Excess Mortality in England during the 2019 Summer Heatwaves
Abstract
:1. Introduction
“There is no evidence that general summertime relationships between temperature and mortality…have changed substantially in the years since the introduction of the first HWP in 2004.”[52] (p. 1).
2. Materials and Methods
2.1. Study Period
2.2. Heatwave Definition
- (a)
- The Met Office issue a Level 3 heatwave alert in any part of the country, or
- (b)
- The mean Central England Temperature (CET) is greater than 20 °C
2.3. Temperature
2.4. Data Sources
2.5. Generalised Additive Model
2.6. Time-Series Graph
2.7. Excess Mortality Graphs for the Whole Summer Period
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Coumou, D.; Robinson, A.; Rahmstorf, S. Global increase in record-breaking monthly-mean temperatures. Clim. Chang. 2013, 118, 771–782. [Google Scholar] [CrossRef]
- Hegerl, G.C.; Bronnimann, S.; Cowan, T.; Friedman, A.R.; Hawkins, E.; Iles, C.; Müller, W.; Schurer, A.; Undorf, S. Causes of climate change over the historical record. Environ. Res. Lett. 2019, 14, 123006. [Google Scholar] [CrossRef]
- Stocker, T.F.; Qin, D.; Plattner, G.K.; Alexander, L.V.; Allen, S.K.; Bindoff, N.L.; Bréon, F.M.; Church, J.A.; Cubasch, U.; Emori, S.; et al. Technical summary. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK, 2013; pp. 33–115. [Google Scholar]
- Pachauri, R.K.; Allen, M.R.; Barros, V.R.; Broome, J.; Cramer, W.; Christ, R.; Church, J.A.; Clarke, L.; Dahe, Q.; Dasgupta, P.; et al. Climate Change 2014: Synthesis Report; Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- UNFCCC. Adoption of the Paris Agreement. Proposal by the President (Draft Decision); United Nations Office: Geneva, Switzerland, 2015. [Google Scholar]
- Allen, M.R.; Frame, D.J.; Huntingford, C.; Jones, C.D.; Lowe, J.A.; Meinshausen, M.; Meinshausen, N. Warming caused by cumulative carbon emissions towards the trillionth tonne. Nature 2009, 458, 1163–1166. [Google Scholar] [CrossRef] [PubMed]
- Friedlingstein, P.; Andrew, R.M.; Rogelj, J.; Peters, G.P.; Canadell, J.G.; Knutti, R.; Luderer, G.; Raupach, M.R.; Schaeffer, M.; van Vuuren, D.P.; et al. Persistent growth of CO2 emissions and implications for reaching climate targets. Nat. Geosci. 2014, 7, 709–715. [Google Scholar] [CrossRef]
- Huntingford, C.; Mercado, L.M. High chance that current atmospheric greenhouse concentrations commit to warmings greater than 1.5 degrees C over land. Sci. Rep. 2016, 6, 30294. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, D.; Kornhuber, K.; Huntingford, C.; Uhe, P. The day the 2003 European heatwave record was broken Comment. Lancet Planet. Health 2019, 3, E290–E292. [Google Scholar] [CrossRef] [Green Version]
- Orlowsky, B.; Seneviratne, S.I. Global changes in extreme events: Regional and seasonal dimension. Clim. Chang. 2012, 110, 669–696. [Google Scholar] [CrossRef] [Green Version]
- Argueso, D.; Di Luca, A.; Perkins-Kirkpatrick, S.E.; Evans, J.P. Seasonal mean temperature changes control future heat waves. Geophys. Res. Lett. 2016, 43, 7653–7660. [Google Scholar] [CrossRef]
- Perkins, S.E.; Alexander, L.V.; Nairn, J.R. Increasing frequency, intensity and duration of observed global heatwaves and warm spells. Geophys. Res. Lett. 2012, 39, 39. [Google Scholar] [CrossRef]
- Guerreiro, S.B.; Dawson, R.J.; Kilsby, C.; Lewis, E.; Ford, A. Future heat-waves, droughts and floods in 571 European cities. Environ. Res. Lett. 2018, 13, 034009. [Google Scholar] [CrossRef]
- Mora, C.; Dousset, B.; Caldwell, I.R.; Powell, F.E.; Geronimo, R.C.; Bielecki, C.R.; Counsell, C.W.W.; Dietrich, B.S.; Johnston, E.T.; Louis, L.V.; et al. Global risk of deadly heat. Nat. Clim. Chang. 2017, 7, 501–506. [Google Scholar] [CrossRef]
- Forzieri, G.; Cescatti, A.; Batista e Silva, F.; Feyen, L. Increasing risk over time of weather-related hazards to the European population: A data-driven prognostic study. Lancet Planet. Health 2017, 1, e200–e208. [Google Scholar] [CrossRef]
- Christidis, N.; McCarthy, M.; Stott, P.A. The increasing likelihood of temperatures above 30 to 40 degrees C in the United Kingdom. Nat. Commun. 2020, 11, 3093. [Google Scholar] [CrossRef] [PubMed]
- Kendon, M.; McCarthy, M.; Jevrejeva, S.; Matthews, A.; Sparks, T.; Garforth, J. State of the UK Climate 2019. Int. J. Climatol. 2020, 40. [Google Scholar] [CrossRef]
- Stott, P. Attribution Weather risks in a warming world. Nat. Clim. Chang. 2015, 5, 516–517. [Google Scholar] [CrossRef]
- Fischer, E.M.; Knutti, R. Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes. Nat. Clim. Chang. 2015, 5, 560–564. [Google Scholar] [CrossRef]
- McCarthy, M.; Armstrong, L.; Armstrong, N. A new heatwave definition for the UK. Weather 2019, 74, 382–387. [Google Scholar] [CrossRef]
- Herring, S.C.; Christidis, N.; Hoell, A.; Hoerling, M.; Stott, P.A. Introduction to explaining extreme events of 2017 from a climate perspective. Bull. Am. Meteorol. Soc. 2019, 100, S1–S4. [Google Scholar] [CrossRef] [Green Version]
- NOAA National Centers for Environmental Information. State of the Climate: Global Climate Report for July 2019. Miami, Florida: Office of National Oceanic and Atmospheric Administration. Available online: https://www.ncdc.noaa.gov/sotc/global/201907 (accessed on 22 November 2020).
- Public Health England PHE. Heatwave Mortality Monitoring. London: Public Health England. Available online: https://www.gov.uk/government/publications/phe-heatwave-mortality-monitoring (accessed on 22 November 2020).
- Vautard, R.; Van Aalst, M.; Boucher, O.; Drouin, A.; Haustein, K.; Kreienkamp, F.; Van Oldenborgh, G.J.; Otto, F.E.L.; Ribes, A.; Robin, Y.; et al. Human contribution to the record-breaking June and July 2019 heatwaves in Western Europe. Environ. Res. Lett. 2020, 15, 94077. [Google Scholar] [CrossRef]
- De Villiers, M.P. Europe extreme heat 22–26 July 2019: Was it caused by subsidence or advection? Weather 2020, 13. [Google Scholar] [CrossRef]
- Kovats, R.S.; Hajat, S. Heat stress and public heaFlth: A critical review. Annu. Rev. Public Health 2008, 29, 41–55. [Google Scholar] [CrossRef] [PubMed]
- Bennett, J.E.; Blangiardo, M.; Fecht, D.; Elliott, P.; FEzzati, M. Vulnerability to the mortality effects of warm temperature in the districts of England and Wales. Nat. Clim. Chang. 2014, 4, 269–273. [Google Scholar] [CrossRef]
- Green, H.K.; Andrews, N.; Armstrong, B.; Bickler, G.; Pebody, R. Mortality during the 2013 heatwave in England-How did it compare to previous heatwaves? A retrospective observational study. Environ. Res. 2016, 147, 343–349. [Google Scholar] [CrossRef] [PubMed]
- Johnson, H.; Kovats, S.; McGregor, G.; Stedman, J.; Gibbs, M.; Walton, H.A.; Cook, L.; Blace, E.C.L. The impact of the 2003 heat wave on mortality and hospital admissions in England. Epidemiology 2004, 15, S126. [Google Scholar] [CrossRef] [Green Version]
- Public Health England Heatwave Plan for England. London: Public Health England. Available online: https://www.gov.uk/government/publications/heatwave-plan-for-england (accessed on 22 November 2020).
- Elliot, A.J.; Bone, A.; Morbey, R.; Hughes, H.E.; Harcourt, S.; Smith, S.; Loveridge, P.; Green, H.K.; Pebody, R.; Andrews, N.; et al. Using real-time syndromic surveillance to assess the health impact of the 2013 heatwave in England. Environ. Res. 2014, 135, 31–36. [Google Scholar] [CrossRef]
- Green, H.K.; Andrews, N.J.; Bickler, G.; Pebody, R.G. Rapid estimation of excess mortality: Nowcasting during the heatwave alert in England and Wales in June 2011. J. Epidemiol. Community Health 2012, 66, 866–868. [Google Scholar] [CrossRef] [Green Version]
- Martiello, M.A.; Giacchi, M.V. High temperatures and health outcomes: A review of the literature. Scand. J. Public Health 2010, 38, 826–837. [Google Scholar] [CrossRef]
- Vandentorren, S.; Bretin, P.; Zeghnoun, A.; Mandereau-Bruno, L.; Croisier, A.; Cochet, C.; Ribéron, J.; Siberan, I.; Declercq, B.; Ledrans, M. August 2003 heat wave in France: Risk factors for death of elderly people living at home. Eur. J. Public Health 2006, 16, 583–591. [Google Scholar] [CrossRef] [Green Version]
- Li, M.M.; Gu, S.H.; Bi, P.; Yang, J.; Liu, Q.Y. Heat Waves and Morbidity: Current Knowledge and Further Direction-A Comprehensive Literature Review. Int. J. Environ. Res. Public Health 2015, 12, 5256–5283. [Google Scholar] [CrossRef] [Green Version]
- Nelson, N.G.; Collins, C.L.; Comstock, D.; McKenzie, L.B. Exertional Heat-Related Injuries Treated in Emergency Departments in the U.S.; 1997–2006. Am. J. Prev. Med. 2011, 40, 54–60. [Google Scholar] [CrossRef]
- Sherwood, S.C.; Huber, M. An adaptability limit to climate change due to heat stress. Proc. Natl. Acad. Sci. USA 2010, 107, 9552–9555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McNab, B.K. The Physiological Ecology of Vertebrates: A View from Energetics; Cornell Univ Press: Ithaca, NY, USA, 2002; p. 525. [Google Scholar]
- Mehnert, P.; Malchaire, J.; Kampmann, B.; Piette, A.; Griefahn, B.; Gebhardt, H. Prediction of the average skin temperature in warm and hot environments. Eur. J. Appl. Physiol. 2000, 82, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Raymond, C.; Matthews, T.; Horton, R.M. The emergence of heat and humidity too severe for human tolerance. Sci. Adv. 2020, 6, eaaw1838. [Google Scholar] [CrossRef]
- Robine, J.M.; Cheung, S.L.K.; Le Roy, S.; Van Oyen, H.; Griffiths, C.; Michel, J.P.; Herrmannd, F.R. Death toll exceeded 70,000 in Europe during the summer of 2003. Comptes Rendus Biol. 2008, 331, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Met Office Heat-Health Watch Service. Available online: https://www.metoffice.gov.uk/weather/warnings-and-advice/seasonal-advice/heat-health-watch-service (accessed on 22 November 2020).
- Public Health England. All-Cause Mortality Surveillance. London: Public Helath England. Available online: https://www.gov.uk/government/collections/all-cause-mortality-surveillance (accessed on 22 November 2020).
- Office for National Statistics. Deaths Registered Weekly in England and Wales. Newport, South Wales: Office for National Statistics. Available online: https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/datasets/weeklyprovisionalfiguresondeathsregisteredinenglandandwales (accessed on 22 November 2020).
- Office for National Statistics. Quarterly Mortality, England. Newport, South Wales: Office for National Statistics. Available online: https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/datasets/quarterlymortalityreportsanalysis (accessed on 23 November 2020).
- Watts, J.D.; Kalkstein, L.S. The development of a warm-weather relative stress index for environmental applications. J. Appl. Meteorol. 2004, 43, 503–513. [Google Scholar] [CrossRef] [Green Version]
- Sheridan, S.C.; Kalkstein, L.S. Progress in heat watch–warning system technology. Bull. Am. Meteorol. Soc. 2004, 85, 1931–1942. [Google Scholar] [CrossRef]
- Vaneckova, P.; Neville, G.; Tippett, V.; Aitken, P.; FitzGerald, G.; Tong, S. Do biometeorological indices improve modeling outcomes of heat-related mortality? J. Appl. Meteorol. Climatol. 2011, 50, 1165–1176. [Google Scholar] [CrossRef]
- Rooney, C.; McMichael, A.J.; Kovats, R.S.; Coleman, M.P. Excess mortality in England and Wales, and in Greater London, during the 1995 heatwave. J. Epidemiol. Community Health 1998, 52, 482–486. [Google Scholar] [CrossRef] [Green Version]
- Office for National Statistics. Impact of registration delays on mortality statistics in England and Wales: 2018. Wales: Office for National Statistics. Available online: https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/articles/impactofregistrationdelaysonmortalitystatisticsinenglandandwales/2018 (accessed on 22 November 2020).
- Office for National Statistics. Quarterly Mortality Report, England: April to June 2019, Deaths data sources. Newport, South Wales: Office for National Statistics. Available online: https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/articles/quarterlymortalityreports/apriltojune2019#measuring-these-data (accessed on 22 November 2020).
- Williams, L.; Erens, B.; Ettelt, S.; Hajat, S.; Manacorda, T.; Mays, N. Evaluation of the Heatwave Plan for England; Policy Innovation and Evaluation Research Unit: London, UK, 2019. [Google Scholar]
- Mai, F.; Del Pinto, R.; Ferri, C. COVID-19 and cardiovascular diseases. J. Cardiol. 2020, 76, 453–458. [Google Scholar] [CrossRef]
- Met Office. Hadley Centre Central England Temperature Data. Available online: https://www.metoffice.gov.uk/hadobs/hadcet/data/download.html (accessed on 22 November 2020).
- Parker, D.E.; Legg, T.P.; Folland, C.K. A new daily Central England Temperature series, 1772–1991. Int. J. Climatol. 1992, 12, 317–342. [Google Scholar] [CrossRef]
- Ederer, F. The relative survival rate: A statistical methodology. NCI Monogr. 1961, 6, 101–121. [Google Scholar]
- Petkova, E.P.; Vink, J.K.; Horton, R.M.; Gasparrini, A.; Bader, D.A.; Francis, J.D.; Kinney, P.L. Towards more comprehensive projections of urban heat-related mortality: Estimates for New York City under multiple population, adaptation, and climate scenarios. Environ. Health Perspect. 2017, 125, 47–55. [Google Scholar] [CrossRef] [Green Version]
- Tong, S.; Wang, X.Y.; Guo, Y. Assessing the short-term effects of heatwaves on mortality and morbidity in Brisbane, Australia: Comparison of case-crossover and time series analyses. PLoS ONE 2012, 7, e37500. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Barnett, A.G.; Tong, S. Spatiotemporal model or time series model for assessing city-wide temperature effects on mortality? Environ. Res. 2013, 120, 55–62. [Google Scholar] [CrossRef]
- Elie, C.; De Rycke, Y.; Jais, J.P.; Landais, P. Appraising relative and excess mortality in population-based studies of chronic diseases such as end-stage renal disease. Clin. Epidemiol. 2011, 3, 157. [Google Scholar] [CrossRef] [Green Version]
- Anderson, G.B.; Bell, M.L. Heat waves in the United States: Mortality risk during heat waves and effect modification by heat wave characteristics in 43 US communities. Environ. Health Perspect. 2011, 119, 210–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hajat, S.; Kosatky, T. Heat-related mortality: A review and exploration of heterogeneity. J. Epidemiol. Community Health 2010, 64, 753–760. [Google Scholar] [CrossRef] [PubMed]
- Fouillet, A.; Rey, G.; Laurent, F.; Pavillon, G.; Bellec, S.; Guihenneuc-Jouyaux, C.; Jougla, E.; Hémon, E. Excess mortality related to the August 2003 heat wave in France. Int. Arch. Occup. Environ. Health 2006, 80, 16–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheridan, S.; Lin, S. Assessing Variability in the Impacts of Heat on Health Outcomes in New York City Over Time, Season, and Heat-Wave Duration. Ecohealth 2014, 11, 512–525. [Google Scholar] [CrossRef]
- Urban, A.; Kysely, J.; Plavcova, E.; Hanzlikova, H.; Stepanek, P. Temporal changes in years of life lost associated with heat waves in the Czech Republic. Sci. Total Environ. 2020, 716. [Google Scholar] [CrossRef]
- Hondula, D.M.; Balling, R.C.; Vanos, J.K.; Georgescu, M. Rising Temperatures, Human Health, and the Role of Adaptation. Curr. Clim. Chang. Rep. 2015, 1, 144–154. [Google Scholar] [CrossRef] [Green Version]
- Vicedo-Cabrera, A.M.; Guo, Y.M.; Sera, F.; Huber, V.; Schleussner, C.F.; Mitchell, D.; Tong, S.; de Sousa Zanotti Stagliorio Coelho, M.; Saldiva, P.H.N.; Lavigne, E.; et al. Temperature-related mortality impacts under and beyond Paris Agreement climate change scenarios. Clim. Chang. 2018, 150, 391–402. [Google Scholar] [CrossRef] [Green Version]
- Armstrong, B.; Gasparrini, A.; Hajat, S. Estimating mortality displacement during and after heat waves. Am. J. Epidemiol. 2014, 179, 1405–1406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perkins, S.E.; Alexander, L.V. On the measurement of heat waves. J. Clim. 2013, 26, 4500–4517. [Google Scholar] [CrossRef]
- Toloo, G.; FitzGerald, G.; Aitken, P.; Verrall, K.; Tong, S.L. Evaluating the effectiveness of heat warning systems: Systematic review of epidemiological evidence. Int. J. Public Health 2013, 58, 667–681. [Google Scholar] [CrossRef] [PubMed]
- Henderson, S.B.; Wan, V.; Kosatsky, T. Differences in heat-related mortality across four ecological regions with diverse urban, rural, and remote populations in British Columbia, Canada. Health Place 2013, 23, 48–53. [Google Scholar] [CrossRef] [Green Version]
- Harshfield, A.; Abel, G.A.; Barclay, S.; Payne, R.A. Do GPs accurately record date of death? A UK observational analysis. BMJ Supportive Palliat. Care 2020, 10. [Google Scholar] [CrossRef] [Green Version]
- Sera, F.; Armstrong, B.; Tobias, A.; Vicedo-Cabrera, A.M.; Åström, C.; Bell, M.L.; Chen, B.-Y.; De, M.; Zanotti, S.; Coelho, M.S.Z.S.; et al. How urban characteristics affect vulnerability to heat and cold: A multi-country analysis. Int. J. Epidemiol. 2019, 48, 1101–1112. [Google Scholar] [CrossRef] [Green Version]
- Arbuthnott, K.G.; Hajat, S. The health effects of hotter summers and heat waves in the population of the United Kingdom: A review of the evidence. Environ. Health 2017, 16, 119. [Google Scholar] [CrossRef] [Green Version]
- Kalisa, E.; Fadlallah, S.; Amani, M.; Nahayo, L.; Habiyaremye, G. Temperature and air pollution relationship during heatwaves in Birmingham, UK. Sustain. Cities Soc. 2018, 43, 111–120. [Google Scholar] [CrossRef] [Green Version]
- Analitis, A.; Michelozzi, P.; D’Ippoliti, D.; De’Donato, F.; Menne, B.; Matthies, F.; Lefranc, A. Effects of heat waves on mortality: Effect modification and confounding by air pollutants. Epidemiology 2014, 25, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Stedman, J.R. The predicted number of air pollution related deaths in the UK during the August 2003 heatwave. Atmos. Environ. 2004, 38, 1087–1090. [Google Scholar] [CrossRef]
- Heaviside, C.; Vardoulakis, S.; Cai, X.M. Attribution of mortality to the urban heat island during heatwaves in the West Midlands, UK. Environ. Health 2016, 15, 49–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, M.; Carmichael, C.; Murray, V.; Dengel, A.; Swainson, M. Defining indoor heat thresholds for health in the UK. Perspect. Public Health 2013, 133, 158–164. [Google Scholar] [CrossRef]
- Cui, J.; Arbab-Zadeh, A.; Prasad, A.; Durand, S.; Levine, B.D.; Crandall, C.G. Effects of heat stress on thermoregulatory responses in congestive heart failure patients. Circulation 2005, 112, 2286–2292. [Google Scholar] [CrossRef] [Green Version]
- Huang, W.; Kan, H.; Kovats, S. The impact of the 2003 heat wave on mortality in Shanghai, China. Sci. Total Environ. 2010, 408, 2418–2420. [Google Scholar] [CrossRef]
- Lowe, D.; Ebi, K.L.; Forsberg, B. Heatwave Early Warning Systems and Adaptation Advice to Reduce Human Health Consequences of Heatwaves. Int. J. Environ. Res. Public Health 2011, 8, 4623–4648. [Google Scholar] [CrossRef] [Green Version]
- Smith, K.; Woodward, A.; Campbell-Lendrum, D.; Chadee, D.; Honda, Y.; Liu, Q.; Olwoch, J.; Revich, B.; Sauerborn, R.; Aranda, C.; et al. Human health: Impacts, adaptation, and co-benefits. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 1st ed.; Field, C.B., Barros, V., Dokken, D.J., Eds.; Cambridge University Press: Cambridge, UK, 2014; pp. 709–754. [Google Scholar]
- Watts, N.; Amann, M.; Ayeb-Karlsson, S.; Belesova, K.; Bouley, T.; Boykoff, M.; Byass, P.; Cai, W.; Campbell-Lendrum, D.; Chambers, J.; et al. The Lancet Countdown on health and climate change: From 25 years of inaction to a global transformation for public health. Lancet 2018, 391, 581–630. [Google Scholar] [CrossRef]
Heatwave Period | Average Deaths 2014–2018 | Total Deaths | 95% Confidence Limits | Total Excess Deaths | 95% Confidence Limits | PHE Heatwave Mortality Monitoring Excess Deaths |
---|---|---|---|---|---|---|
28–30 June | 3556 | 3369 | 3048 to 3690 | 0 | −508 to 134 | 0 |
21–28 July | 9471 | 9632 | 8720 to 10,500 | 161 | −751 to 1053 | 572 |
23–29 Aug | 8334 | 8267 | 7826 to 8708 | 0 | −508 to 374 | 320 |
Total | 17,805 | 17,899 | 161 | 892 |
Heatwave Period | Average Deaths 2013–2017 | Total Deaths | 95% Confidence Limits | Total Excess Deaths | 95% Confidence Limits | PHE Heatwave Mortality Monitoring Excess Deaths |
---|---|---|---|---|---|---|
25–27 June | 3755 | 4117 | 3844 to 4389 | 362 | 89 to 634 | 188 |
30 June–10 July | 14,080 | 14,538 | 14,056 to 15,015 | 458 | −24 to 935 | 266 |
21–29 July | 11,206 | 11,851 | 11,127 to 12,575 | 645 | −79 to 1369 | 409 |
2–9 August | 10,053 | 10,298 | 9808 to 10,788 | 235 | −255 to 725 | 0 |
Total | 39,094 | 40,804 | 1700 | 863 |
Heatwave Period | Average Deaths 2012–2016 | Total Deaths | 95% Confidence Limits | Total Excess Deaths | 95% Confidence Limits | PHE Heatwave Mortality Monitoring Excess Deaths |
---|---|---|---|---|---|---|
17–23 June | 8216 | 9237 | 8730 to 9928 | 1113 | 514 to 1712 | 598 |
5–7 July | 3528 | 3904 | 3724 to 4084 | 376 | 196 to 556 | 180 |
Total | 11,744 | 13,141 | 1489 | 778 |
Year | Total Deaths | Expected Deaths | Excess Deaths |
---|---|---|---|
2019 | 122,257 | 128,087 | 0 (−5830) |
2018 | 126,627 | 126,115 | 0 (−1506) |
2017 | 129,998 | 126,059 | 3939 |
Week Number | Week Ended | Death Registrations | Death Occurrences |
---|---|---|---|
22 | 1 June 2019 | 7722 | 8121 |
23 | 7 June 2019 | 9489 | 8018 |
24 | 14 June 2019 | 8826 | 8003 |
25 | 21 June 2019 | 8895 | 8002 |
26 | 28 June 2019 | 8918 | 7874 |
27 | 5 July 2019 | 8499 | 8036 |
28 | 12 July 2019 | 8557 | 8024 |
29 | 19 July 2019 | 8509 | 7960 |
30 | 26 July 2019 | 8537 | 8647 |
31 | 2 August 2019 | 8666 | 7617 |
32 | 9 August 2019 | 8555 | 8036 |
33 | 16 August 2019 | 8467 | 7667 |
34 | 23 August 2019 | 8421 | 7848 |
35 | 30 August 2019 | 7655 | 8239 |
36 | 6 September 2019 | 9087 | 7856 |
37 | 13 September 2019 | 8924 | 8163 |
38 | 20 September 2019 | 8837 | 8033 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rustemeyer, N.; Howells, M. Excess Mortality in England during the 2019 Summer Heatwaves. Climate 2021, 9, 14. https://doi.org/10.3390/cli9010014
Rustemeyer N, Howells M. Excess Mortality in England during the 2019 Summer Heatwaves. Climate. 2021; 9(1):14. https://doi.org/10.3390/cli9010014
Chicago/Turabian StyleRustemeyer, Natasha, and Mark Howells. 2021. "Excess Mortality in England during the 2019 Summer Heatwaves" Climate 9, no. 1: 14. https://doi.org/10.3390/cli9010014
APA StyleRustemeyer, N., & Howells, M. (2021). Excess Mortality in England during the 2019 Summer Heatwaves. Climate, 9(1), 14. https://doi.org/10.3390/cli9010014