Disconnect within Agriculture and Ecosystem Climate Effects, Adaptations and Policy
1. Introduction
2. Comments on Effects
3. Comments on Adaptation
4. Comments on Policy
5. Conclusions
Conflicts of Interest
References
- IPCC. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Field, C.B., Barros, V.R., Dokken, D.J., Mach, K.J., Mastrandrea, M.D., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014. [Google Scholar]
- Van Vliet, M.T.H.; Franssen, W.H.P.; Yearsley, J.R.; Ludwig, F.; Haddeland, I.; Lettenmaier, D.P.; Kabat, P. Global river discharge and water temperature under climate change. Glob. Environ. Chang. Hum. Policy Dimens. 2013, 23, 450–464. [Google Scholar] [CrossRef]
- Trenberth, K.; Dai, A.; van der Schrier, G.; Jones, P.H.; Barichivich, J.; Briffa, K.R.; Sheffield, J. Global warming and changes in drought. Nat. Clim. Chang. 2014, 4, 17–22. [Google Scholar] [CrossRef]
- Taylor, R.; Scanlon, B.; Döll, P.; Rodell, M.; van Beek, R.; Wada, Y.; Longuevergne, L.; Leblanc, M.; Famiglietti, J.S.; Edmunds, M.; et al. Groundwater and climate change. Nat. Clim. Chang. 2013, 3, 322–329. [Google Scholar] [CrossRef] [Green Version]
- Whitehead, P.G.; Wilby, R.L.; Battarbee, R.W.; Kernan, M.; Wade, A.J. A review of the potential impacts of climate change on surface water quality. Hydrol. Sci. J. 2009, 54, 101–123. [Google Scholar] [CrossRef]
- Derner, J.D.; Johnson, H.B.; Kimball, B.A.; Pinter, P.J.; Polley, H.W.; Tischler, C.R.; Boutton, T.W.; LaMorte, R.L.; Wall, G.W.; Adam, N.R.; et al. Above-and below-ground responses of C3–C4 species mixtures to elevated CO2 and soil water availability. Glob. Chang. Biol. 2003, 9, 452–460. [Google Scholar] [CrossRef] [Green Version]
- Thayer, A.W.; Vargas, A.; Castellanos, A.A.; Lafon, C.W.; McCarl, B.A.; Roelke, D.L.; Winemiller, K.O.; Lacher, T.E. Integrating Agriculture and Ecosystems to Find Suitable Adaptations to Climate Change. Climate 2020, 8, 10. [Google Scholar] [CrossRef] [Green Version]
- Rötter, R.; Van de Geijn, S.C. Climate change effects on plant growth, crop yield and livestock. Clim. Chang. 1999, 43, 651–681. [Google Scholar] [CrossRef]
- Seo, S.N.; McCarl, B.A.; Mendelsohn, R.O. From beef cattle to sheep under global warming? An analysis of adaptation by livestock species choice in South America. Ecol. Econ. 2010, 69, 2486–2494. [Google Scholar] [CrossRef]
- Zhang, Y.W.; McCarl, B.A.; Jones, J.P.H. An Overview of Mitigation and Adaptation Needs and Strategies for the Livestock Sector. Climate 2017, 5, 95. [Google Scholar] [CrossRef] [Green Version]
- Seo, S.N.; Mendelsohn, R.O.; Dinar, A.; Kurukulasuriya, P. Adapting to climate change mosaically: An analysis of African livestock management by agro-ecological zones. B.E. J. Econ. Anal. Policy 2009, 9. [Google Scholar] [CrossRef]
- Fuhlendorf, S.D.; Engle, D.M. Restoring heterogeneity on rangelands: Ecosystem management based on evolutionary grazing patterns: We propose a paradigm that enhances heterogeneity instead of homogeneity to promote biological diversity and wildlife habitat on rangelands grazed by livestock. BioScience 2001, 51, 625–632. [Google Scholar] [CrossRef]
- Megersa, B.; Markemann, A.; Angassa, A.; Ogutu, J.O.; Piepho, H.P.; Zárate, A.V. Livestock diversification: An adaptive strategy to climate and rangeland ecosystem changes in southern Ethiopia. Hum. Ecol. 2014, 42, 509–520. [Google Scholar] [CrossRef]
- Pequeño-Ledezma, M.; Alanís-Rodríguez, E.; Molina-Guerra, V.M.; Mora-Olivo, A.; Alcalá-Rojas, A.G.; Martínez-Ávalos, J.G.; Garza-Ocañas, F. Plant composition and structure of two post-livestock areas of Tamaulipan thornscrub, Mexico. Rev. Chil. Hist. Nat. 2018, 91, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Derner, J.; Briske, D.; Reeves, M.; Brown-Brandl, T.; Meehan, M.; Blumenthal, D.; Travis, W.; Augustine, D.; Wilmer, H.; Scasta, D.; et al. Vulnerability of grazing and confined livestock in the Northern Great Plains to projected mid-and late-twenty-first century climate. Clim. Chang. 2018, 146, 19–32. [Google Scholar] [CrossRef]
- Craine, J.M.; Elmore, A.; Angerer, J.P. Long-term declines in dietary nutritional quality for North American cattle. Environ. Res. Lett. 2017, 12, 044019. [Google Scholar] [CrossRef] [Green Version]
- Mu, J.E.; McCarl, B.A.; Wein, A.M. Adaptation to climate change: Changes in farmland use and stocking rate in the U.S. Mitig. Adapt. Strateg. Glob. Chang. 2013, 18, 713–730. [Google Scholar] [CrossRef] [Green Version]
- Cho, S.J.; McCarl, B.A. Climate change influences on crop mix shifts in the United States. Sci. Rep. 2017, 7, 40845. [Google Scholar] [CrossRef] [Green Version]
- Joyce, L.A.; Briske, D.D.; Brown, J.R.; Polley, H.W.; McCarl, B.A.; Bailey, D.W. Climate change and North American rangelands: Assessment of mitigation and adaptation strategies. Rangel. Ecol. Manag. 2013, 66, 512–528. [Google Scholar] [CrossRef] [Green Version]
- Derner, J.D.; Boutton, T.W.; Briske, D.D. Grazing and ecosystem carbon storage in the North American Great Plains. Plant Soil. 2006, 280, 77–90. [Google Scholar] [CrossRef]
- Derner, J.D.; Schuman, G.E. Carbon sequestration and rangelands: A synthesis of land management and precipitation effects. J. Soil Water Conser. 2007, 62, 77–85. [Google Scholar]
- Allen, C.D.; Macalady, A.K.; Chenchouni, H.; Bachelet, D.; McDowell, N.; Vennetier, M.; Kitzberger, T.; Rigling, A.; Breshears, D.D.; Hogg, E.H.; et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manag. 2010, 259, 660–684. [Google Scholar] [CrossRef] [Green Version]
- Aragón-Gastélum, J.L.; Flores, J.; Yáñez-Espinosa, L.; Badano, E.; Ramírez-Tobías, H.M.; Rodas-Ortíz, J.P.; González-Salvatierra, C. Induced climate change impairs photosynthetic performance in Echinocactus platyacanthus, an especially protected Mexican cactus species. Flora 2014, 209, 499–503. [Google Scholar] [CrossRef]
- Geruo, A.; Velicogna, I.; Kimball, J.S.; Du, J.; Kim, Y.; Colliander, A.; Njoku, E. Satellite-observed changes in vegetation sensitivities to surface soil moisture and total water storage variations since the 2011 Texas drought. Environ. Res. Lett. 2017, 12, 054006. [Google Scholar] [CrossRef] [Green Version]
- Schwantes, A.M.; Swenson, J.J.; González-Roglich, M.; Johnson, D.M.; Domec, J.C.; Jackson, R.B. Measuring canopy loss and climatic thresholds from an extreme drought along a fivefold precipitation gradient across Texas. Glob. Chang. Biol. 2017, 23, 5120–5135. [Google Scholar] [CrossRef] [PubMed]
- McDonald, R.I.; Girvetz, E.H. Two Challenges for U.S. Irrigation Due to Climate Change: Increasing Irrigated Area in Wet States and Increasing Irrigation Rates in Dry States. PLoS ONE 2001, 8, e65589. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Díaz, J.A.; Weatherhead, E.K.; Knox, J.W.; Camacho, E. Climate change impacts on irrigation water requirements in the Guadalquivir river basin in Spain. Reg. Environ. Chang. 2007, 7, 149. [Google Scholar] [CrossRef]
- Richter, B.D. Ecologically sustainable water management: Managing river flows for ecological integrity. Ecol. Appl. 2003, 13, 206–224. [Google Scholar] [CrossRef]
- Perkin, J.S.; Gido, K.B.; Costigan, K.H.; Daniels, M.D.; Johnson, E.R. Fragmentation and drying ratchet down Great Plains stream fish diversity. Aquat. Conserv. Mar. Freshw. Ecosyst. 2015, 25, 639–655. [Google Scholar] [CrossRef]
- Postel, S.; Carpenter, S. Freshwater ecosystem services. In Nature’s Services: Societal Dependence on Natural Ecosystems; Daily, G.C., Ed.; Island Press: Washington, DC, USA, 1997; pp. 195–214. ISBN 9781559634762. [Google Scholar]
- Durham, B.W.; Wilde, G.R. Influence of stream discharge on reproductive success of a prairie stream fish assemblage. Trans. Am. Fish Soc. 2006, 135, 1644–1653. [Google Scholar] [CrossRef]
- Mainali, K.P.; Warren, D.L.; Dhileepan, K.; McConnachie, A.; Strathie, L.; Hassan, G.; Karki, D.; Shrestha, B.B.; Parmesan, C. Projecting future expansion of invasive species: Comparing and improving methodologies for species distribution modeling. Glob. Chang. Biol. 2015, 21, 4464–4480. [Google Scholar] [CrossRef]
- Burlakova, L.E.; Karatayev, A.Y.; Karatayev, V.A.; May, M.E.; Bennett, D.L.; Cook, M.J. Biogeography and conservation of freshwater mussels (Bivalvia: Unionidae) in Texas: Patterns of diversity and threats. Divers. Distrib. 2011, 17, 393–407. [Google Scholar] [CrossRef]
- Wolfe, D.W.; Ziska, L.; Petzoldt, C.; Seaman, A.; Chase, L.; Hayhoe, K. Projected change in climate thresholds in the Northeastern U.S.: Implications for crops, pests, livestock, and farmers. Mitig. Adapt. Strateg. Glob. Chang. 2008, 13, 555–575. [Google Scholar] [CrossRef] [Green Version]
- Smith, R.G.; Menalled, F.D. Integrated Strategies for Managing Agricultural weeds: Making Cropping Systems Less Susceptible to Weed Colonization and Establishment Department of Land Resources and Environmental Sciences; Montana State University: Bozeman, MT, USA, 2006. [Google Scholar]
- Chen, C.C.; McCarl, B.A. An investigation of the relationship between pesticide usage and climate change. Clim. Chang. 2001, 50, 475–487. [Google Scholar] [CrossRef]
- Sinay, L.; Carter, R.W.B. Climate Change Adaptation Options for Coastal Communities and Local Governments. Climate 2020, 8, 7. [Google Scholar] [CrossRef] [Green Version]
- Elijah, V.T.; Odiyo, J.O. Perception of Environmental Spillovers across Scale in Climate Change Adaptation Planning: The Case of Small-Scale Farmers’ Irrigation Strategies, Kenya. Climate 2020, 8, 3. [Google Scholar] [CrossRef]
- Scholes, R.J. The Future of Semi-Arid Regions: A Weak Fabric Unravels. Climate 2020, 8, 43. [Google Scholar] [CrossRef] [Green Version]
- Ngarava, S.; Zhou, L.; Ayuk, J.; Tatsvarei, S. Achieving Food Security in a Climate Change Environment: Considerations for Environmental Kuznets Curve Use in the South African Agricultural Sector. Climate 2019, 7, 108. [Google Scholar] [CrossRef] [Green Version]
- An, H.; Lee, S.; Cho, S.J. Climate Change Impacts on Forest Management: A Case of Korean Oak Wilt. Climate 2019, 7, 141. [Google Scholar] [CrossRef] [Green Version]
- Ding, J.; McCarl, B.A. Economic and Ecological Impacts of Increased Drought Frequency in the Edwards Aquifer. Climate 2020, 8, 2. [Google Scholar] [CrossRef] [Green Version]
- Tompkins, E.L.; Adger, W.L. Defining response capacity to enhance climate change policy. Environ. Sci. Policy 2005, 8, 562–571. [Google Scholar] [CrossRef]
- Lacher, T.E., Jr.; Roach, N.S. The status of biodiversity in the Anthropocene: Trends, threats, and actions. In Volume 3 (Biodiversity), the Encyclopedia of the Anthropocene; Lacher, T.E., Jr., Pyare, S., Eds.; Elsevier: Oxford, UK, 2018; pp. 1–8. [Google Scholar] [CrossRef]
Climate Stressor | Climate Effect | Agricultural Adaptation | Ecosystem Service Externality |
---|---|---|---|
Increased temperature and drought | Increased livestock heat stress and reduced forage and growth [8] | Diversifying livestock species [9,10,11] | Altered plant biodiversity and productivity [12,13,14] |
Lower crop production and quality due to increased temperatures affecting growth and nutrient content [15,16] | Crop land shift to grazing [17,18,19] | Increased root production in upper soil levels and carbon sequestration [20,21]. | |
Climate Stressor | Climate Effect | Ecosystem Adaptation | Agricultural System Externality |
Increased drought | Reduced plant growth due to changes in temperature, precipitation, or the incidence of climatic extremes [22,23] | Shift in vegetation mix productivity and water retention [24,25] | Altered water supply and increased demand for irrigation [26,27] |
Increased temperature and altered rainfall | Disruption in Hydrological environments that cycle nutrients, maintain water quality, and moderatelifecycle events such as spawning and recruitment [28,29,30,31] | Shifting species distribution including pest incidence [32,33] | Increased pesticide and herbicide costs [34,35,36] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thayer, A.W.; Vargas, A.M.; Lacher, T.E.; McCarl, B.A. Disconnect within Agriculture and Ecosystem Climate Effects, Adaptations and Policy. Climate 2020, 8, 63. https://doi.org/10.3390/cli8050063
Thayer AW, Vargas AM, Lacher TE, McCarl BA. Disconnect within Agriculture and Ecosystem Climate Effects, Adaptations and Policy. Climate. 2020; 8(5):63. https://doi.org/10.3390/cli8050063
Chicago/Turabian StyleThayer, Anastasia W., Aurora M Vargas, Thomas E. Lacher, and Bruce A. McCarl. 2020. "Disconnect within Agriculture and Ecosystem Climate Effects, Adaptations and Policy" Climate 8, no. 5: 63. https://doi.org/10.3390/cli8050063
APA StyleThayer, A. W., Vargas, A. M., Lacher, T. E., & McCarl, B. A. (2020). Disconnect within Agriculture and Ecosystem Climate Effects, Adaptations and Policy. Climate, 8(5), 63. https://doi.org/10.3390/cli8050063