Durand, W.; Crespo, O.; Tesfuhuney, W.A.; Jones, M.R.; Walker, S.; Mpuisang, T.N.; Nhemachena, C.; et al. Integrated assessment of climate change impacts on crop productivity and income of commercial maize farms in northeast South Africa. Food Secur. 2020, 12, 659–678. [Google Scholar] [CrossRef]
- Abubakar, H.B.; Newete, S.W.; Scholes, M.; Bello, A.H. Drought characterization and trend detection using the reconnaissance drought index for Setsoto Municipality of the Free State Province of South Africa and the impact on maize yield. Water 2020, 12, 2993. [Google Scholar] [CrossRef]
- Moeletsi, M.; Moopisa, S.G.; Walker, S.; Tsubo, M. Development of an agroclimatological risk tool for dryland maize production in the Free State Province of South Africa. Comput. Electron. Agric. 2013, 95, 108–121. [Google Scholar] [CrossRef]
- Moeletsi, M.; Walker, S. Rainy season characteristics of the Free State Province of South Africa with reference to rain-fed maize production. Water SA 2012, 38, 775–782. [Google Scholar] [CrossRef] [Green Version]
- Hensley, M.; Le Roux, P.; Du Preez, C.; Van Huyssteen, C.; Kotze, E.; Van Rensburg, L. Soils: The Free State’s agricultural base. South Afr. Geogr. J. 2006, 88, 11–21. [Google Scholar] [CrossRef]
- Buso, N. Municipal Commonage Administration in the Free State Province: Can Municipalities in the Current Local Government Dispensation Promote Emerging Farming? October 2003. Available online: http://repository.hsrc.ac.za/handle/20.500.11910/8230 (accessed on 10 December 2020).
- Beletse, Y.G.; Durand, W.; Nhemachena, C.; Williams, P.A.; Tesfuhuney, W.A.; Jones, M.R.; Teweldemedhin, M.Y.; Gamedze, S.M.; Bonolo, P.M.; Jonas, S.; et al. Projected impacts of climate change scenarios on the production of maize in Southern Africa: An integrated assessment case study of the Bethlehem District, Central Free State, South Africa. In Handbook of Climate Change and Agroecosystems: The Agricultural Model Intercomparison and Improvement Project Integrated Crop and Economic Assessments, Part 2; Imperial College Press: London, UK, 2015; Volume 4, pp. 125–157. [Google Scholar]
- Adisa, O.M.; Botai, C.M.; Botai, J.O.; Hassen, A.; Darkey, D.; Tesfamariam, E.; Adisa, A.F.; Adeola, A.M.; Ncongwane, K.P. Analysis of agro-climatic parameters and their influence on maize production in South Africa. Theor. Appl. Clim. 2018, 134, 991–1004. [Google Scholar] [CrossRef]
- Golkhatmi, N.; Sanaeinejad, S.; Ghahraman, B.; Pazhand, H. Extended modified inverse distance method for interpolation rainfall. Int. J. Eng. Invent. 2012, 3, 57–65. [Google Scholar]
- Viale, M.; Garreaud, R.D. Orographic effects of the subtropical and extratropical Andes on upwind precipitating clouds. J. Geophys. Res. Atmos. 2015, 120, 4962–4974. [Google Scholar] [CrossRef]
- DAFF. South African Fertilizers Market Analysis Report 2015. DAFF Report; DAFF: Pretoria, South Africa, 2015. [Google Scholar]
- Palmer, W.C. Meteorological Drought; Research paper no. 45; US Weather Bureau: Washington, DC, USA, 1965.
- Zhai, J.; Su, B.; Krysanova, V.; Vetter, T.; Gao, C.; Jiang, T. Spatial variation and trends in PDSI and SPI indices and their relation to streamflow in 10 large regions of China. J. Clim. 2010, 23, 649–663. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. Comment on “Characteristics and trends in various forms of the Palmer Drought Severity Index (PDSI) during 1900–2008” by Aiguo Dai. J. Geophys. Res. 2011, 116, D19112. [Google Scholar] [CrossRef] [Green Version]
- Sneyers, R. On the use of statistical analysis for the objective determination of climate change. Meteorol. Z. 1992, 247–256. [Google Scholar] [CrossRef]
- Bandyopadhyay, N.; Bhuiyan, C.; Saha, A.K. Heat waves, temperature extremes and their impacts on monsoon rainfall and meteorological drought in Gujarat, India. Nat. Hazards 2016, 82, 367–388. [Google Scholar] [CrossRef]
- Ewert, F.; Rötter, R.P.; Bindi, M.; Webber, H.; Trnka, M.; Kersebaum, K.C.; Olesen, J.E.; Van Ittersum, M.K.; Janssen, S.; Rivington, M.; et al. Crop modelling for integrated assessment of risk to food production from climate change. Environ. Model. Softw. 2015, 72, 287–303. [Google Scholar] [CrossRef]
- Mahony, M.; Hulme, M. Modelling and the nation: Institutionalising climate prediction in the UK, 1988–1992. Minerva 2016, 54, 445–470. [Google Scholar] [CrossRef] [Green Version]
- Pablos, M.; Martínez-Fernández, J.; Sanchez, N.; González-Zamora, Á. Temporal and spatial comparison of agricultural drought indices from moderate resolution satellite soil moisture data over Northwest Spain. Remote. Sens. 2017, 9, 1168. [Google Scholar] [CrossRef] [Green Version]
- Milošević, D.; Savić, S.; Stojanović, V.; Popov-Raljić, J. Effects of precipitation and temperatures on crop yield variability in Vojvodina (Serbia). Ital. J. Agrometeorol.-Riv. Ital. Agrometeorol. 2015, 20, 35–46. [Google Scholar]
- Russo, S.; Marchese, A.F.; Sillmann, J.; Immé, G. When will unusual heat waves become normal in a warming Africa? Environ. Res. Lett. 2016, 11, 054016. [Google Scholar] [CrossRef]
- Haverkort, A.J.; Franke, A.C.; Engelbrecht, F.A.; Steyn, J.M. Climate change and potato production in contrasting South African agro-ecosystems 1. Effects on land and water use efficiencies. Potato Res. 2013, 56, 31–50. [Google Scholar] [CrossRef] [Green Version]
- IPCC. IPCC, 2014: Climate Change 2014: Synthesis Report. Contribution of Working Groups I. II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014; p. 151. [Google Scholar]
- Dezfuli, A.K.; Zaitchik, B.F.; Gnanadesikan, A. Regional atmospheric circulation and rainfall variability in South Equatorial Africa. J. Clim. 2015, 28, 809–818. [Google Scholar] [CrossRef] [Green Version]
- Lana, M.A.; Vasconcelos, A.C.F.; Gornott, C.; Schaffert, A.; Bonatti, M.; Volk, J.; Graef, F.; Kersebaum, K.C.; Sieber, S. Is dry soil planting an adaptation strategy for maize cultivation in semi-arid Tanzania? Food Secur. 2018, 10, 897–910. [Google Scholar] [CrossRef] [Green Version]
- Eggert, B.; Berg, P.; Haerter, J.; Jacob, D.; Moseley, C. Temporal and spatial scaling impacts on extreme precipitation. Atmos. Chem Phys. 2015, 15, 5957–5971. [Google Scholar] [CrossRef] [Green Version]
- Thomas, A.C.; Pershing, A.J.; Friedland, K.D.; Nye, J.A.; Mills, K.E.; Alexander, M.A.; Record, N.R.; Weatherbee, R.; Henderson, M.E.; Drinkwater, K. Seasonal trends and phenology shifts in sea surface temperature on the North American northeastern continental shelf. Elem. Sci. Anthr. 2017, 5. [Google Scholar] [CrossRef] [Green Version]
- Shaw, R.H. Climate requirement. Corn and corn improvement. Agronomy 1988, 18, 609–638. [Google Scholar] [CrossRef]
- Bergamaschi, H.; Dalmago, G.A.; Bergonci, J.I.; Bianchi, C.A.M.; Müller, A.G.; Comiran, F.; Heckler, B.M.M. Water supply in the critical period of maize and the grain production. Pesqui. Agropecuária Bras. 2004, 39, 831–839. [Google Scholar] [CrossRef] [Green Version]
- Maziya-Dixon, B. Nigeria Food Consumption and Nutrition Survey 2001–2003: Summary; IITA: Ibadan, Nigeria, 2004. [Google Scholar]
- Parry, M.L.; Rosenzweig, C.; Iglesias, A.; Livermore, M.; Fischer, G. Effects of climate change on global food production under SRES emissions and socio-economic scenarios. Glob. Environ. Change 2004, 14, 53–67. [Google Scholar] [CrossRef]
- Thornton, P.; Jones, P.G.; Alagarswamy, G.; Andresen, J. Spatial variation of crop yield response to climate change in East Africa. Glob. Environ. Change 2009, 19, 54–65. [Google Scholar] [CrossRef]
- Adam, S.; Agatsiva, J.L.; Akwany, P.; Arunga, M.; Bagine, R. Nature’s Benefits in Kenya: An Atlas of Ecosystems and Human Well-being; World Resources Institute: Washington DC, USA; Nairobi, Kenya, 2007. [Google Scholar]
- Walker, N.; Schulze, R. Climate change impacts on agro-ecosystem sustainability across three climate regions in the maize belt of South Africa. Agric. Ecosyst. Environ. 2008, 124, 114–124. [Google Scholar] [CrossRef]
- Marais, L.; Cloete, J. Patterns of Territorial Development and Inequality from South Africa’s Periphery: Evidence from the Free State Province; Working Paper Series; RIMISP: Bloemfontein, South Africa, 2016. [Google Scholar]
- Morakile, G. Survey on Preferred Supplier Base Mechanism for Smallholder Farmers/Cooperatives to Derive Better Access to Government Market. Master’s Thesis, University of South Africa, Pretoria, South Africa, 2018. [Google Scholar]
- Sánchez, B.; Rasmussen, A.; Porter, J.R. Temperatures and the growth and development of maize and rice: A review. Glob. Change Biol. 2014, 20, 408–417. [Google Scholar] [CrossRef]
- Cairns, J.E.; Hellin, J.; Sonder, K.; Araus, J.L.; MacRobert, J.F.; Thierfelder, C.; Prasanna, B.M. Adapting maize production to climate change in sub-Saharan Africa. Food Secur. 2013, 5, 345–360. [Google Scholar] [CrossRef] [Green Version]
- IPCC. The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2007; p. 996. [Google Scholar]
- Lobell, D.B.; Bänziger, M.; Magorokosho, C.; Vivek, B. Nonlinear heat effects on African maize as evidenced by historical yield trials. Nat. Clim. Change 2011, 1, 42–45. [Google Scholar] [CrossRef]
- Tesfaye, K.; Kruseman, G.; Cairns, J.E.; Zaman-Allah, M.; Wegary, D.; Zaidi, P.; Boote, K.J.; Rahut, D.; Erenstein, O. Potential benefits of drought and heat tolerance for adapting maize to climate change in tropical environments. Clim. Risk Manag. 2018, 19, 106–119. [Google Scholar] [CrossRef]
- Steward, P.; Dougill, A.J.; Thierfelder, C.; Pittelkow, C.M.; Stringer, L.C.; Kudzala, M.; Shackelford, G. The adaptive capacity of maize-based conservation agriculture systems to climate stress in tropical and subtropical environments: A meta-regression of yields. Agric. Ecosyst. Environ. 2018, 251, 194–202. [Google Scholar] [CrossRef]
- Scholes, M.; Scholes, R.B.; Lucas, M. Climate Change: Briefings from Southern Africa; NYU Press: New York, NY, USA, 2015. [Google Scholar]
- Moeletsi, M.; Walker, S. A simple agroclimatic index to delineate suitable growing areas for rainfed maize production in the Free State Province of South Africa. Agric. For. Meteorol. 2012, 162, 63–70. [Google Scholar] [CrossRef]
- Midgley, G.; Chapman, R.; Mukheibir, P.; Tadross, M.; Hewitson, B.; Wand, S.; Schulze, R.; Lumsden, T.; Horan, M.; Warburton, M. Impacts, Vulnerability and Adaptation in Key South African Sectors. An input into the Long Term Mitigation Scenarios Process Cape Town: Energy Research Centre; University of Cape Town: Cape Town, South Africa, 2007. [Google Scholar]
- Buckle, C. Weather and Climate in Africa; Longman: Harlow, UK, 1996; p. 321. [Google Scholar]
- Hunter, R.D.; Meentemeyer, R.K. Climatologically aided mapping of daily precipitation and temperature. J. Appl. Meteorol. 2005, 44, 1501–1510. [Google Scholar] [CrossRef]
- Fauchereau, N.; Trzaska, S.; Rouault, M.; Richard, Y. Rainfall variability and changes in Southern Africa during the 20th century in the global warming context. Nat. Hazards 2003, 29, 139–154. [Google Scholar] [CrossRef]
- Jury, M.R. Climate trends in southern Africa. South Afr. J. Sci. 2013, 109, 1–11. [Google Scholar] [CrossRef] [Green Version]
Weather Stations | Latitude | Longitude | Elevation (m) | Data Type | Data Period (Years) | |
---|---|---|---|---|---|---|
1 | Senekal-AGR | −28.32200 | 27.6200 | 1433 | R | 40 |
2 | Ficksburg | −28.82700 | 27.9040 | 1628 | R&T | 32 |
3 | Marquard | −28.66500 | 27.4250 | 1497 | R&T | 40 |
4 | Clocolan | −28.92108 | 27.5840 | 1602 | R&T | 36 |
5 | Senekal-Driepan | −28.38900 | 27.5865 | 1587 | R&T | 31 |
6 | Paul Roux | −28.29900 | 27.9480 | 1569 | R | 39 |
8 | Lambertianin | −28.8200 | 27.5820 | 1646 | R | 32 |
7 | Uintjieshoek | −28.5830 | 27.5200 | 1600 | R | 31 |
Tmin (°C) | Tmax (°C) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Stations | Mean | Min | Max | SD | CV | Mean | Min | Max | SD | CV |
Marquard | 11.6 | 10 | 13.4 | 0.7 | 6.2 | 27.1 | 24.7 | 29.5 | 1.1 | 4 |
Clocolan | 14.2 | 9.9 | 16.4 | 2.1 | 14.9 | 28.6 | 24.1 | 31.2 | 2.4 | 8.3 |
Senekal | 12.1 | 9.4 | 13.4 | 0.7 | 5.8 | 27.7 | 25.1 | 30.4 | 1.1 | 3.8 |
Ficksburg | 10.4 | 5.6 | 13.9 | 1.7 | 16 | 11.6 | 10 | 13.4 | 0.7 | 6.2 |
Stations | Average Rainfall in Growing Period (mm) | Annual Rainfall (mm) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Mean | Min | Max | SD | CV | Mean | Min | Max | SD | CV | |
Marquard | 540.7 | 204.1 | 969.5 | 158.5 | 29 | 613.4 | 259.1 | 1029.7 | 178.2 | 29 |
Clocolan | 593.2 | 329.6 | 888.7 | 122.9 | 21 | 677.1 | 386.5 | 1074.9 | 149.4 | 22 |
Senekal | 569.9 | 310 | 952 | 149.9 | 26 | 645 | 386.8 | 1019.2 | 167.4 | 26 |
Ficksburg | 632.4 | 359.2 | 1154.1 | 151.4 | 24 | 718.1 | 397.6 | 1224.1 | 168.8 | 23 |
Average Maize Yield (tons ha−1) | |||||
---|---|---|---|---|---|
Stations | Mean | Min | Max | SD | CV |
Marquard | 2.33 | 0.47 | 5 | 0.98 | 41.93 |
Clocolan | 2.72 | 0.64 | 6.18 | 1.03 | 37.75 |
Senekal | 1.96 | 0.1 | 4.34 | 0.91 | 46.19 |
Ficksburg | 2.89 | 0.85 | 5.96 | 1.33 | 46.21 |
Months | Marquard | Clocolan | Senekal | Ficksburg | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Test z | Q | R2 | Test z | Q | R2 | Test z | Q | R2 | Test z | Q | R2 | |
OCT | 2.72 ** | 0.09 | 0.25 | −3.5 *** | −0.18 | 0.55 | 0.62 | 0.01 | 0 | −0.05 | 0 | 0 |
NOV | 2.64 ** | 0.09 | 0.25 | −2.47 * | −0.15 | 0.35 | −0.1 | −0.01 | 0 | −0.15 | −0.01 | 0 |
DEC | 3 ** | 0.06 | 0.36 | −3.61 *** | −0.12 | 0.42 | 0.73 | 0.01 | 0.02 | 0.58 | 0.02 | 0 |
JAN | 0.36 | 0.01 | 0 | −3.51 *** | −0.12 | 0.43 | 1.64 * | 0.02 | 0.1 | 2.3 * | 0.05 | 0.1 |
FEB | −3.71 ** | −0.1 | 0.34 | −3.34 *** | −0.12 | 0.46 | 0.89 | 0.02 | 0.05 | 1.61 | 0.07 | 0.06 |
MAR | −3.91 ** | −0.23 | 0.6 | −3.57 | −0.2 | 0.5 | 0.97 | 0.02 | 0.04 | 1.49 | 0.05 | 0.03 |
APR | −4.25 ** | −0.25 | 0.61 | −2.39 | −0.15 | 0.35 | −1.43 | −0.04 | 0.06 | 0.84 | 0.03 | 0 |
GP | −3.52 ** | −0.05 | 0.42 | −3.7 *** | −0.14 | 0.42 | 1.39 | 0.01 | 0.01 | 1.51 | 0.03 | 0.03 |
Months | Marquard | Clocolan | Senekal | Ficksburg | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Test z | Q | R2 | Test z | Q | R2 | Test z | Q | R2 | Test z | Q | R2 | |
OCT | 3.71 ** | 0.12 | 0.4 | −0.68 | −0.05 | 0.02 | 3.91 *** | 0.12 | 0.38 | 3.02 ** | 0.11 | 0.26 |
NOV | 1.9 + | 0.08 | 0.11 | −0.31 | −0.03 | 0 | 2.38 * | 0.08 | 0.15 | 2.09 * | 0.1 | 0.14 |
DEC | 0.76 | 0.04 | 0.04 | 0.13 | 0 | 0 | 0.44 | 0.02 | 0.03 | 1.52 | 0.06 | 0.12 |
JAN | 0.26 | 0.01 | 0.01 | −1.01 | −0.04 | 0.02 | −0.05 | 0 | 0.01 | 1.28 | 0.04 | 0.02 |
FEB | 0.83 | 0.03 | 0.01 | −1.1 | −0.1 | 0.01 | 0.66 | 0.03 | 0.05 | 1.96 * | 0.09 | 0.19 |
MAR | 1.61 | 0.06 | 0.1 | −2.01 * | −0.16 | 0.14 | 1.12 | 0.04 | 0.07 | 2.5 * | 0.06 | 0.02 |
APR | 1.1 | 0.05 | 0.03 | −2.11 * | −0.14 | 0.06 | 0.7 | 0.04 | 0.01 | −0.29 | −0.01 | 0 |
GP | 2.38 * | 0.04 | 0.23 | −1.23 | −0.06 | 0.24 | 2.29 * | 0.05 | 0.22 | 2.12 * | 0.04 | 0.21 |
Months | Marquard | Clocolan | Senekal | Ficksburg | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Test z | Q | R2 | Test z | Q | R2 | Test z | Q | R2 | Test z | Q | R2 | |
OCT | −1.44 | −1.09 | −1.38 | −1.38 | −1.38 | 0.049 | −1.36 | −1.00 | −1.31 | −1.31 | −0.88 | 0.014 |
NOV | 0.63 | 0.69 | −0.68 | −0.68 | −0.41 | 0.002 | −0.05 | −0.08 | −0.26 | −0.26 | −0.39 | 0.039 |
DEC | 0.00 | 0.00 | 0.97 | 0.97 | 1.12 | 0.031 | 0.19 | 0.33 | 0.65 | 0.65 | 0.52 | 0.039 |
JAN | −0.02 | −0.02 | 1.12 | 1.12 | 1.62 | 0.042 | 1.62 | 2.11 | 2.06 | 2.06 * | 2.34 | 0.179 |
FEB | 0.73 | 0.60 | 0.44 | 0.44 | 0.43 | 0.011 | −0.78 | −0.59 | −1.04 | −1.04 | −0.69 | 0.011 |
MAR | −0.94 | −1.05 | −0.99 | −0.99 | −0.64 | 0.037 | −0.58 | −0.56 | −0.41 | −0.41 | −0.46 | 0.033 |
APR | −1.09 | −0.74 | −1.09 | −1.09 | −0.46 | 0.005 | −0.10 | −0.05 | −0.44 | −0.44 | −0.45 | 0.134 |
GP | −1.36 | −3.22 | 0.05 | 0.05 | 0.11 | 0.002 | 0.19 | 1.05 | 0.21 | 0.21 | 0.55 | 0.027 |
Test Z | Q | R2 | |
---|---|---|---|
Marquard | 2.76 ** | 0.050 | 0.218 |
Clocolan | 2.45 ** | 0.039 | 0.196 |
Senekal | 2.92 * | 0.043 | 0.183 |
Ficksburg | 1.27 | 0.054 | 0.119 |
Marquard | Clocolan | Senekal | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Pearson’s r | p-Value | VS-MPR+ | Pearson’s r | p-Value | VS-MPR+ | Pearson’s | p-Value | VS-MPR+ | ||
GP | Tmin | 0.03 | 0.87 | 1.00 | 0.12 | 0.52 | 1.00 | 0.02 | 0.90 | 1.00 |
Tmax | −0.18 | 0.33 | 1.01 | 0.12 | 0.51 | 1.00 | −0.40 * | 0.02 | 4.43 | |
Rainfall | 0.03 | 0.86 | 1.00 | 0.46 ** | 0.01 | 8.97 | 0.23 | 0.20 | 1.14 | |
OCT | Tmin | 0.07 | 0.69 | 1.00 | −0.12 | 0.52 | 1.00 | −0.03 | 0.89 | 1.00 |
Tmax | 0.06 | 0.74 | 1.00 | 0.02 | 0.93 | 1.00 | −0.02 | 0.93 | 1.00 | |
Rainfall | 0.01 | 0.95 | 1.00 | 0.22 | 0.24 | 1.08 | 0.15 | 0.40 | 1.00 | |
NOV | Tmin | 0.42 * | 0.02 | 5.69 | 0.04 | 0.84 | 1.00 | 0.07 | 0.69 | 1.00 |
Tmax | 0.07 | 0.73 | 1.00 | 0.07 | 0.70 | 1.00 | 0.08 | 0.69 | 1.00 | |
Rainfall | −0.08 | 0.67 | 1.00 | 0.11 | 0.55 | 1.00 | 0.18 | 0.32 | 1.01 | |
DEC | Tmin | 0.42 * | 0.02 | 5.69 | 0.05 | 0.80 | 1.00 | −0.05 | 0.78 | 1.00 |
Tmax | 0.09 | 0.61 | 1.00 | 0.23 | 0.20 | 1.14 | −0.09 | 0.62 | 1.00 | |
Rainfall | −0.04 | 0.83 | 1.00 | −0.18 | 0.33 | 1.01 | −0.05 | 0.80 | 1.00 | |
JAN | Tmin | 0.37 | 0.04 | 3.04 | −0.22 | 0.23 | 1.10 | 0.25 | 0.16 | 1.24 |
Tmax | −0.35 | 0.05 | 2.38 | −0.02 | 0.90 | 1.00 | −0.37 * | 0.04 | 2.95 | |
Rainfall | 0.05 | 0.77 | 1.00 | 0.22 | 0.23 | 1.09 | 0.25 | 0.17 | 1.22 | |
FEB | Tmin | −0.07 | 0.71 | 1.00 | 0.15 | 0.42 | 1.00 | 0.20 | 0.28 | 1.03 |
Tmax | −0.51 ** | 0.00 | 19.83 | 0.13 | 0.49 | 1.00 | −0.42 * | 0.02 | 5.43 | |
Rainfall | 0.45 * | 0.01 | 7.64 | 0.68 *** | <0.001 | 2118.11 | 0.17 | 0.34 | 1.00 | |
MAR | Tmin | −0.20 | 0.27 | 1.04 | −0.28 | 0.13 | 1.40 | 0.02 | 0.93 | 1.00 |
Tmax | −0.03 | 0.87 | 1.00 | −0.09 | 0.63 | 1.00 | −0.47 ** | 0.01 | 11.76 | |
Rainfall | −0.19 | 0.29 | 1.03 | 0.00 | 0.99 | 1.00 | −0.12 | 0.51 | 1.00 | |
APR | Tmin | −0.15 | 0.41 | 1.00 | −0.08 | 0.67 | 1.00 | −0.20 | 0.27 | 1.04 |
Tmax | 0.03 | 0.86 | 1.00 | 0.00 | 1.00 | 1.00 | −0.17 | 0.36 | 1.00 | |
Rainfall | −0.16 | 0.38 | 1.00 | −0.19 | 0.29 | 1.02 | 0.07 | 0.69 | 1.00 |
Months | Marquard | Clocolan | Senekal | ||||||
---|---|---|---|---|---|---|---|---|---|
Intercept | p | R2 | Intercept | p | R2 | Intercept | p | R2 | |
Nov Tmin | 0.274 | 0.0027 | 0.152 | Nil | Nil | Nil | Nil | Nil | Nil |
Jan Tmin | 0.572 | 0.038 | 0.135 | Nil | Nil | Nil | Nil | Nil | Nil |
Feb Tmax | −0.290 | 0.005 | 0.238 | Nil | Nil | Nil | 0.0290 | 0.000 | 0.432 |
Mar Tmax | Nil | Nil | Nil | Nil | Nil | Nil | 0.408 | 0.003 | 0.262 |
GP Tmax | Nil | Nil | Nil | Nil | Nil | Nil | 0.005 | 0.008 | 0.214 |
GP Rainfall | Nil | Nil | Nil | 0.005 | 0.008 | 0.214 | Nil | Nil | Nil |
Feb Rainfall | 0.0094 | 0.018 | 0.174 | 0.015 | 0.000 | 0.472 | Nil | Nil | Nil |
GP | Nil | Nil | Nil | Nil | Nil | Nil | Nil | Nil | Nil |
Period | Index | Stations | |||
---|---|---|---|---|---|
Marquard | Ficksburg | Clocolan | Senekal | ||
1985–1994 | Sc-PDSI | 1.170776 | 0.097271 | −1.52128 | 1.924278 |
1995–2004 | Sc-PDSI | 1.959666 | −0.61539 | −0.31812 | −2.03299 |
2005–2016 | Sc-PDSI | −3.02268 | −1.11227 | 2.235037 | −0.10628 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hadisu Bello, A.; Scholes, M.; Newete, S.W. Impacts of Agroclimatic Variability on Maize Production in the Setsoto Municipality in the Free State Province, South Africa. Climate 2020, 8, 147. https://doi.org/10.3390/cli8120147
Hadisu Bello A, Scholes M, Newete SW. Impacts of Agroclimatic Variability on Maize Production in the Setsoto Municipality in the Free State Province, South Africa. Climate. 2020; 8(12):147. https://doi.org/10.3390/cli8120147
Chicago/Turabian StyleHadisu Bello, Abubakar, Mary Scholes, and Solomon W. Newete. 2020. "Impacts of Agroclimatic Variability on Maize Production in the Setsoto Municipality in the Free State Province, South Africa" Climate 8, no. 12: 147. https://doi.org/10.3390/cli8120147
APA StyleHadisu Bello, A., Scholes, M., & Newete, S. W. (2020). Impacts of Agroclimatic Variability on Maize Production in the Setsoto Municipality in the Free State Province, South Africa. Climate, 8(12), 147. https://doi.org/10.3390/cli8120147