Projected Impacts of Climate Change on the Protected Areas of Myanmar
Abstract
:1. Introduction
1.1. Climate Change and Protected Areas
1.2. Myanmar
1.3. Myanmar’s Protected Area System
- To summarize the temporal and spatial patterns of climate change projected for Myanmar by 2050 and 2070.
- To classify and map the climate types currently present in Myanmar and project the changes in the areas and spatial distributions of these climate types by 2050 and 2070.
- To assess the representativeness of the protected area system in terms of the current climate types present in Myanmar.
- To assess the impact of projected climate change on the representation of climate types within individual protected areas and in the protected area system as a whole.
- To identify the likely impacts of climate change on the protection of biodiversity in Myanmar’s protected areas.
2. Materials and Methods
2.1. Bioclimatic Stratification
- ➢
- Degree days >0 °C [34]
- Daily sum of annual degrees of temperature above 0 °C, reflecting latitudinal and altitudinal temperature gradients, and plant growth periods [34].
- ➢
- Aridity-Wetness Index (AWI) [35]
- Ratio of annual precipitation over annual potential evapotranspiration (PET), calculated globally using the Hargreaves (1994) model [36].
- ➢
- Monthly mean temperature seasonality [34]
- Standard deviation of the monthly mean temperature distribution
- ➢
- Potential evapotranspiration (PET) seasonality [35]
- Standard deviation of the monthly mean PET distribution.
2.2. Modeling of Projected Future Climate Conditions
3. Results
3.1. Projected Climate Change by 2050 and 2070
3.2. Bioclimatic Stratification of Myanmar under Current Conditions
3.3. Projected Changes in the Spatial Distribution of Bioclimatic Zones and Strata by 2050 and 2070
3.4. Climates and Climate Change in the Protected Areas
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Corlett, R.T. The Ecology of Tropical East Asia, 3rd ed.; Oxford University Press: Oxford, UK, 2019. [Google Scholar]
- Hughes, A.C. Understanding the drivers of Southeast Asian biodiversity loss. Ecosphere 2017, 8, e01624. [Google Scholar] [CrossRef]
- Rosa, I.M.D.; Smith, M.J.; Wearn, O.R.; Purves, D.; Ewers, R.M. The environmental legacy of modern tropical deforestation. Curr. Biol. 2016, 26, 2161–2166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tilker, A.; Abrams, J.F.; Mohamed, A.; Nguyen, A.; Wong, S.T.; Sollmann, R.; Niedballa, J.; Bhagwat, T.; Gray, T.N.E.; Rawson, B.M.; et al. Habitat degradation and indiscriminate hunting differentially impact faunal communities in the Southeast Asian tropical biodiversity hotspot. Commun. Biol. 2019, 2, 296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gray, T.N.E.; Hughes, A.C.; Laurance, W.F.; Long, B.; Lynam, A.J.; O’Kelly, H.; Ripple, W.J.; Seng, T.; Scotson, L.; Wilkinson, N.M. The wildlife snaring crisis: An insidious and pervasive threat to biodiversity in Southeast Asia. Biodivers. Conserv. 2018, 27, 1031–1037. [Google Scholar] [CrossRef]
- McEvoy, J.F.; Connette, G.; Huang, Q.; Soe, P.; Pyone, K.H.H.; Valitutto, M.; Htun, Y.L.; Lin, A.N.; Thant, A.L.; Htun, W.Y.; et al. Two sides of the same coin—Wildmeat consumption and illegal wildlife trade at the crossroads of Asia. Biol. Conserv. 2019, 238, 108197. [Google Scholar] [CrossRef]
- Arfanuzzaman, M.; Dahiya, B. Sustainable urbanization in Southeast Asia and beyond: Challenges of population growth, land use change, and environmental health. Growth Chang. 2019, 50, 725–744. [Google Scholar] [CrossRef]
- Hijioka, Y.; Lin, E.; Pereira, P.P.; Corlett, R.T.; Cui, X.; Insarov, G.E.; Lasco, R.D.; Lindgren, E.; Surjan, A. Asia. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects; Cambridge University Press: Cambridge, UK, 2017; pp. 1327–1370. [Google Scholar]
- Hawkins, E.; Frame, D.; Harrington, L.; Joshi, M.; King, A.; Rojas, M.; Sutton, R. Observed emergence of the climate change signal: From the familiar to the unknown. Geophys. Res. Lett. 2020, 47, e2019GL086259. [Google Scholar] [CrossRef] [Green Version]
- Lehikoinen, P.; Lehikoinen, A.; Santangel, A.; Jaatinen, K.; Rajasärkkä, A. Protected areas act as a buffer against detrimental effects of climate change—Evidence from large-scale, long-term abundance data. Glob. Change Biol. 2019, 25, 304–313. [Google Scholar] [CrossRef]
- Hoffmann, S.; Irl, S.D.H.; Beierkuhnlein, C. Predicted climate shifts within terrestrial protected areas worldwide. Nat. Commun. 2019, 10, 4787. [Google Scholar] [CrossRef] [Green Version]
- Årevall, J.; Early, R.; Estrada, A.; Wennergren, U.; Eklöf, A.C. Conditions for successful range shifts under climate change: The role of species dispersal and landscape configuration. Divers. Distrib. 2018, 24, 1598–1611. [Google Scholar] [CrossRef] [Green Version]
- Corlett, R.T.; Tomlinson, K.W. Climate change and edaphic specialists: Irresistible force meets immovable object? Trends Ecol. Evol. 2020, 35, 367–376. [Google Scholar] [CrossRef] [PubMed]
- Corlett, R.T.; Westcott, D.A. Will plant movements keep up with climate change? Trends Ecol. Evol. 2013, 28, 482–488. [Google Scholar] [CrossRef] [PubMed]
- Brito-Morales, I.; García Molinos, J.; Schoeman, D.S.; Burrows, M.T.; Poloczanska, E.S.; Brown, C.J.; Ferrier, S.; Harwood, T.D.; Klein, C.J.; McDonald-Madden, E.; et al. Climate velocity can inform conservation in a warming world. Trends Ecol. Evol. 2018, 33, 441–457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monzón, J.; Moyer-Horner, L.; Palamar, M.B. Climate change and species range dynamics in protected areas. Bioscience 2011, 61, 752–761. [Google Scholar] [CrossRef] [Green Version]
- Hannah, L.; Roehrdanz, P.R.; Marquet, P.A.; Enquist, B.J.; Midgley, G.; Foden, W.; Lovett, J.C.; Corlett, R.T.; Corcoran, D.; Butchart, S.H.M.; et al. 30% land conservation and climate action reduces tropical extinction risk by more than 50%. Ecography 2020, 43, 943–953. [Google Scholar] [CrossRef] [Green Version]
- Horton, R.; De Mel, M.; Peters, D.; Lesk, C.; Bartlett, R.; Helsingen, H.; Bader, D.; Capizzi, P.; Martin, S.; Rosenzweig, C. Assessing Climate Risk in Myanmar: Technical Report; Center for Climate Systems Research at Columbia University, WWF-US and WWF-Myanmar: New York, NY, USA, 2017. [Google Scholar]
- Forest Department. National Biodiversity Strategy and Action Plan (2015–2020); Ministry of Environmental Conservation and Forestry: Naypyidaw, Myanmar, 2015.
- FAO. Global Forest Resources Assessment 2020: Main Report; Food and Agriculture Organization of the United Nations: Rome, Italy, 2020. [Google Scholar]
- De Alban, J.D.T.; Jamaludin, J.; Wong, D.d.W.; Than, M.M.; Webb, E.L. Improved estimates of mangrove cover and change reveal catastrophic deforestation in Myanmar. Environ. Res. Lett. 2020, 15, 034034. [Google Scholar] [CrossRef]
- Macdonald, D.W.; Bothwell, H.M.; Kaszta, Ż.; Ash, E.; Bolongon, G.; Burnham, D.; Can, Ö.E.; Campos-Arceiz, A.; Channa, P.; Clements, G.R.; et al. Multi-scale habitat modelling identifies spatial conservation priorities for mainland clouded leopards (Neofelis nebulosa). Divers. Distrib. 2019, 25, 1639–1654. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Prescott, G.W.; Tay, R.E.; Dickens, B.L.; Webb, E.L.; Htun, S.; Tizard, R.J.; Rao, M.; Carrasco, L.R. Dramatic cropland expansion in Myanmar following political reforms threatens biodiversity. Sci. Rep. 2018, 8, 1–10. [Google Scholar] [CrossRef]
- Michinaka, T.; Hlaing, E.E.S.; Oo, T.N.; Mon, M.S.; Sato, T. Forecasting forest areas in Myanmar based on socioeconomic factors. Forests 2020, 11, 100. [Google Scholar] [CrossRef] [Green Version]
- Zaehringer, J.G.; Lundsgaard-Hansen, L.; Thein, T.T.; Llopis, J.C.; Tun, N.N.; Myint, W.; Schneider, F. The cash crop boom in southern Myanmar: Tracing land use regime shifts through participatory mapping. Ecosyst. People 2020, 16, 36–49. [Google Scholar] [CrossRef]
- Rao, M.; Htun, S.; Platt, S.G.; Tizard, R.; Poole, C.; Myint, T.; Watson, J.E.M. Biodiversity conservation in a changing climate: A review of threats and implications for conservation planning in Myanmar. Ambio 2013, 42, 789–804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eckstein, D.; Künzel, V.; Schäfer, L.; Winges, M. Global Climate Risk Index 2020; GermanWatch: Bonn, Germany, 2020. [Google Scholar]
- MONREC. Myanmar Climate Change Master Plan (2018–2030); Ministry of Natural Resources and Environmental Conservation: Naypyidaw, Myanmar, 2019.
- Kimengsi, J.N.; Aung, P.S.; Pretzsch, J.; Haller, T.; Auch, E. Constitutionality and the co-management of protected areas: Reflections from Cameroon and Myanmar. Int. J. Commons 2019, 13, 1003–1020. [Google Scholar] [CrossRef]
- Ministry of Natural Resources and Environmental Conservation, Forest Department. Available online: https://www.forestdepartment.gov.mm/ (accessed on 22 May 2020).
- Zomer, R.J.; Xu, J.; Wang, M.; Trabucco, A.; Li, Z. Projected impact of climate change on the effectiveness of the existing protected area network for biodiversity conservation within Yunnan Province, China. Biol. Conserv. 2015, 184, 335–345. [Google Scholar] [CrossRef]
- Soteriades, A.D.; Murray-Rust, D.; Trabucco, A.; Metzger, M.J. Understanding global climate change scenarios through bioclimate stratification. Environ. Res. Lett. 2017, 12, 084002. [Google Scholar] [CrossRef]
- Metzger, M.J.; Bunce, R.G.H.; Jongman, R.H.G.; Sayre, R.; Trabucco, A.; Zomer, R. A high-resolution bioclimate map of the world: A unifying framework for global biodiversity research and monitoring. Glob. Ecol. Biogeogr. 2013, 22, 630–638. [Google Scholar] [CrossRef] [Green Version]
- Hijmans, R.J.; Cameron, S.E.; Parra, J.L.; Jones, P.G.; Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 2005, 25, 1965–1978. [Google Scholar] [CrossRef]
- Zomer, R.J.; Trabucco, A.; Bossio, D.A.; Verchot, L.V. Climate change mitigation: A spatial analysis of global land suitability for clean development mechanism afforestation and reforestation. Agric. Ecosyst. Environ. 2008, 126, 67–80. [Google Scholar] [CrossRef]
- Hargreaves, G.H. Defining and using reference evapotranspiration. J. Irrig. Drain. E-ASCE 1994, 120, 1132–1139. [Google Scholar] [CrossRef]
- McSweeney, C.F.; Jones, R.G.; Lee, R.W.; Rowell, D.P. Selecting CMIP5 GCMs for downscaling over multiple regions. Clim. Dyn. 2015, 44, 3237–3260. [Google Scholar] [CrossRef] [Green Version]
- Kamworapan, S.; Surussavadee, C. Evaluation of CMIP5 global climate models for simulating climatological temperature and precipitation for Southeast Asia. Adv. Meteorol. 2019, 2019, 1067365. [Google Scholar] [CrossRef]
- van Vuuren, D.P.; Edmonds, J.; Kainuma, M.; Riahi, K.; Thomson, A.; Hibbard, K.; Hurtt, G.C.; Kram, T.; Krey, V.; Lamarque, J.F.; et al. The representative concentration pathways: An overview. Clim. Chang. 2011, 109, 5. [Google Scholar] [CrossRef]
- Zaw, Z.; Fan, Z.-X.; Bräuning, A.; Xu, C.-X.; Liu, W.-J.; Gaire, N.P.; Panthi, S.; Tha, K.Z. Drought reconstruction over the past two centuries in southern Myanmar using teak tree-rings: Linkages to the Pacific and Indian Oceans. Geophys. Res. Lett. 2020, 47, e2020GL087627. [Google Scholar] [CrossRef]
- CBD. Zero Draft of the Post-2020 Global Biodiversity Framework; Convention on Biological Diversity: Montreal, QC, Canada, 2020. [Google Scholar]
- Zomer, R.J.; Trabucco, A.; Metzger, M.J.; Wang, M.; Oli, K.P.; Xu, J. Projected climate change impacts on spatial distribution of bioclimatic zones and ecoregions within the Kailash Sacred Landscape of China, India, Nepal. Clim. Chang. 2014, 125, 445–460. [Google Scholar] [CrossRef]
- Thang, T.M.; Thu, A.M.; Chen, J. Tree species of tropical and temperate lineages in a tropical Asian montane forest show different range dynamics in response to climate change. Glob. Ecol. Conserv. 2020, 22, e00973. [Google Scholar] [CrossRef]
- Kumar, D.; Pfeiffer, M.; Gaillard, C.; Langan, L.; Scheiter, S. Climate change and elevated CO2 favor forest over savanna under different future scenarios in South Asia. Biogeosci. Discuss. 2020. [Google Scholar] [CrossRef]
- Stevens, N.; Erasmus, B.F.; Archibald, S.; Bond, W.J. Woody encroachment over 70 years in South African savannahs: Overgrazing, global change or extinction aftershock? Philos. Trans. R. Soc. Lond. B Biol. Sci. 2016, 371, 20150437. [Google Scholar] [CrossRef] [Green Version]
- Beier, P.; Sutcliffe, P.; Hjort, J.; Faith, D.P.; Pressey, R.L.; Albuquerque, F. A review of selection-based tests of abiotic surrogates for species representation. Conserv. Biol. 2015, 29, 668–679. [Google Scholar] [CrossRef] [Green Version]
- Lapola, D.M.; da Silva, J.M.; Braga, D.R.; Carpigiani, L.; Ogawa, F.; Torres, R.R.; Barbosa, L.C.F.; Ometto, J.P.H.B.; Joly, C.A. A climate-change vulnerability and adaptation assessment for Brazil’s protected areas. Conserv. Biol. 2019, 34, 427–437. [Google Scholar] [CrossRef]
- Bustamente, M.M.C. Ecological restoration as a strategy for mitigating and adapting to climate change: Lessons and challenges from Brazil. Mitig. Adapt. Strateg. Glob. Chang. 2019, 24, 1249–1270. [Google Scholar] [CrossRef]
- van Kerkhoff, L.; Munera, C.; Dudley, N.; Guevara, O.; Wyborn, C.; Figueroa, C.; Dunlop, M.; Hoyos, M.A.; Castiblanco, J.; Becerra, L. Towards future-oriented conservation: Managing protected areas in an era of climate change. Ambio 2019, 48, 699–713. [Google Scholar] [CrossRef] [Green Version]
- Corlett, R.T. Safeguarding our future by protecting biodiversity. Plant Divers. 2020. [Google Scholar] [CrossRef] [PubMed]
Bioclimatic Zone | Area (km2) | Area (%) | Mean Elevation (M A.S.L) | Mean Annual Temperature (°C) | Mean Maximum Temperature (°C) | Mean Annual Precipitation (mm) |
---|---|---|---|---|---|---|
Extremely Cold and Wet | 3 | 0 | 5409 | −4.1 | 7.0 | 692.3 |
Extremely Cold and Mesic | 816 | 0 | 4450 | 1.2 | 12.4 | 749.9 |
Cold and Mesic | 2900 | 0 | 3612 | 5.9 | 16.3 | 969.2 |
Cool Temperate and Moist | 4831 | 1 | 2842 | 10.3 | 19.6 | 1362.7 |
Warm Temperate and Mesic | 55,576 | 8 | 1595 | 16.6 | 25.2 | 2219.7 |
Hot and Mesic | 219,324 | 33 | 579 | 22.7 | 32.2 | 2015.7 |
Hot and Dry | 78,900 | 12 | 1190 | 19.8 | 29.6 | 1551.2 |
Extremely Hot and Moist | 224,377 | 34 | 183 | 26.0 | 35.4 | 2449.8 |
Extremely Hot and Xeric | 77,215 | 12 | 155 | 26.7 | 38.1 | 949.7 |
Zone | Strata | Area (km2) | Mean Elevation (m) | Mean Annual Temperature (°C) | Mean Maximum Temperature (°C) | Mean Annual Precipitation (mm) |
---|---|---|---|---|---|---|
D. Extremely cold and wet | D3 | 3 | 5409 | −4.1 | 7.0 | 692.3 |
F. Extremely cold and mesic | F4 | 23 | 4940 | −1.9 | 9.3 | 700.6 |
F13 | 793 | 4436 | 1.3 | 12.5 | 750.6 | |
G. Cold and mesic | G11 | 1649 | 3815 | 4.7 | 15.3 | 889.6 |
G13 | 1251 | 3343 | 7.5 | 17.5 | 1074.2 | |
J. Cool temperate and moist | J1 | 245 | 3137 | 8.7 | 17.6 | 1379.4 |
J2 | 21 | 2695 | 11.7 | 19.5 | 2636.6 | |
J3 | 1185 | 3026 | 9.2 | 18.9 | 1185.9 | |
J4 | 3291 | 2753 | 10.8 | 20.0 | 1422.6 | |
J5 | 89 | 2900 | 10.2 | 20.3 | 1152.4 | |
K. Warm temperate and mesic | K1 | 1139 | 2551 | 12.1 | 21.4 | 1380.4 |
K2 | 5943 | 2236 | 13.4 | 22.0 | 1963.6 | |
K7 | 8341 | 1981 | 14.9 | 23.6 | 1767.9 | |
K10 | 5 | 2028 | 15.4 | 24.8 | 1381.4 | |
K12 | 33,429 | 1347 | 17.7 | 26.1 | 2534.1 | |
K13 | 6719 | 1626 | 17.0 | 26.2 | 1585.6 | |
M. Hot and mesic | M1 | 25,597 | 783 | 20.8 | 29.1 | 2680.0 |
M2 | 48,533 | 784 | 21.7 | 31.6 | 1608.4 | |
M4 | 23,284 | 921 | 22.1 | 32.6 | 1315.9 | |
M5 | 25,050 | 294 | 23.7 | 31.8 | 3328.4 | |
M6 | 1 | 892 | 22.8 | 33.6 | 967.0 | |
M7 | 23,629 | 702 | 23.2 | 33.6 | 1351.2 | |
M8 | 73,230 | 320 | 23.8 | 33.2 | 2041.4 | |
N. Hot and dry | N3 | 24,895 | 1356 | 18.7 | 28.3 | 1611.0 |
N4 | 27 | 1725 | 18.4 | 28.7 | 1213.5 | |
N8 | 36,707 | 1060 | 20.1 | 29.9 | 1616.5 | |
N9 | 7264 | 1332 | 19.9 | 30.1 | 1339.9 | |
N11 | 10,007 | 1145 | 20.9 | 31.3 | 1316.4 | |
R. Extremely hot and moist | R1 | 20,886 | 533 | 24.1 | 34.5 | 1400.4 |
R2 | 331 | 783 | 24.3 | 35.7 | 968.3 | |
R3 | 17,682 | 226 | 25.5 | 33.8 | 3076.9 | |
R4 | 3400 | 397 | 25.1 | 32.3 | 1715.3 | |
R5 | 44,993 | 271 | 25.1 | 35.7 | 1233.9 | |
R6 | 11,244 | 270 | 25.7 | 34.5 | 2268.1 | |
R7 | 101,364 | 39 | 26.7 | 35.9 | 3276.1 | |
R8 | 5924 | 70 | 26.5 | 33.2 | 2940.5 | |
R9 | 17,097 | 272 | 26.1 | 37.0 | 1536.6 | |
R10 | 1456 | 67 | 26.6 | 33.2 | 2246.3 | |
Q. Extremely hot and xeric | Q1 | 45,901 | 188 | 26.5 | 37.8 | 832.8 |
Q3 | 23,609 | 110 | 27.0 | 38.4 | 1244.2 | |
Q4 | 7705 | 93 | 27.4 | 39.1 | 744.3 |
Model | 2050 | 2070 | ||||||
Zone Shift km2 | Zone Shift % | Zone Shift km2 | Zone Shift % | |||||
RCP 2.6 | RCP 8.5 | RCP 2.6 | RCP 8.5 | RCP 2.6 | RCP 8.5 | RCP 2.6 | RCP 8.5 | |
CNRM-CM5 | 56,453 | 74,424 | 9 | 11 | 54,881 | 114,481 | 8 | 17 |
GFDL-CM3 | 85,050 | 152,731 | 13 | 23 | 91,766 | 189,990 | 14 | 29 |
HadGEM3-ES | 77,305 | 137,663 | 12 | 21 | 76,846 | 209,941 | 12 | 32 |
Model | 2050 | 2070 | ||||||
Strata Shift km2 | Strata Shift % | Strata Shift km2 | Strata Shift % | |||||
RCP 2.6 | RCP 8.5 | RCP 2.6 | RCP 8.5 | RCP 2.6 | RCP 8.5 | RCP 2.6 | RCP 8.5 | |
CNRM-CM5 | 138,133 | 182,436 | 21 | 27 | 130,518 | 225,491 | 20 | 34 |
GFDL-CM3 | 215,971 | 256,429 | 33 | 39 | 233,127 | 319,962 | 35 | 48 |
HadGEM2-ES | 174,295 | 246,351 | 26 | 37 | 177,415 | 346,135 | 27 | 52 |
Bioclimatic Zone | Total Area (km2) | Area Protected (km2) | % of Zone Protected | % of Total Protected Area |
---|---|---|---|---|
Extremely Cold and Wet | 3 | 1 | 33 | 0 |
Extremely Cold and Mesic | 816 | 582 | 71 | 1 |
Cold and Mesic | 2900 | 1958 | 68 | 5 |
Cool Temperate and Moist | 4831 | 1529 | 32 | 4 |
Warm Temperate and Mesic | 55,576 | 12,564 | 23 | 30 |
Hot and Mesic | 219,324 | 19,513 | 9 | 47 |
Hot and Dry | 78,900 | 326 | 0 | 1 |
Extremely Hot and Moist | 224,377 | 4555 | 2 | 11 |
Extremely Hot and Xeric | 77,215 | 646 | 1 | 2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nwe, T.; Zomer, R.J.; Corlett, R.T. Projected Impacts of Climate Change on the Protected Areas of Myanmar. Climate 2020, 8, 99. https://doi.org/10.3390/cli8090099
Nwe T, Zomer RJ, Corlett RT. Projected Impacts of Climate Change on the Protected Areas of Myanmar. Climate. 2020; 8(9):99. https://doi.org/10.3390/cli8090099
Chicago/Turabian StyleNwe, Thazin, Robert J. Zomer, and Richard T. Corlett. 2020. "Projected Impacts of Climate Change on the Protected Areas of Myanmar" Climate 8, no. 9: 99. https://doi.org/10.3390/cli8090099
APA StyleNwe, T., Zomer, R. J., & Corlett, R. T. (2020). Projected Impacts of Climate Change on the Protected Areas of Myanmar. Climate, 8(9), 99. https://doi.org/10.3390/cli8090099