Change of the Rainfall Seasonality Over Central Peruvian Andes: Onset, End, Duration and Its Relationship With Large-Scale Atmospheric Circulation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Background
2.3. Data
2.4. Methods
3. Results and Discussion
3.1. Determination of the Onset, Termination, and Duration of the Rainy Season over the MRB
3.2. Spatial Distribution of the Onset Dates and End Dates of the Rainy Season over the MRB
3.3. Interannual Variability of the Onset, End Dates, and Duration of the Rainy Season in the MRB
3.4. Trend of the Onset Dates, End Dates and Duration of the Rainy Season over MRB
3.5. Large-Scale Atmospheric Circulation over South America Associated with Early and Late-Onset Dates of the Rainy Season over MRB
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pascale, S.; Lucarini, V.; Feng, X.; Porporato, A.; Shabeh Hasson, U. Analysis of rainfall seasonality from observations and climate models. Clim. Dyn. 2015, 44, 3281–3301. [Google Scholar] [CrossRef] [Green Version]
- Feng, X.; Porporato, A.; Rodriguez-Iturbe, I. Changes in rainfall seasonality in the tropics. Nat. Clim. Chang. 2013, 3, 811–815. [Google Scholar] [CrossRef]
- Saeed, F.; Bethke, I.; Fischer, E.; Legutke, S.; Shiogama, H.; Stone, D.A.; Schleussner, C.-F. Robust changes in tropical rainy season length at 1.5 °C and 2 °C. Environ. Res. Lett. 2018, 13, 064024. [Google Scholar] [CrossRef]
- Silva, Y.; Takahashi, K.; Chavez, R. Dry and wet rainy seasons in the Mantaro river basin (Central Peruvian Andes). Adv. Geosci. 2008, 14, 261–264. [Google Scholar] [CrossRef] [Green Version]
- Silva, Y.; Trasmonte, G.; Giráldez, L. Variabilidad de las Precipitaciones en el valle del río Mantaro. In Memoria del Subproyecto “Pronóstico Estacional de Lluvias y Temperaturas en la Cuenca del río Mantaro Para su Aplicación en la Agricultura”; Silva, Y., Ed.; Fondo Editorial CONAM-Instituto Geofisico del Perú: Lima, Peru, 2010; pp. 54–58. ISBN 978-612-45795-3-0. [Google Scholar]
- Autoridad Nacional del Agua. Evaluación de Recursos Hídricos Superficiales en la Cuenca del río Mantaro; Mantaro, A.L.A., Ed.; Autoridad Nacional del Agua: Lima, Perú, 2010. [Google Scholar]
- Zubieta, R.; Lagos, P. Glaciares y Cambio Climático en la Cuenca del Río Mantaro. In Cambio Climático en la Cuenca del Río Mantaro.; Martínez, A.G., Pérez, S., Eds.; Instituto Geofísico del Perú: Lima, Perú, 2010; pp. 59–67. [Google Scholar]
- López-Moreno, J.I.; Fontaneda, S.; Bazo, J.; Revuelto, J.; Azorin-Molina, C.; Valero-Garcés, B.; Morán-Tejeda, E.; Vicente-Serrano, S.M.; Zubieta, R.; Alejo-Cochachín, J. Recent glacier retreat and climate trends in Cordillera Huaytapallana, Peru. Glob. Planet. Chang. 2014, 112, 1–11. [Google Scholar]
- Zubieta, R.; Saavedra, M.; Silva, Y.; Giráldez, L. Spatial analysis and temporal trends of daily precipitation concentration in the Mantaro River basin: Central Andes of Peru. Stoch. Environ. Res. Risk Assess. 2016, 31, 1305–1318. [Google Scholar] [CrossRef]
- Marengo, J.A.; Liebmann, B.; Kousky, V.E.; Filizola, N.P.; Wainer, I.C. Onset and End of the Rainy Season in the Brazilian Amazon Basin. J. Clim. 2001, 14, 833–852. [Google Scholar] [CrossRef] [Green Version]
- Marengo, J.A.; Fisch, G.F.; Alves, L.M.; Sousa, N.V.; Fu, R.; Zhuang, Y. Meteorological context of the onset and end of the rainy season in Central Amazonia during the Go-Amazon 2014/5. Atmos. Chem. Phys. Discuss. 2017, 17, 7671–7681. [Google Scholar] [CrossRef] [Green Version]
- Fu, R.; Yin, L.; Li, W.; Arias, P.A.; Dickinson, R.E.; Huang, L.; Chakraborty, S. Increased dry-season length over southern Amazonia in recent decades and its implication for future climate projection. Proc. Natl. Acad. Sci. USA 2013, 110, 18110–18115. [Google Scholar] [CrossRef] [Green Version]
- Raia, A.; Cavalcanti, I.F.d.A. The life cycle of the South American monsoon system. J. Clim. 2008, 21, 6227–6246. [Google Scholar] [CrossRef]
- Liebmann, B.; Camargo, S.J.; Seth, A.; Marengo, J.A.; Carvalho, L.M.V.; Allured, D.; Fu, R.; Vera, C.S. Onset and End of the Rainy Season in South America in Observations and the ECHAM 4.5 Atmospheric General Circulation Model. J. Clim. 2007, 20, 2037–2050. [Google Scholar] [CrossRef] [Green Version]
- Latinović, D.; Chou, S.C.; Rančić, M.; Medeiros, G.S.; Lyra, A.d.A. Seasonal climate and the onset of the rainy season in western-central Brazil simulated by Global Eta Framework model. Int. J. Climatol. 2019, 39, 1429–1445. [Google Scholar] [CrossRef]
- Silva, Y.; Mosquera, K. Inicio de temporada de lluvias en el valle del Mantaro. In Eventos Meteorológicos Extremos (Sequías, Heladas, Lluvias Intensas) en el Valle del Mantaro-Tomo I; Villaverde, M., Ed.; Instituto Geofísico del Perú: Lima, Perú, 2012; pp. 72–75. ISBN 978-612-45795-6-1. [Google Scholar]
- Peixoto, J.P.; Oort, A.H. Physics of Climate; Springer-verlag, Ed.; American Institute of Physics: New York, NY, USA, 1992; ISBN 0883187124. [Google Scholar]
- Laraque, A.; Ronchail, J.; Cochonneau, G.; Pombosa, R.; Guyot, J.L. Heterogeneous distribution of rainfall and discharge regimes in the Ecuadorian Amazon basin. J. Hydrometeorol. 2007, 8, 1364–1381. [Google Scholar] [CrossRef] [Green Version]
- Espinoza Villar, J.C.; Ronchail, J.; Guyot, J.L.; Cochonneau, G.; Naziano, F.; Lavado, W.; De Oliveira, E.; Pombosa, R.; Vauchel, P. Spatio-temporal rainfall variability in the Amazon basin countries (Brazil, Peru, Bolivia, Colombia, and Ecuador). Int. J. Climatol. 2009, 29, 1574–1594. [Google Scholar] [CrossRef] [Green Version]
- Instituto Geofísico del Perú. Atlas Climático de Precipitación y Temperatura del Aire en la Cuenca del Río Mantaro; Silva, Y., Ed.; Fondo Editorial CONAM-Instituto Geofísico del Perú: Lima, Perú, 2005; ISBN 9972-824-13-6. [Google Scholar]
- Lagos, P.; Silva, Y.; Nickl, E.; Mosquera, K. El Nino–Related precipitation variability in Peru. Adv. Geosci. 2008, 14, 231–237. [Google Scholar] [CrossRef] [Green Version]
- Instituto Geofísico del Perú. Manejo de riesgos de desastres ante eventos meteorológicos extremos en el valle del Mantaro—Tomo II; Martínez, A.G., Ed.; Instituto Geofísico del Perú: Lima, Perú, 2012; Volume II, ISBN 978-612-45795-5-4. [Google Scholar]
- Instituto Geofísico del Perú. Eventos Meteorológicos Extremos (Sequías, Heladas, Lluvias Intensas) en el Valle del Mantaro—Tomo I; Villaverde, M., Ed.; Instituto Geofísico del Perú: Lima, Perú, 2012; Volume I, ISBN 978-612-45795-6-1. [Google Scholar]
- Instituto Geofísico del Perú. Diagnóstico de la Cuenca del Mantaro bajo la Visión del Cambio Climático; Fondo Editorial CONAM-Instituto Geofísico del Perú: Lima, Perú, 2005; ISBN 9972824144. [Google Scholar]
- Zhou, J.; Lau, K.-M. Does a Monsoon Climate Exist over South America? J. Clim. 1998, 11, 1020–1040. [Google Scholar] [CrossRef]
- Marengo, J.A.; Liebmann, B.; Grimm, A.M.; Misra, V.; Silva Dias, P.L.; Cavalcanti, I.F.A.; Carvalho, L.M.V.; Berbery, E.H.; Ambrizzi, T.; Vera, C.S.; et al. Recent developments on the South American monsoon system. Int. J. Climatol. 2012, 32, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, L.M.V.; Jones, C.; Silva, A.E.; Liebmann, B.; Silva Dias, P.L. The South American Monsoon System and the 1970s climate transition. Int. J. Climatol. 2011, 31, 1248–1256. [Google Scholar] [CrossRef]
- Nieto-Ferreira, R.; Rickenbach, T.M.; Wright, E.A. The role of cold fronts in the onset of the monsoon season in the South Atlantic convergence zone. Q. J. R. Meteorol. Soc. 2011, 137, 908–922. [Google Scholar] [CrossRef]
- Wang, H.; Fu, R. Cross-Equatorial Flow and Seasonal Cycle of Precipitaton over South America. J. Clim. 2002, 15, 1591–1608. [Google Scholar] [CrossRef]
- Vera, C.; Silvestri, G.; Liebmann, B.; González, P. Climate change scenarios for seasonal precipitation in South America from IPCC-AR4 models. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef] [Green Version]
- Garreaud, R.D.; Vuille, M.; Compagnucci, R.; Marengo, J. Present-day South American climate. Palaeogeogr. Palaeoclim. Palaeoecol. 2009, 281, 180–195. [Google Scholar] [CrossRef]
- da Silva, A.E.; de Carvalho, L.M.V. Large-scale index for South America Monsoon (LISAM). Atmos. Sci. Lett. 2007, 8, 51–57. [Google Scholar] [CrossRef]
- Gan, M.A.; Kousky, V.E.; Ropelewski, C.F. The South America Monsoon circulation and its relationship to rainfall over west-central Brazil. J. Clim. 2004, 17, 47–66. [Google Scholar] [CrossRef] [Green Version]
- Gan, M.A.; Rao, V.B.; Moscati, M.C.L. South American monsoon indices. Atmos. Sci. Lett. 2006, 6, 219–223. [Google Scholar] [CrossRef]
- Sulca, J.; Vuille, M.; Silva, Y.; Takahashi, K. Teleconnections between the peruvian central andes and northeast Brazil during extreme rainfall events in austral summer. J. Hydrometeorol. 2016, 17, 499–515. [Google Scholar] [CrossRef]
- Avalos, G.; Cubas, F.; Oria, C.; Días, A.; Quispe, N.; Rosas, G.; Cornejo, A.; Solís, O.; Guerra, S. ATLAS CLIMATICO Precipitación y Temperatura del Aire; SENAMHI: Lima, Peru, 2011. [Google Scholar]
- Lenters, J.D.; Cook, K.H. On the Origin of the Bolivian High and Related Circulation Features of the South American Climate. J. Atmos. Sci. 1997, 54, 656–678. [Google Scholar] [CrossRef]
- Carvalho, L.M.V.; Jones, C.; Liebmann, B. The South Atlantic convergence zone: Intensity, form, persistence, and relationships with intraseasonal to interannual activity and extreme rainfall. J. Clim. 2004, 17, 88–108. [Google Scholar] [CrossRef] [Green Version]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Adler, R.F.; Huffman, G.J.; Chang, A.; Ferraro, R.; Xie, P.-P.; Janowiak, J.; Rudolf, B.; Schneider, U.; Curtis, S.; Bolvin, D.; et al. The Version-2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979–Present). J. Hydrometeorol. 2003, 4, 1147–1167. [Google Scholar] [CrossRef]
- Garreaud, R.D. Multiscale analysis of the summertime precipitation over the central Andes. Mon. Weather Rev. 1999, 127, 901–921. [Google Scholar] [CrossRef]
- Liebmann, B.; Smith, C.A. A description of a complete (interpoled) outgoing longwave radiation dataset. Buletim Am. Meteorol. Soc. 1996, 77, 1275–1277. [Google Scholar]
- Hai-Tien, L.; NOAA CDR Program. NOAA Climate Data Record (CDR) of Daily Outgoing Longwave Radiation (OLR), Version 1.2; NOAA National Climatic Data Center: Silver Spring, MD, USA, 2011. Available online: https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.ncdc:C00875# (accessed on 11 October 2019).
- Štěpánek, P. AnClim-Software for Time Series Analysis (for Windows). 2003. Available online: http://www.climahom.eu/software-solution/anclim (accessed on 15 June 2015).
- García-Páez, F.; Cruz-Medina, I.R. Fechas de inicios y terminación de la temporada de lluvias en la región Pacífico Norte. Ing. hidráulica en México 2008, 23, 179–188. [Google Scholar]
- Meisner, B.N.; Arkin, P.A.; Meisner, B.N.; Arkin, P.A. Spatial and Annual Variations in the Diurnal Cycle of Large-Scale Tropical Convective Cloudiness and Precipitation. Mon. Weather Rev. 1987, 115, 2009–2032. [Google Scholar] [CrossRef]
- Kousky, V.E. Pentad Outgoing Longwave Radiation Climatology for the South American Sector. Rev. Bras. Meteorol. 1988, 3, 217–231. [Google Scholar]
- Joseph, P.V.; Eischeid, J.K.; Pyle, R.J. Interannual Variability of the Onset of the Indian Summer Monsoon and Its Association with Atmospheric Features, El Niño, and Sea Surface Temperature Anomalies. J. Clim. 1994, 7, 81–105. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric Tests Against Trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods; Griffin: London, UK, 1975; ISBN 0852641990. [Google Scholar]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Salmi, T.; Määttä, A.; Anttila, P.; Ruoho-Airola, T.; Amnell, T. Detecting Trends of Annual Values of Atmospheric Pollutants by the Mann-Kendall Test and Sen’s Slope Estimates–the Excel Template Application MAKESENS; Finnish Meteorological Institute: Helsinki, Finland, 2002; ISBN 9516975631. Available online: https://en.ilmatieteenlaitos.fi/documents/30106/335634754/MAKESENS-Manual_2002.pdf/25bbe115-7f7e-4de3-97d8-5a96ac88499f (accessed on 12 July 2017).
- Mustapha, A. Detecting Surface Water Quality Trends Using Mann-Kendall Tests and Sen’s Slope Estimates. Int. J. Agric. Innov. Res. 2013, 1, 108–114. [Google Scholar]
- Trenberth, K.; National Center for Atmospheric Research. The Climate Data Guide: Nino SST Indices (Nino 1+2, 3, 3.4, 4; ONI and TNI). 2019. Available online: https://climatedataguide.ucar.edu/climate-data/nino-sst-indices-nino-12-3-34-4-oni-and-tni (accessed on 12 October 2019).
- Torrence, C.; Compo, G.P. A Practical Guide to Wavelet Analysis. Bull. Am. Meteorol. Soc. 1998, 79, 66–78. [Google Scholar] [CrossRef] [Green Version]
- Torrence, C.; Webster, P.J. Interdecadal Changes in the ENSO-Monsoon System. J. Clim. 1999, 12, 2679–2690. [Google Scholar] [CrossRef] [Green Version]
- Grinsted, A.; Moore, J.C.; Jevrejeva, S. Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process. Geophys. 2004, 11, 561–566. [Google Scholar] [CrossRef]
- Camberlin, P.; Okoola, R.E. The onset and cessation of the ‘“ long rains ”’ in eastern Africa and their interannual variability. Theor. Appl. Climatol. 2003, 75, 43–54. [Google Scholar] [CrossRef]
- Camberlin, P.; Diop, M. Application of daily rainfall principal component analysis to the assessment of the rainy season characteristics in Senegal. Clim. Res. 2003, 23, 159–169. [Google Scholar] [CrossRef]
- Barreiro, M.; Chang, P.; Saravanan, R. Variability of the South Atlantic convergence zone simulated by an atmospheric general circulation model. J. Clim. 2002, 15, 745–763. [Google Scholar] [CrossRef]
- Horel, J.D.; Hahmann, A.N.; Geisler, J.E. An investigation of the Annual Cycle of Convective Activity over the Tropical Americas. J. Clim. 1989, 2, 1388–1403. [Google Scholar] [CrossRef] [Green Version]
N | Station (Abbreviation) | Longitude (°) | Latitude (°) | Altitude (m) | Data period (Years) | Annual Mean Rainfall (mm/Year) |
---|---|---|---|---|---|---|
1 | Cerro de Pasco (CER) | −76.3 | −10.7 | 4260 | 1974–2013 | 1071 |
2 | Yantac (YAN) | −76.4 | −11.3 | 4600 | 1969–2013 | 780 |
3 | Marcapomacocha (MAR) | −76.3 | −11.4 | 4413 | 1965–2013 | 1048 |
4 | Ricran (RIC) | −75.0 | −11.6 | 3500 | 1965–2013 | 699 |
5 | Comas (COM) | −75.1 | −11.7 | 3300 | 1965–2013 | 931 |
6 | Jauja (JAU) | −75.5 | −11.8 | 3322 | 1965–2013 | 701 |
7 | Ingenio (ING) | −75.3 | −11.9 | 3450 | 1965–2013 | 831 |
8 | Santa Ana (STA) | −75.2 | −12.0 | 3295 | 1992–2013 | 717 |
9 | Huayao (HYO) | −75.3 | −12.0 | 3308 | 1965–2013 | 733 |
10 | San Juan de Jarpa (JAR) | −75.4 | −12.1 | 3726 | 1965–2013 | 983 |
11 | Viques (VIQ) | −75.2 | −12.2 | 3186 | 1988–2013 | 702 |
12 | Laive (LAI) | −75.4 | −12.3 | 3990 | 1965–2013 | 902 |
13 | Pilchaca (PIL) | −75.1 | −12.4 | 3570 | 1965–2013 | 728 |
14 | Pampas (PAM) | −74.9 | −12.4 | 3260 | 1965–2013 | 520 |
15 | Huancalpi (HCP) | −75.2 | −12.6 | 3800 | 1965–2013 | 833 |
16 | Huancavelica (HCV) | −75.0 | −12.8 | 3676 | 1965–2013 | 888 |
17 | Acobamba (ACO) | −74.6 | −12.8 | 3236 | 1965–2013 | 716 |
18 | Lircay (LIR) | −74.7 | −13.0 | 3150 | 1965–2013 | 799 |
19 | La Quinua (QUI) | −74.1 | −13.1 | 3260 | 1965–2013 | 730 |
N | Station (Abbreviation) | Onset Threshold (mm) [Percentile 50 (Jul–Dec)] | End Threshold (mm) [Percentile 50 (Jan–Jun)] |
---|---|---|---|
1 | Cerro Pasco (CER) | 7.3 | 12 |
2 | Marcapomacocha (MAR) | 5.9 | 12 |
3 | Laive (LAI) | 4.2 | 9.5 |
4 | San Juan de Jarpa (JAR) | 4.9 | 10.9 |
5 | Yantac (YAN) | 3.7 | 8.3 |
6 | Comas (COM) | 6.5 | 10.9 |
7 | Ingenio (ING) | 3.5 | 8.5 |
8 | Ricran (RIC) | 3.7 | 7.9 |
9 | Jauja (JAU) | 2.6 | 7.1 |
10 | Huayao (HYO) | 3.8 | 3.3 |
11 | Santa Ana (STA) | 3.3 | 6.6 |
12 | Viques (VIQ) | 1.8 | 5.1 |
13 | Pilchaca (PIL) | 3.8 | 6.8 |
14 | Pampas (PAM) | 2.1 | 4.6 |
15 | Huancalpi (HCP) | 4.9 | 8.6 |
16 | Huancavelica (HCV) | 4.5 | 9.7 |
17 | Lircay (LIR) | 3.4 | 8.8 |
18 | La Quinua (QUI) | 2.4 | 6.9 |
19 | Acobamba (ACO) | 3.0 | 6.4 |
Period 1965–2013 | Altitude | Longitude | Latitude |
---|---|---|---|
Onset | −0.56 | −0.57 | +0.32 |
End | +0.69 | +0.62 | −0.56 |
Duration | +0.72 | +0.70 | −0.50 |
Period 1965–2013 | End | Duration | Total Amount |
---|---|---|---|
Onset | −0.3 < r < +0.3 | −0.95 < r < −0.76 | −0.5 < r < +0.5 |
End | +0.23 < r < +0.7 | −0.6 < r < +0.6 | |
Duration | r < +0.6 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giráldez, L.; Silva, Y.; Zubieta, R.; Sulca, J. Change of the Rainfall Seasonality Over Central Peruvian Andes: Onset, End, Duration and Its Relationship With Large-Scale Atmospheric Circulation. Climate 2020, 8, 23. https://doi.org/10.3390/cli8020023
Giráldez L, Silva Y, Zubieta R, Sulca J. Change of the Rainfall Seasonality Over Central Peruvian Andes: Onset, End, Duration and Its Relationship With Large-Scale Atmospheric Circulation. Climate. 2020; 8(2):23. https://doi.org/10.3390/cli8020023
Chicago/Turabian StyleGiráldez, Lucy, Yamina Silva, Ricardo Zubieta, and Juan Sulca. 2020. "Change of the Rainfall Seasonality Over Central Peruvian Andes: Onset, End, Duration and Its Relationship With Large-Scale Atmospheric Circulation" Climate 8, no. 2: 23. https://doi.org/10.3390/cli8020023
APA StyleGiráldez, L., Silva, Y., Zubieta, R., & Sulca, J. (2020). Change of the Rainfall Seasonality Over Central Peruvian Andes: Onset, End, Duration and Its Relationship With Large-Scale Atmospheric Circulation. Climate, 8(2), 23. https://doi.org/10.3390/cli8020023