Trans-Disciplinary Responses to Climate Change: Lessons from Rice-Based Systems in Asia
Abstract
:1. Introduction
2. Building Interdisciplinary Research Teams to Address Climate Change
2.1. Climate Change Challenges to Rice Production in South and Southeast Asia
2.2. Climate Smart Agriculture (CSA)
- Rice varieties tolerant to certain levels of drought, flooding, salinity, and heat.
- Alternate wetting and drying (AWD) to mitigate CO2 emissions and achieve water savings.
- Direct seeding of rice (DSR) as an alternative to puddled transplanted rice (PTR) to adapt to water shortages, to mitigate GHG emissions, and to address labor shortages.
- Laser land leveling and sustainable water management practices that reduce GHG emissions and increases water efficiency.
- Sustainable rice straw value chains that reduce straw burning and GHG emissions.
- Site-specific nutrient management that enhances resource-use efficiency.
- Geospatial tools to estimate rice production and assess damage from floods and droughts, providing data quickly to insurance schemes.
- Integrated pest management (IPM) and weed management (IWM) practices to manage emerging insect–pest, disease, and weed problems.
2.3. Upstream Research
2.4. Crop improvement
2.5. Nutrient Management
2.6. Water Management and Greenhouse Gas Production
2.7. Understanding Synergies and Trade-off of Solutions to Climate Change
3. Trans-Disciplinary Networks for Climate Change Responses
3.1. Perceptions of Risk and Social Equity: Broadening the Research Networks
3.2. Linking Researchers, Practitioners and Policy-Makers for Scaling of CSA
3.3. Trans-Disciplinary Networks for Climate Change Transformation
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Karfakis, P.; Lipper, L.; Smulders, M. The assessment of the socio- economic impacts of climate change at household level and policy implications. In Proceedings of the Building Resilience for Adaptation to Climate Change in the Agriculture Sector, Proceedings of a Joint FAO/OECD Workshop, Rome, Italy, 23–24 April 2012. [Google Scholar]
- Amjath-Babu, T.S.; Krupnik, T.J.; Aravindakshan, S.; Arshad, M.; Kaechele, H. Climate change and indicators of probable shifts in the consumption portfolios of dryland farmers in Sub-Saharan Africa: Implications for policy. Ecol. Indic. 2016, 67, 830–838. [Google Scholar] [CrossRef]
- Howden, S.M.; Soussana, J.-F.; Tubiello, F.N.; Chhetri, N.; Dunlop, M.; Meinke, H. Adapting agriculture to climate change. Proc. Natl. Acad. Sci. USA 2007, 104, 19691–19696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Döll, P. Impact of climate change and variability on irrigation requirements: A global perspective. Clim. Chang. 2002, 54, 269–293. [Google Scholar] [CrossRef]
- Parry, M.; Rosenzweig, C.; Iglesias, A.; Fischer, G.; Livermore, M. Climate change and world food security: A new assessment. Glob. Environ. Chang. 1999, 9, S51–S67. [Google Scholar] [CrossRef] [Green Version]
- Hansen, J.; Sato, M.; Ruedy, R. Perception of climate change. Proc. Natl. Acad. Sci. USA 2012, 109, E2415–E2423. [Google Scholar] [CrossRef] [Green Version]
- Mirza, M.M.Q. Climate change and extreme weather events: Can developing countries adapt? Clim. Policy 2003, 3, 233–248. [Google Scholar] [CrossRef]
- Rosenzweig, C.; Iglesias, A.; Yang, X.B.; Epstein, P.R.; Chivian, E. Climate Change and Extreme Weather Events; Implications for Food Production, Plant Diseases, and Pests. Glob. Chang. Hum. Health 2001, 2, 90–104. [Google Scholar] [CrossRef]
- Hellin, J.; Haigh, M.J. Better land husbandry in Honduras: Towards the new paradigm in conserving soil, water and productivity. Land Degrad. Dev. 2002, 13, 233–250. [Google Scholar] [CrossRef]
- Ratner, B.D.; Meinzen-Dick, R.; Hellin, J.; Mapedza, E.; Unruh, J.; Veening, W.; Haglund, E.; May, C.; Bruch, C. Addressing conflict through collective action in natural resource management. Int. J. Commons 2017, 2, 877–906. [Google Scholar] [CrossRef] [Green Version]
- Campbell, B.M.; Hansen, J.; Rioux, J.; Stirling, C.M.; Twomlow, S.; Wollenberg, E. Urgent action to combat climate change and its impacts (SDG 13): Transforming agriculture and food systems. Curr. Opin. Environ. Sustain. 2018, 34, 13–20. [Google Scholar] [CrossRef]
- Fisher, E.; Hellin, J.; Greatrex, H.; Jensen, N. Index insurance and climate risk management: Addressing social equity. Dev. Policy Rev. 2019, 37, 581–602. [Google Scholar] [CrossRef] [Green Version]
- Hansen, J.; Hellin, J.; Rosenstock, T.; Fisher, E.; Cairns, J.; Stirling, C.; Lamanna, C.; van Etten, J.; Rose, A.; Campbell, B. Climate risk management and rural poverty reduction. Agric. Syst. 2019, 172, 28–46. [Google Scholar] [CrossRef]
- Cundill, G.; Currie-Alder, B.; Leone, M. The future is collaborative. Nat. Clim. Chang. 2019, 9, 343–345. [Google Scholar] [CrossRef]
- Lipper, L.; Thornton, P.; Campbell, B.M.; Baedeker, T.; Braimoh, A.; Bwalya, M.; Caron, P.; Cattaneo, A.; Garrity, D.; Henry, K.; et al. Climate-smart agriculture for food security. Nat. Clim. Chang. 2014, 4, 1068–1072. [Google Scholar] [CrossRef]
- Hawkins, E. Our evolving climate: Communicating the effects of climate variability. Weather 2011, 66, 175–179. [Google Scholar] [CrossRef] [Green Version]
- Douthwaite, B.; Apgar, J.M.; Schwarz, A.-M.; Attwood, S.; Senaratna Sellamuttu, S.; Clayton, T. A new professionalism for agricultural research for development. Int. J. Agric. Sustain. 2017, 15, 238–252. [Google Scholar] [CrossRef]
- Kulp, S.A.; Strauss, B.H. New elevation data triple estimates of global vulnerability to sea-level rise and coastal flooding. Nat. Commun. 2019, 10, 4844. [Google Scholar] [CrossRef] [Green Version]
- Pandey, S. Economic Costs of Drought and Rice Farmers’ Coping Mechanisms; International Rice Research Institute (IRRI): Los Baños, Philippines, 2009; Volume 32. [Google Scholar]
- Bailey-Serres, J.; Lee, S.; Brinton, E. Waterproofing crops: Effective flooding survival strategies. Plant Physiol. 2012, 160, 1698–1709. [Google Scholar] [CrossRef] [Green Version]
- Asada, H.; Matsumoto, J.; Rahman, R. Impact of recent severe floods on rice production in Bangladesh. Geogr. Rev. Jpn. 2005, 78, 783–793. [Google Scholar] [CrossRef]
- Lenton, T.M.; Rockström, J.; Gaffney, O.; Rahmstorf, S.; Richardson, K.; Steffen, W.; Schellnhuber, H.J. Climate tipping points-too risky to bet against. Nature 2019, 575, 592–595. [Google Scholar] [CrossRef]
- Minderhoud, P.S.J.; Coumou, L.; Erkens, G.; Middelkoop, H.; Stouthamer, E. Mekong delta much lower than previously assumed in sea-level rise impact assessments. Nat. Commun. 2019, 10, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Wrathall, D.J.; Mueller, V.; Clark, P.U.; Bell, A.; Oppenheimer, M.; Hauer, M.; Kulp, S.; Gilmore, E.; Adams, H.; Kopp, R.; et al. sea-level change and human migration. Nat. Clim. Chang. 2019, 9, 898–901. [Google Scholar] [CrossRef] [Green Version]
- Glover, D.; Sumberg, J.; Ton, G.; Andersson, J.; Badstue, L. Rethinking technological change in smallholder agriculture. Outlook Agric. 2019, 48, 169–180. [Google Scholar] [CrossRef] [Green Version]
- Taylor, M.; Bhasme, S. Model farmers, extension networks and the politics of agricultural knowledge transfer. J. Rural Stud. 2018, 64, 1–10. [Google Scholar] [CrossRef]
- Hellin, J.; Fisher, E. The Achilles heel of climate-smart agriculture. Nat. Clim. Chang. 2019, 9, 493–494. [Google Scholar] [CrossRef]
- Teale, W.D.; Ditengou, F.A.; Dovzhenko, A.D.; Li, X.; Molendijk, A.M.; Ruperti, B.; Paponov, I.; Palme, K. Auxin as a model for the integration of hormonal signal processing and transduction. Mol. Plant 2008, 1, 229–237. [Google Scholar] [CrossRef] [Green Version]
- Dixit, S.; Kumar Biswal, A.; Min, A.; Henry, A.; Oane, R.H.; Raorane, M.L.; Longkumer, T.; Pabuayon, I.M.; Mutte, S.K.; Vardarajan, A.R.; et al. Action of multiple intra-QTL genes concerted around a co-localized transcription factor underpins a large effect QTL. Sci. Rep. 2015, 5, 15183. [Google Scholar] [CrossRef]
- Raorane, M.L.; Pabuayon, I.M.; Varadarajan, A.R.; Mutte, S.K.; Kumar, A.; Treumann, A.; Kohli, A. Proteomic insights into the role of the large-effect QTL qDTY12.1 for rice yield under drought. Mol. Breed. 2015, 35, 139. [Google Scholar] [CrossRef]
- Chen, L.; Tovar-Corona, J.M.; Urrutia, A.O. Alternative Splicing: A Potential Source of Functional Innovation in the Eukaryotic Genome. Int. J. Evol. Biol. 2012, 2012, 596274. [Google Scholar] [CrossRef] [Green Version]
- Tawfik, D.S. Enzyme Promiscuity: A Mechanistic and Evolutionary Perspective. Annu. Rev. Biochem. 2010, 79, 471–505. [Google Scholar] [CrossRef]
- Nezhad, A.S. Microfluidic platforms for plant cells studies. Lab Chip 2014, 14, 3262–3274. [Google Scholar] [CrossRef] [PubMed]
- Elias, A.A.; Robbins, K.R.; Doerge, R.W.; Tuinstra, M.R. Half a Century of Studying Genotype × Environment Interactions in Plant Breeding Experiments. Crop Sci. 2016, 56, 2090. [Google Scholar] [CrossRef]
- van Eeuwijk, F.A.; Bustos-Korts, D.V.; Malosetti, M. What Should Students in Plant Breeding Know About the Statistical Aspects of Genotype × Environment Interactions? Crop Sci. 2016, 56, 2119. [Google Scholar] [CrossRef]
- Cooper, M.; Gho, C.; Leafgren, R.; Tang, T.; Messina, C. Breeding drought-tolerant maize hybrids for the US corn-belt: Discovery to product. J. Exp. Bot. 2014, 65, 6191–6204. [Google Scholar] [CrossRef] [Green Version]
- Schraiber, J.G.; Evans, S.N.; Slatkin, M. Bayesian Inference of Natural Selection from Allele Frequency Time Series. Genetics 2016, 203, 493–511. [Google Scholar] [CrossRef] [Green Version]
- Gompert, Z.; Comeault, A.A.; Farkas, T.E.; Feder, J.L.; Parchman, T.L.; Buerkle, C.A.; Nosil, P. Experimental evidence for ecological selection on genome variation in the wild. Ecol. Lett. 2014, 17, 369–379. [Google Scholar] [CrossRef]
- Ellegren, H.; Galtier, N. Determinants of genetic diversity. Nat. Rev. Genet. 2016, 17, 422–433. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, H.M.; Mahmood-Ur-Rahman; Azeem, F.; Tahir, N.; Iqbal, M.S. QTL mapping for crop improvement against abiotic stresses in cereals. J. Anim. Plant Sci. 2018, 28, 1558–1573. [Google Scholar]
- Atlin, G.N.; Cairns, J.E.; Das, B. Rapid breeding and varietal replacement are critical to adaptation of cropping systems in the developing world to climate change. Glob. Food Sec. 2017, 12, 31–37. [Google Scholar] [CrossRef]
- Hickey, J.M.; Chiurugwi, T.; Mackay, I.; Powell, W. Genomic prediction unifies animal and plant breeding programs to form platforms for biological discovery. Nat. Genet. 2017, 49, 1297–1303. [Google Scholar] [CrossRef]
- Lenaerts, B.; de Mey, Y.; Demont, M. Global impact of accelerated plant breeding: Evidence from a meta-analysis on rice breeding. PLoS ONE 2018, 13, e0199016. [Google Scholar] [CrossRef] [PubMed]
- Kanter, D.R.; Bell, A.R.; Mcdermid, S.S. Precision Agriculture for Smallholder Nitrogen Management. One Earth 2019, 1, 281–284. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.-Y.; Lieffering, M.; Kobayashi, K.; Okada, M.; Miura, S. Seasonal changes in the effects of elevated CO2 on rice at three levels of nitrogen supply: A free air CO2 enrichment (FACE) experiment. Glob. Chang. Biol. 2003, 9, 826–837. [Google Scholar] [CrossRef]
- Yang, L.; Huang, J.; Yang, H.; Zhu, J.; Liu, H.; Dong, G.; Liu, G.; Han, Y.; Wang, Y. The impact of free-air CO2 enrichment (FACE) and N supply on yield formation of rice crops with large panicle. Field Crop. Res. 2006, 98, 141–150. [Google Scholar] [CrossRef]
- Ainsworth, E.A. Rice production in a changing climate: A meta-analysis of responses to elevated carbon dioxide and elevated ozone concentration. Glob. Chang. Biol. 2008, 14, 1642–1650. [Google Scholar] [CrossRef]
- Dobermann, A.; Witt, C.; Dawe, D.; Abdulrachman, S.; Gines, H.; Nagarajan, R.; Satawathananont, S.; Son, T.; Tan, P.; Wang, G.; et al. Site-specific nutrient management for intensive rice cropping systems in Asia. Field Crop. Res. 2002, 74, 37–66. [Google Scholar] [CrossRef]
- Peng, S.; Buresh, R.J.; Huang, J.; Zhong, X.; Zou, Y.; Yang, J.; Wang, G.; Liu, Y.; Hu, R.; Tang, Q.; et al. Improving nitrogen fertilization in rice by sitespecific N management. A review. Agron. Sustain. Dev. 2010, 30, 649–656. [Google Scholar] [CrossRef]
- Humphreys, E.; Kukal, S.S.; Christen, E.W.; Hira, G.S.; Balwinder-Singh; Sudhir-Yadav; Sharma, R.K. Halting the Groundwater Decline in North-West India—Which Crop Technologies will be Winners? In Advances in Agronomy; Academic Press: Cambridge, MA, USA, 2010; pp. 155–217. [Google Scholar]
- Yadav, S.; Li, T.; Humphreys, E.; Gill, G.; Kukal, S.S. Evaluation and application of ORYZA2000 for irrigation scheduling of puddled transplanted rice in north west India. Field Crop. Res. 2011, 122, 104–117. [Google Scholar] [CrossRef]
- Parthasarathi, T.; Vanitha, K.; Mohandass, S.; Vered, E. Evaluation of Drip Irrigation System for Water Productivity and Yield of Rice. Agron. J. 2018, 110, 2378. [Google Scholar] [CrossRef]
- Chakraborty, D.; Ladha, J.K.; Rana, D.S.; Jat, M.L.; Gathala, M.K.; Yadav, S.; Rao, A.N.; Ramesha, M.S.; Raman, A. A global analysis of alternative tillage and crop establishment practices for economically and environmentally efficient rice production. Sci. Rep. 2017, 7, 9342. [Google Scholar] [CrossRef] [Green Version]
- Bouman, B.A.; Tuong, T. Field water management to save water and increase its productivity in irrigated lowland rice. Agric. Water Manag. 2001, 49, 11–30. [Google Scholar] [CrossRef]
- Wassmann, R.; Sander, B.O.; Yadav, S.; Bouman, B.; Singleton, G.; Stuart, A.; Hellin, J.; Johnson, D.; Hughes, J.; Butterbach-Bahl, K.; et al. New records of very high nitrous oxide fluxes from rice cannot be generalized for water management and climate impacts. Proc. Natl. Acad. Sci. USA 2019, 116, 1464–1465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sander, B.O.; Wassmann, R.; Siopongco, J.D.L.C. Mitigating greenhouse gas emissions from rice production through water-saving techniques: Potential, adoption and empirical evidence. In Climate Change and Agricultural Water Management in Developing Countries; CABI: Wallingford, UK, 2015; pp. 193–207. [Google Scholar]
- Kritee, K.; Nair, D.; Zavala-Araiza, D.; Proville, J.; Rudek, J.; Adhya, T.K.; Loecke, T.; Esteves, T.; Balireddygari, S.; Dava, O.; et al. High nitrous oxide fluxes from rice indicate the need to manage water for both long- and short-term climate impacts. Proc. Natl. Acad. Sci. USA 2018, 115, 9720–9725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoon, C.G. Wise use of paddy rice fields to partially compensate for the loss of natural wetlands. Paddy Water Environ. 2009, 7, 357–366. [Google Scholar] [CrossRef]
- Jerneck, A.; Olsson, L. Shaping future adaptation governance. In Global Climate Governance Beyond 2012; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Liberman, N.; Trope, Y. The Psychology of Transcending the Here and Now. Science 2008, 322, 1201–1205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spence, A.; Poortinga, W.; Pidgeon, N. The Psychological Distance of Climate Change. Risk Anal. 2012, 32, 957–972. [Google Scholar] [CrossRef] [Green Version]
- Le Dang, H.; Li, E.; Nuberg, I.; Bruwer, J. Farmers’ Perceived Risks of Climate Change and Influencing Factors: A Study in the Mekong Delta, Vietnam. Environ. Manag. 2014, 54, 331–345. [Google Scholar] [CrossRef]
- Slovic, P. Perception of risk. Science 1987, 236, 280–285. [Google Scholar] [CrossRef]
- Abid, M.; Schilling, J.; Scheffran, J.; Zulfiqar, F. Climate change vulnerability, adaptation and risk perceptions at farm level in Punjab, Pakistan. Sci. Total Environ. 2016, 547, 447–460. [Google Scholar] [CrossRef]
- Fleming, A.; Vanclay, F. Farmer responses to climate change and sustainable agriculture. A review. Agron. Sustain. Dev. 2010, 30, 11–19. [Google Scholar] [CrossRef] [Green Version]
- Antonio, A.; Tuffley, D. The Gender Digital Divide in Developing Countries. Future Internet 2014, 6, 673–687. [Google Scholar] [CrossRef] [Green Version]
- Andrieu, N.; Sogoba, B.; Zougmore, R.; Howland, F.; Samake, O.; Bonilla-Findji, O.; Lizarazo, M.; Nowak, A.; Dembele, C.; Corner-Dolloff, C. Prioritizing investments for climate-smart agriculture: Lessons learned from Mali. Agric. Syst. 2017, 154, 13–24. [Google Scholar] [CrossRef] [Green Version]
- Feola, G.; Lerner, A.M.; Jain, M.; Montefrio, M.J.F.; Nicholas, K.A. Researching farmer behaviour in climate change adaptation and sustainable agriculture: Lessons learned from five case studies. J. Rural Stud. 2015, 39, 74–84. [Google Scholar] [CrossRef]
- Lovell, R.J. Identifying Alternative Wetting and Drying Adoption (AWD) in the Vietnamese Mekong River Delta: A Change Detection Approach. ISPRS Int. J. Geo-Inf. 2019, 8, 312. [Google Scholar] [CrossRef] [Green Version]
- Glover, D.; Sumberg, J.; Andersson, J.A. The adoption problem; or why we still understand so little about technological change in African agriculture. Outlook Agric. 2016, 45, 3–6. [Google Scholar] [CrossRef] [Green Version]
- Woltering, L.; Fehlenberg, K.; Gerard, B.; Ubels, J.; Cooley, L. Scaling—From reaching many to sustainable systems change at scale: A critical shift in mindset. Agric. Syst. 2019, 176, 102652. [Google Scholar] [CrossRef]
- Sander, B.O.; Wassmann, R.; Palao, L.K.; Nelson, A. Climate-based suitability assessment for alternate wetting and drying water management in the Philippines: A novel approach for mapping methane mitigation potential in rice production. Carbon Manag. 2017, 8, 331–342. [Google Scholar] [CrossRef] [Green Version]
- Douthwaite, B.; Gummert, M. Learning selection revisited: How can agricultural researchers make a difference? Agric. Syst. 2010, 103, 245–255. [Google Scholar] [CrossRef]
- Aryal, J.P.; Rahut, D.B.; Jat, M.L.; Maharjan, S.; Erenstein, O. Factors determining the adoption of laser land leveling in the irrigated rice–wheat system in Haryana, India. J. Crop Improv. 2018, 32, 477–492. [Google Scholar] [CrossRef]
- Gummert, M.; Hegazy, R.; Schmidley, A.; Douthwaite, B. Mechanization in Rice Farming. In Water in agriculture: Status, challenges and opportunities; Banta, S., Ed.; Asia Rice Foundation: Los Baños, Philippines, 2015. [Google Scholar]
- Kumar, V.; Ladha, J.K. Direct Seeding of Rice. In Advances in Agronomy; Academic Press: Cambridge, MA, USA, 2011; pp. 297–413. [Google Scholar]
- Aryal, J.P.; Rahut, D.B.; Sapkota, T.B.; Khurana, R.; Khatri-Chhetri, A. Climate change mitigation options among farmers in South Asia. Environ. Dev. Sustain. 2019, 21, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Kumar, V.; Jat, H.S.; Sharma, P.C.; Balwinder-Singh; Gathala, M.K.; Malik, R.K.; Kamboj, B.R.; Yadav, A.K.; Ladha, J.K.; Raman, A.; et al. Can productivity and profitability be enhanced in intensively managed cereal systems while reducing the environmental footprint of production? Assessing sustainable intensification options in the breadbasket of India. Agric. Ecosyst. Environ. 2018, 252, 132–147. [Google Scholar] [PubMed]
- Tao, Y.; Chen, Q.; Peng, S.; Wang, W.; Nie, L. Lower global warming potential and higher yield of wet direct-seeded rice in Central China. Agron. Sustain. Dev. 2016, 36, 24. [Google Scholar] [CrossRef] [Green Version]
- Pathak, H.; Sankhyan, S.; Dubey, D.S.; Bhatia, A.; Jain, N. Dry direct-seeding of rice for mitigating greenhouse gas emission: Field experimentation and simulation. Paddy Water Environ. 2013, 11, 593–601. [Google Scholar] [CrossRef]
- Harada, H.; Kobayashi, H.; Shindo, H. Reduction in greenhouse gas emissions by no-tilling rice cultivation in Hachirogata polder, northern Japan: Life-cycle inventory analysis. Soil Sci. Plant Nutr. 2007, 53, 668–677. [Google Scholar] [CrossRef]
- Ishibashi, E.; Yamamoto, S.; Akai, N.; Iwata, T.; Tsuruta, H. The influence of no-tilled direct seeding cultivation on greenhouse gas emissions from rice paddy fields in Okayama, Western Japan: 5. Annual emission of CH_4, N_2O and CO_2 from rice paddy fields under different cultivation methods and carbon sequestrat. Jpn. J. Soil Sci. Plant Nutr. 2009, 80, 123–135. [Google Scholar]
- Ziska, L.H.; Epstein, P.R.; Schlesinger, W.H. Rising CO 2, Climate Change, and Public Health: Exploring the Links to Plant Biology. Environ. Health Perspect. 2009, 117, 155–158. [Google Scholar] [CrossRef] [Green Version]
- Smajgl, A.; Toan, T.Q.; Nhan, D.K.; Ward, J.; Trung, N.H.; Tri, L.Q.; Tri, V.P.D.; Vu, P.T. Responding to rising sea levels in the Mekong Delta. Nat. Clim. Chang. 2015, 5, 167–174. [Google Scholar] [CrossRef]
- Meah, N. Climate uncertainty and policy making—What do policy makers want to know? Reg. Environ. Chang. 2019, 19, 1611–1621. [Google Scholar] [CrossRef]
- Hellin, J.; Schrader, K. The case against direct incentives and the search for alternative approaches to better land management in Central America. Agric. Ecosyst. Environ. 2003, 99, 61–81. [Google Scholar] [CrossRef]
- Adger, W.N. Social Capital, Collective Action, and Adaptation to Climate Change. Econ. Geogr. 2003, 79, 387–404. [Google Scholar] [CrossRef]
- Hellin, J.; Fisher, E. Building pathways out of poverty through climate smart agriculture and effective targeting. Dev. Pract. 2018, 28, 974–979. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hellin, J.; Balié, J.; Fisher, E.; Kohli, A.; Connor, M.; Yadav, S.; Kumar, V.; Krupnik, T.J.; Sander, B.O.; Cobb, J.; et al. Trans-Disciplinary Responses to Climate Change: Lessons from Rice-Based Systems in Asia. Climate 2020, 8, 35. https://doi.org/10.3390/cli8020035
Hellin J, Balié J, Fisher E, Kohli A, Connor M, Yadav S, Kumar V, Krupnik TJ, Sander BO, Cobb J, et al. Trans-Disciplinary Responses to Climate Change: Lessons from Rice-Based Systems in Asia. Climate. 2020; 8(2):35. https://doi.org/10.3390/cli8020035
Chicago/Turabian StyleHellin, Jon, Jean Balié, Eleanor Fisher, Ajay Kohli, Melanie Connor, Sudhir Yadav, Virender Kumar, Timothy J. Krupnik, Bjoern Ole Sander, Joshua Cobb, and et al. 2020. "Trans-Disciplinary Responses to Climate Change: Lessons from Rice-Based Systems in Asia" Climate 8, no. 2: 35. https://doi.org/10.3390/cli8020035
APA StyleHellin, J., Balié, J., Fisher, E., Kohli, A., Connor, M., Yadav, S., Kumar, V., Krupnik, T. J., Sander, B. O., Cobb, J., Nelson, K., Setiyono, T., Puskur, R., Chivenge, P., & Gummert, M. (2020). Trans-Disciplinary Responses to Climate Change: Lessons from Rice-Based Systems in Asia. Climate, 8(2), 35. https://doi.org/10.3390/cli8020035