Future Hydrology of the Cryospheric Driven Lake Como Catchment in Italy under Climate Change Scenarios
Abstract
:1. Introduction
2. Case study, and Methods
2.1. LakeComo Catchment
2.2. Hydrological Modelling
2.3. Input Data
2.4. Hydropower Reservoir Modelling
2.5. Hydrological Projections
3. Results
3.1. Poli-Hydro Set up, and Performance
3.2. Simulation with Hydropower Regulation
3.3. Flow Components in the Lake Como Upstream Catchment
3.4. Analysis of Climate Change Scenarios
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Beniston, M.; Stoffel, M. Assessing the impacts of climatic change on mountain water resources. Sci. Total Environ. 2014, 493, 1129–1137. [Google Scholar] [CrossRef] [PubMed]
- Rottler, E.; Kormann, C.; Francke, T.; Bronstert, A. Elevation-dependent warming in the Swiss Alps 1981–2017: Features, forcings and feedbacks. Int. J. Climatol. 2019, 39, 2556–2568. [Google Scholar] [CrossRef]
- EEA Regional climate change and adaptation. In Report of EEA No. 8/2009; EEA: Copenhagen, Denmark, 2009; Volume 8, p. 148.
- Bocchiola, D. Long term (1921–2011) hydrological regime of Alpine catchments in Northern Italy. Adv. Water Resour. 2014, 70, 51–64. [Google Scholar] [CrossRef]
- Diolaiuti, G.; Bocchiola, D.; D’agata, C.; Smiraglia, C. Evidence of climate change impact upon glaciers’ recession within the Italian Alps: The case of Lombardy glaciers. Theor. Appl. Climatol. 2012, 109, 429–445. [Google Scholar] [CrossRef]
- Bocchiola, D.; Groppelli, B. Spatial estimation of snow water equivalent at different dates within the Adamello Park of Italy. Cold Reg. Sci. Technol. 2010, 63, 97–109. [Google Scholar] [CrossRef]
- Beniston, M.; Diaz, H.F.; Bradley, R.S. Climatic change at high elevation sites: An overview. Clim. Chang. 1997, 36, 233–251. [Google Scholar] [CrossRef]
- Soncini, A.; Bocchiola, D. Assessment of future snowfall regimes within the italian alps using general circulation models. Cold Reg. Sci. Technol. 2011, 68, 113–123. [Google Scholar] [CrossRef]
- D’Agata, C.; Diolaiuti, G.; Maragno, D.; Smiraglia, C.; Pelfini, M. Climate change effects on landscape and environment in glacierized Alpine areas: Retreating glaciers and enlarging forelands in the Bernina group (Italy) in the period 1954–2007. Geol. Ecol. Landsc. 2020, 4, 71–86. [Google Scholar] [CrossRef]
- Baroni, C.; Salvatore, M.C.; Alderighi, L.; Gennaro, S.; Zanoner, T.; Carton, A.; Zorzi, M.; Giardino, M.; Bertotto, S.; Perotti, L. 8 The changing Italian glaciers. Nextdata—Climate and Environmental Changes in the Italian Mountains. 2015. Available online: http://www.nextdataproject.it/sites/default/files/docs/Chapter-8-Baroni.pdf (accessed on 4 December 2020).
- Diolaiuti, G.A.; Maragno, D.; D’Agata, C.; Smiraglia, C.; Bocchiola, D. Glacier retreat and climate change: Documenting the last 50 years of alpine glacier history from area and geometry changes of dosdè piazzi glaciers (Lombardy Alps, Italy). Prog. Phys. Geogr. 2011, 35, 161–182. [Google Scholar] [CrossRef]
- Barnett, T.P.; Adam, J.C.; Lettenmaier, D.P. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 2005, 438, 303–309. [Google Scholar] [CrossRef]
- Bocchiola, D.; Mihalcea, C.; Diolaiuti, G.; Mosconi, B.; Smiraglia, C.; Rosso, R. Flow prediction in high altitude ungauged catchments: A case study in the Italian Alps (Pantano Basin, Adamello Group). Adv. Water Resour. 2010, 33, 1224–1234. [Google Scholar] [CrossRef]
- Paul, F.; Rastner, P.; Azzoni, R.S.; Diolaiuti, G.; Fugazza, D.; Le Bris, R.; Nemec, J.; Rabatel, A.; Ramusovic, M.; Schwaizer, G.; et al. Glacier shrinkage in the Alps continues unabated as revealed by a new glacier inventory from Sentinel-2. Earth Syst. Sci. Data 2020, 12, 1805–1821. [Google Scholar] [CrossRef]
- Haeberli, W.; Beniston, M. Climate change and its impacts on glaciers and permafrost in the Alps. Ambio 1998, 27, 258–265. [Google Scholar] [CrossRef]
- Anghileri, D.; Pianosi, F.; Soncini-Sessa, R. A framework for the quantitative assessment of climate change impacts on water-related activities at the basin scale. Hydrol. Earth Syst. Sci. 2011, 15, 2025–2038. [Google Scholar] [CrossRef] [Green Version]
- Griessinger, N.; Schirmer, M.; Helbig, N.; Winstral, A.; Michel, A.; Jonas, T. Implications of observation-enhanced energy-balance snowmelt simulations for runoff modeling of Alpine catchments. Adv. Water Resour. 2019, 133, 103410. [Google Scholar] [CrossRef]
- Coppola, E.; Verdecchia, M.; Giorgi, F.; Colaiuda, V.; Tomassetti, B.; Lombardi, A. Changing hydrological conditions in the Po basin under global warming. Sci. Total Environ. 2014, 493, 1183–1196. [Google Scholar] [CrossRef] [PubMed]
- Pianosi, F.; Ravazzani, G. Assessing rainfall-runoff models for the management of Lake Verbano. Hydrol. Process. 2010, 24, 3195–3205. [Google Scholar] [CrossRef]
- Ravazzani, G.; Barbero, S.; Salandin, A.; Senatore, A.; Mancini, M. An integrated Hydrological Model for Assessing Climate Change Impacts on Water Resources of the Upper Po River Basin. Water Resour. Manag. 2014, 29, 1193–1215. [Google Scholar] [CrossRef]
- Groppelli, B.; Soncini, A.; Bocchiola, D.; Rosso, R. Evaluation of future hydrological cycle under climate change scenarios in a mesoscale Alpine watershed of Italy. Nat. Hazards Earth Syst. Sci. 2011, 11, 1769. [Google Scholar] [CrossRef] [Green Version]
- Giuliani, M.; Zaniolo, M.; Castelletti, A.; Davoli, G.; Block, P. Detecting the State of the Climate System via Artificial Intelligence to Improve Seasonal Forecasts and Inform Reservoir Operations. Water Resour. Res. 2019, 55, 9133–9147. [Google Scholar] [CrossRef]
- Denaro, S.; Castelletti, A.; Giuliani, M.; Characklis, G.W. Fostering cooperation in power asymmetrical water systems by the use of direct release rules and index-based insurance schemes. Adv. Water Resour. 2018, 115, 301–314. [Google Scholar] [CrossRef]
- Anghileri, D.; Botter, M.; Castelletti, A.; Weigt, H.; Burlando, P. A Comparative Assessment of the Impact of Climate Change and Energy Policies on Alpine Hydropower. Water Resour. Res. 2018, 54, 9144–9161. [Google Scholar] [CrossRef] [Green Version]
- Denaro, S.; Anghileri, D.; Giuliani, M.; Castelletti, A. Informing the operations of water reservoirs over multiple temporal scales by direct use of hydro-meteorological data. Adv. Water Resour. 2017, 103, 51–63. [Google Scholar] [CrossRef] [Green Version]
- Giuliani, M.; Castelletti, A.; Fedorov, R.; Fraternali, P. Using crowdsourced web content for informing water systems operations in snow-dominated catchments. Hydrol. Earth Syst. Sci. 2016, 20, 5049–5062. [Google Scholar] [CrossRef] [Green Version]
- Ravazzani, G.; Ghilardi, M.; Mendlik, T.; Gobiet, A.; Corbari, C.; Mancini, M. Investigation of climate change impact on water resources for an alpine basin in northern italy: Implications for evapotranspiration modeling complexity. PLoS ONE 2014, 9, e109053. [Google Scholar] [CrossRef]
- Giuliani, M.; Castelletti, A. Is robustness really robust? How different definitions of robustness impact decision-making under climate change. Clim. Chang. 2016, 135, 409–424. [Google Scholar] [CrossRef]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef] [Green Version]
- McPhail, C.; Maier, H.R.; Kwakkel, J.H.; Giuliani, M.; Castelletti, A.; Westra, S. Robustness Metrics: How Are They Calculated, When Should They Be Used and Why Do They Give Different Results? Earth’s Future 2018, 6, 169–191. [Google Scholar] [CrossRef]
- D’Agata, C.; Bocchiola, D.; Soncini, A.; Maragno, D.; Smiraglia, C.; Diolaiuti, G.A. Recent area and volume loss of Alpine glaciers in the Adda River of Italy and their contribution to hydropower production. Cold Reg. Sci. Technol. 2018, 148, 172–184. [Google Scholar] [CrossRef]
- Bombelli, G.M.; Soncini, A.; Bianchi, A.; Bocchiola, D. Potentially modified hydropower production under climate change in the Italian Alps. Hydrol. Process. 2019, 33, 2355–2372. [Google Scholar] [CrossRef]
- Soncini, A.; Bocchiola, D.; Azzoni, R.S.; Diolaiuti, G. A methodology for monitoring and modeling of high altitude Alpine catchments. Prog. Phys. Geogr. 2017, 41, 393–420. [Google Scholar] [CrossRef]
- Aili, T.; Soncini, A.; Bianchi, A.; Diolaiuti, G.; D’Agata, C.; Bocchiola, D. Assessing water resources under climate change in high-altitude catchments: A methodology and an application in the Italian Alps. Theor. Appl. Climatol. 2019, 135, 135–156. [Google Scholar] [CrossRef]
- Giudici, F.; Anghileri, D.; Castelletti, A.; Burlando, P. Descriptive or normative: How does reservoir operations modeling influence hydrological simulations under climate change? J. Hydrol. Submitted.
- Akhtar, M.; Ahmad, N.; Booij, M.J. The impact of climate change on the water resources of Hindukush-Karakorum-Himalaya region under different glacier coverage scenarios. J. Hydrol. 2008, 355, 148–163. [Google Scholar] [CrossRef]
- Konz, M.; Uhlenbrook, S.; Braun, L.; Shrestha, A.; Demuth, S. Implementation of a process-based catchment model in a poorly gauged, highly glacierized Himalayan headwater. Hydrol. Earth Syst. Sci. 2007, 11, 1323–1339. [Google Scholar] [CrossRef] [Green Version]
- Ragettli, S.; Pellicciotti, F.; Immerzeel, W.W.; Miles, E.S.; Petersen, L.; Heynen, M.; Shea, J.M.; Stumm, D.; Joshi, S.; Shrestha, A. Unraveling the hydrology of a Himalayan catchment through integration of high resolution in situ data and remote sensing with an advanced simulation model. Adv. Water Resour. 2015, 78, 94–111. [Google Scholar] [CrossRef]
- Bavay, M.; Lehning, M.; Jonas, T.; Lowe, H. Simulations of future snow cover and discharge in Alpine headwater catchments. Hydrol. Process. 2009, 23, 95–108. [Google Scholar] [CrossRef]
- Confortola, G.; Soncini, A.; Bocchiola, D. Climate change will affect hydrological regimes in the Alps. Rev. Géogr. Alp. 2013, 101–103. [Google Scholar] [CrossRef] [Green Version]
- Rosso, R. Nash Model Relation to Horton Order Ratios. Water Resour. Res. 1984, 20, 914–920. [Google Scholar] [CrossRef]
- Martinec, J. Snowmelt-runoff model for stream flow forecasts. Hydrol. Res. 1975, 6, 145–154. [Google Scholar] [CrossRef]
- Ohmura, A. Physical basis for the temperature-based melt-index method. J. Appl. Meteorol. 2001, 40, 753–761. [Google Scholar] [CrossRef]
- Singh, P.; Kumar, N.; Arora, M. Degree-day factors for snow and ice for Dokriani Glacier, Garhwal Himalayas. J. Hydrol. 2000, 235, 1–11. [Google Scholar] [CrossRef]
- Hock, R. Temperature index melt modelling in mountain areas. J. Hydrol. 2003, 282, 104–115. [Google Scholar] [CrossRef]
- Bocchiola, D.; Diolaiuti, G.; Soncini, A.; Mihalcea, C.; D’Agata, C.; Mayer, C.; Lambrecht, A.; Rosso, R.; Smiraglia, C. Prediction of future hydrological regimes in poorly gauged high altitude basins: The case study of the upper Indus, Pakistan. Hydrol. Earth Syst. Sci. 2011, 15, 2059–2075. [Google Scholar] [CrossRef] [Green Version]
- Bocchiola, D.; Soncini, A.; Senese, A.; Diolaiuti, G. Modelling hydrological components of the Rio Maipo of Chile, and their prospective evolution under climate change. Climate 2018, 6, 57. [Google Scholar] [CrossRef] [Green Version]
- Agenzia Regionale per la Protezione Dell’ambiente Della Lombardia. Available online: https://www.arpalombardia.it/Pages/ARPA_Home_Page.aspx (accessed on 9 December 2020).
- Earthdata. Available online: https://earthdata.nasa.gov/ (accessed on 9 December 2020).
- CLC 2018—Copernicus Land Monitoring Service. Available online: https://land.copernicus.eu/pan-european/corine-land-cover/clc2018 (accessed on 9 December 2020).
- GLIMS: Global Land Ice Measurements from Space. Available online: https://www.glims.org/ (accessed on 9 December 2020).
- Snow Cover Extent | Copernicus Global Land Service. Available online: https://land.copernicus.eu/global/products/sce (accessed on 9 December 2020).
- Parajka, J.; Blöschl, G. The value of MODIS snow cover data in validating and calibrating conceptual hydrologic models. J. Hydrol. 2008, 358, 240–258. [Google Scholar] [CrossRef]
- Corbari, C.; Ravazzani, G.; Martinelli, J.; Mancini, M. Elevation based correction of snow coverage retrieved from satellite images to improve model calibration. Hydrol. Earth Syst. Sci. 2009, 13. [Google Scholar] [CrossRef] [Green Version]
- Soncini-Sessa, R.; Weber, E.; Castelletti, A. Integrated and Participatory Water Resources Management Theory. Available online: https://books.google.it/books?hl=it&lr=&id=f_W2iS9aRq4C&oi=fnd&pg=PP1&dq=integrated+and+participatory+water+resource+management&ots=z7jwIb6mBl&sig=FPkyWxpypyGQbvliUEB8_lk07lA#v=onepage&q=integratedandparticipatorywaterresourcemanagement&f=false (accessed on 4 December 2020).
- Castelletti, A.; Pianosi, F.; Soncini-Sessa, R. Water reservoir control under economic, social and environmental constraints. Automatica 2008, 44, 1595–1607. [Google Scholar] [CrossRef]
- Giudici, F.; Anghileri, D.; Castelletti, A.; Burlando, P. Advancing Reservoir Operation Description in Physically Based Hydrological Models. MS Thesis. Politec. di Milano. 2016. Available online: https://ui.adsabs.harvard.edu/abs/2016EGUGA.1810097A/abstract (accessed on 4 December 2020).
- Groppelli, B.; Bocchiola, D.; Rosso, R. Spatial downscaling of precipitation from GCMs for climate change projections using random cascades: A case study in Italy. Water Resour. Res. 2011, 47, W03519. [Google Scholar] [CrossRef]
- EC-Earth Consortium (EC-Earth) EC-Earth-Consortium EC-Earth3-Veg Model Output Prepared for CMIP6 ScenarioMIP’. Version 22/10/2020. Earth Syst. Grid Fed. 2019. Available online: https://cera-www.dkrz.de/WDCC/ui/cerasearch/cmip6?input=CMIP6.ScenarioMIP.EC-Earth-Consortium.EC-Earth3-Veg (accessed on 4 December 2020).
- Danabasoglu, G.; Lamarque, J.F.; Bacmeister, J.; Bailey, D.A.; DuVivier, A.K.; Edwards, J.; Emmons, L.K.; Fasullo, J.; Garcia, R.; Gettelman, A.; et al. The Community Earth System Model Version 2 (CESM2). J. Adv. Model. Earth Syst. 2020, 12, e2019MS001916. [Google Scholar] [CrossRef] [Green Version]
- Mauritsen, T.; Bader, J.; Becker, T.; Behrens, J.; Bittner, M.; Brokopf, R.; Brovkin, V.; Claussen, M.; Crueger, T.; Esch, M.; et al. Developments in the MPI-M Earth System Model version 1.2 (MPI-ESM1.2) and Its Response to Increasing CO2. J. Adv. Model. Earth Syst. 2019, 11, 998–1038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Neill, B.C.; Tebaldi, C.; Van Vuuren, D.P.; Eyring, V.; Friedlingstein, P.; Hurtt, G.; Knutti, R.; Kriegler, E.; Lamarque, J.F.; Lowe, J.; et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 2016, 9, 3461–3482. [Google Scholar] [CrossRef] [Green Version]
Parameter | Unit | Description | Value | Method |
---|---|---|---|---|
DDS | [mmd−1 °C−1] | Degree Day Snow | 3.4 | Nivometer, MODIS |
DDI | [mmd−1 °C−1] | Degree Day Ice | 5 | Literature [32] |
tg, ts | [d] | Lag times, ground/surface | 150, 140 | Hydrograph |
ng, ns | [-] | Reservoirs, ground/surface | 3, 3 | Literature [32,33,34] |
K | [mmd−1] | Saturated conductivity | 3 | Calibration |
k | [-] | Ground flow exponent | 1 | Calibration |
θw, θs | [-] | Water content, wilting, field capacity | 0.15, 0.45 | Literature [32,33,34] |
Ks | [m−3y−1] | Ice flow basal sliding coeff. | 1.5e−21 | Literature [33] |
Kd | [m−3y−1] | Ice flow internal deformation coeff. | 1.9e−25 | Literature [33] |
Lake Inlet | Fuentes | Samolaco | |
---|---|---|---|
Area [km2] | 4438 | 2598 | 757 |
Calibration 2002–2018 | Validation 2003–2018 | Validation 2009–2018 | |
Bias [%] | +2.15% | −2.11% | +8.54% |
NSE monthly [-] | 0.77 | 0.69 | 0.80 |
NSE daily [-] | 0.64 | 0.53 | 0.32 |
Variation of Total Glaciers Volume [Δ%] | ||
---|---|---|
2051–2060 | 2091–2100 | |
earth26 | −56.79 | −57.27 |
earth45 | −55.43 | −60.64 |
earth70 | −57.92 | −72.45 |
earth85 | −58.04 | −77.62 |
cesm26 | −49.28 | −50.35 |
cesm45 | −49.19 | −51.68 |
cesm70 | −49.76 | −52.93 |
cesm85 | −51.67 | −57.12 |
echam26 | −52.43 | −51.31 |
echam45 | −53.08 | −52.94 |
echam70 | −53.49 | −54.35 |
echam85 | −52.04 | −56.34 |
2051–2060 | 2091–2100 | |||||||
---|---|---|---|---|---|---|---|---|
Rain [%] | Snow [%] | Ice [%] | Q Mean [m3/s] | Rain [%] | Snow [%] | Ice [%] | Q Mean [m3/s] | |
earth26 | 82.74 | 16.80 | 0.45 | 140.43 | 82.42 | 17.51 | 0.07 | 141.08 |
earth45 | 85.66 | 13.52 | 0.82 | 145.55 | 84.58 | 15.16 | 0.26 | 139.09 |
earth70 | 85.56 | 13.63 | 0.81 | 143.24 | 89.68 | 9.07 | 1.25 | 143.24 |
earth85 | 86.35 | 13.03 | 0.62 | 160.10 | 89.92 | 8.61 | 1.47 | 141.21 |
cesm26 | 81.65 | 17.63 | 0.72 | 153.35 | 82.39 | 17.55 | 0.07 | 166.88 |
cesm45 | 84.28 | 14.78 | 0.94 | 140.25 | 84.59 | 15.32 | 0.09 | 143.91 |
cesm70 | 84.57 | 14.64 | 0.79 | 159.59 | 84.64 | 15.17 | 0.19 | 137.68 |
cesm85 | 85.79 | 13.44 | 0.76 | 155.66 | 90.26 | 9.00 | 0.74 | 142.15 |
echam26 | 84.82 | 14.68 | 0.49 | 139.22 | 82.13 | 17.83 | 0.05 | 148.90 |
echam45 | 84.85 | 14.63 | 0.52 | 140.84 | 85.72 | 14.18 | 0.10 | 133.90 |
echam70 | 86.43 | 13.13 | 0.44 | 158.58 | 88.45 | 11.37 | 0.18 | 144.68 |
echam85 | 84.76 | 14.36 | 0.88 | 137.79 | 90.08 | 9.33 | 0.59 | 129.16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fuso, F.; Casale, F.; Giudici, F.; Bocchiola, D. Future Hydrology of the Cryospheric Driven Lake Como Catchment in Italy under Climate Change Scenarios. Climate 2021, 9, 8. https://doi.org/10.3390/cli9010008
Fuso F, Casale F, Giudici F, Bocchiola D. Future Hydrology of the Cryospheric Driven Lake Como Catchment in Italy under Climate Change Scenarios. Climate. 2021; 9(1):8. https://doi.org/10.3390/cli9010008
Chicago/Turabian StyleFuso, Flavia, Francesca Casale, Federico Giudici, and Daniele Bocchiola. 2021. "Future Hydrology of the Cryospheric Driven Lake Como Catchment in Italy under Climate Change Scenarios" Climate 9, no. 1: 8. https://doi.org/10.3390/cli9010008
APA StyleFuso, F., Casale, F., Giudici, F., & Bocchiola, D. (2021). Future Hydrology of the Cryospheric Driven Lake Como Catchment in Italy under Climate Change Scenarios. Climate, 9(1), 8. https://doi.org/10.3390/cli9010008