Site Selection for a Network of Weather Stations Using AHP and Near Analysis in a GIS Environment in Amazonas, NW Peru
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methodological Design
2.3. Criteria and Criteria Thresholds for Selecting a Suitable Site
2.4. Mapping of Sub-Criteria for Selecting a Suitable Site
2.5. Determination of Importance Weights of Criteria and Sub-Criteria
2.6. Sub-Model Generation and Suitability Modelling
2.7. Near Analysis (NA) to Select WS Sites
3. Results
3.1. Importance of Criteria and Sub-Criteria
3.2. Maps of Sub-Criteria Based on Levels of Land Suitability
3.3. Suitability Sub-Model Maps
3.4. Relocation of WS and the Selection of Sites for New WS
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WMO. Medición de variables meteorlógicas. In Guía de Instrumentos y Métodos de Observación Meteorológicos; WMO: Genève, Switzerland, 2017; p. 773. ISBN 978-92-63-30008-9. [Google Scholar]
- Yildirim, V.; Nisanci, R.; Colak, E.H.; Yildiz, O. A GIS-based siting technique for automatic weather stations in Trabzon, Turkey. Weather 2016, 71, 43–49. [Google Scholar] [CrossRef]
- Lagouvardos, K.; Kotroni, V.; Bezes, A.; Koletsis, I.; Kopania, T.; Lykoudis, S.; Mazarakis, N.; Papagiannaki, K.; Vougioukas, S. The automatic weather stations NOANN network of the National Observatory of Athens: Operation and database. Geosci. Data J. 2017, 4, 4–16. [Google Scholar] [CrossRef]
- Dou, Y.; Chen, X.; Bao, A.; Li, L. The simulation of snowmelt runoff in the ungauged Kaidu River Basin of TianShan Mountains, China. Environ. Earth Sci. 2011, 62, 1039–1045. [Google Scholar] [CrossRef]
- Guedes, E.; de Lima, P.M.; de Oliveira, M.B.L. Neural Networks for Time Series Rainfall Forecasting: A Case Study in Manaus, Amazonas. In Proceedings of the XIII Encontro Nacional de Inteligencia Artificial e Computacional; SBC ENIAC: Recife, Brazil, 2016; pp. 337–348. [Google Scholar]
- Gentilucci, M.; Barbieri, M.; Burt, P.; D’Aprile, F. Preliminary Data Validation and Reconstruction of Temperature and Precipitation in Central Italy. Geosciences 2018, 8, 202. [Google Scholar] [CrossRef] [Green Version]
- Baltas, E.A.; Mimikou, M.A. GIS-based optimisation of the hydrometeorological network in Greece. Int. J. Digit. Earth 2009, 2, 171–185. [Google Scholar] [CrossRef]
- Rascón, J.; Gosgot Angeles, W.; Quiñones Huatangari, L.; Oliva, M.; Barrena Gurbillón, M.Á. Dry and Wet Events in Andean Populations of Northern Peru: A Case Study of Chachapoyas, Peru. Front. Environ. Sci. 2021, 9, 54. [Google Scholar] [CrossRef]
- Daneshvar, F.; Frankenberger, J.R.; Bowling, L.C.; Cherkauer, K.A.; Moraes, A.G.D.L. Development of Strategy for SWAT Hydrologic Modeling in Data-Scarce Regions of Peru. J. Hydrol. Eng. 2021, 26, 05021016. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; López-Moreno, J.I.; Correa, K.; Avalos, G.; Bazo, J.; Azorin-Molina, C.; Domínguez-Castro, F.; Kenawy, A.E.; Gimeno, L.; Nieto, R. Recent changes in monthly surface air temperature over Peru, 1964–2014. Int. J. Climatol. 2018, 38, 283–306. [Google Scholar] [CrossRef]
- Amorim, A.M.T.; Gonçalves, A.B.; Nunes, L.M.; Sousa, A.J. Optimizing the location of weather monitoring stations using estimation uncertainty. Int. J. Climatol. 2012, 32, 941–952. [Google Scholar] [CrossRef] [Green Version]
- INIA.; FAO. Peru: Segundo Informe Sobre el Estado de los Recursos Fitogenéticos Para la Alimentación y la Agricultura; INIA.: Lima, Peru, 2009. [Google Scholar]
- SENAMHI. Climas del Peru—Mapa de Clasificación Climática Nacional; Castro, A., Davila, C., Laura, W., Cubas, F., Ávalos, G., López, O.C., Villena, D., Valdez, M., Urbiola, J., Trebejo, I., et al., Eds.; SENAMHI: Lima, Peru, 2020. [Google Scholar]
- CENEPRED Plan Nacional de Gestion del Riesgo de Deastres—PLANAGERD 2014–2021; CENEPRED: Lima, Peru, 2014.
- Villacorta, S.; Fidel, L.; Zavala Carrión, B. Mapa de susceptibilidad por movimientos en masa del Perú. Rev. de la Asoc. Geológica Argent. 2012, 69, 393–399. [Google Scholar]
- Quiñones, L.; Barrena, M.; Gosgot, W.; Salas, R.; Milla, M. Estimación de la radiación solar diaria para la ciudad de Bagua, región Amazonas, Perú. Sel. Matemáticas 2019, 6, 320–328. [Google Scholar] [CrossRef] [Green Version]
- WMO. Siting and exposure of meteorological instruments. In Instruments and Observing Methods Report No. 55; Ehinger, J., Ed.; CIMO: Lausanne, Switzerland, 1993. [Google Scholar]
- An, X.; Ma, A.; Liu, D. A GIS-based Study for Optimizing the Total Emission Control Strategy in Lanzhou City. Environ. Modeling Assess. 2008, 13, 491–501. [Google Scholar] [CrossRef]
- Alejo, L.A. Suitability analysis for optimum network of agrometeorological stations: A case study of Visayas Region, Philippines. J. Agrometeorol. 2018, 20, 269–274. [Google Scholar]
- Amin, J.A.; Soriano, C.L.; Thi, K.K.; Mabli, A.B.; Alguin, M.N. Augmentation of agrometeorological stations network in southern Luzon, Philippines. Epra Int. J. Multidiscip. Res. 2021, 7, 187–197. [Google Scholar] [CrossRef]
- Valdés, Q.C.J.; Parra, T.J.C.; Herrera, C.S. Modelación espacial para la ubicación de estaciones meteorológicas en cuencas hidrográficas. Rev. Politécnica 2013, 9, 9–18. [Google Scholar]
- Iliquín Trigoso, D.; Salas López, R.; Rojas Briceño, N.B.; Silva López, J.O.; Gómez Fernández, D.; Oliva, M.; Quiñones Huatangari, L.; Terrones Murga, R.E.; Barboza Castillo, E.; Barrena Gurbillón, M.Á. Land Suitability Analysis for Potato Crop in the Jucusbamba and Tincas Microwatersheds (Amazonas, NW Peru): AHP and RS–GIS Approach. Agronomy 2020, 10, 1898. [Google Scholar] [CrossRef]
- Saaty, T.L. Fundamentals ofthe Analytie Hierarehy Process. In The Anal ytic Hierarchy Process in Natural Resource and Environmental Decision Making; Schmoldt, D.L., Kangas, J., Mendoza, G.A., Pesonen, M., Eds.; Springer-Science+Business Media, B.Y.: New York, NY, USA, 2001; pp. 15–36. ISBN 978-94-015-9799-9. [Google Scholar]
- SENAMHI. Protocolo para la Instalación y Operación de Estaciones Meteorológicas e Hidrológicas; SENAMHI: Lima, Peru, 2013. [Google Scholar]
- Rojas, B.N.B.; Cotrina, S.D.A.; Barboza, C.E.; Barrena, G.M.Á.; Sarmiento, F.O.; Sotomayor, D.A.; Oliva, M.; Salas, L.R. Current and Future Distribution of Five Timber Forest Species in Amazonas, Northeast Peru: Contributions towards a Restoration Strategy. Diversity 2020, 12, 305. [Google Scholar] [CrossRef]
- Vargas Rivera, J. Clima. In Estudios Temáticos para la Zonificación Ecológica Económica del Departamento de Amazonas; Instituto de Investigaciones de la Amazonía Peruana (IIAP) & Programa de Investigaciones en Cambio Climático, Desarrollo Territorial y Ambiente (PROTERRA): Chachapoyas, Amazonas, Peru, 2010; Volume 1, pp. 1–27. [Google Scholar]
- GRA.; IIAP. Zonificación Ecológica y Económica (ZEE) del Departamento de Amazonas; GRA and IIAP: Iquitos, Peru, 2010.
- Saaty, T.L. How to make a decision: The Analytic Hierarchy Process. Eur. J. Oper. Res. 1990, 48, 9–26. [Google Scholar] [CrossRef]
- Saaty, T.L. A scaling method for priorities in hierarchical structures. J. Math. Psychol. 1977, 15, 234–281. [Google Scholar] [CrossRef]
- Mu, E.; Pereyra-Rojas, M. Understanding the Analytic Hierarchy Process. In Practical Decision Making; Springer Briefs in Operations Research: Berlin, Germany, 2017; pp. 7–22. ISBN 978-3-319-33861-3. [Google Scholar]
- WMO. Guide to Agricultural Meteorological Practices; WMO: Geneva, Switzerland, 2012; ISBN 0103-9016. [Google Scholar]
- EPA. Meteorological Monitoring Guidance for Regulatory Modeling Applications; Epa-454/R-99-005; EPA: Washington, DC, USA, 2000; p. 171.
- FAO. A framework for Land Evaluation; FAO: Roma, Italy, 1976; Volume 32, ISBN 9251001111. [Google Scholar]
- Calle, Y.C.R.; Salas, L.R.; Cruz, S.M.O.; Barboza, C.E.; Silva, L.J.O.; Iliquín, T.D.; Rojas, B.N.B. Land Suitability for Sustainable Aquaculture of Rainbow Trout (Oncorhynchus mykiss) in Molinopampa (Peru) Based on RS, GIS, and AHP. Isprs Int. J. Geo-Inf. 2020, 9, 28. [Google Scholar] [CrossRef] [Green Version]
- Salas López, R.; Gómez Fernández, D.; Silva López, J.O.; Rojas Briceño, N.B.; Oliva, M.; Terrones Murga, R.E.; Iliquín Trigoso, D.; Barboza Castillo, E.; Barrena Gurbillón, M.Á. Land Suitability for Coffee (Coffea arabica) Growing in Amazonas, Peru: Integrated Use of AHP, GIS and RS. Isprs Int. J. Geo-Inf. 2020, 9, 673. [Google Scholar] [CrossRef]
- Buchhorn, M.; Smets, B.; Bertels, L.; De Roo, B.; Lesiv, M.; Tsendbazar, N.-E.; Herold, M.; Fritz, S. Copernicus Global Land Service: Land Cover 100 m: Collection 3: Epoch 2019: Globe (Versión V3.0.1) [Conjunto de Datos]; Zenodo: Geneva, Switzerland, 2020. [Google Scholar] [CrossRef]
- INEI. Resultados definitivos de los Censos Nacionales 2017: Amazonas. In Censos Nacionales 2017: XII de Población, VII de Vivienda y III de Comunidades Indígenas; INEI: Lima, Peru, 2017; pp. 1–11347. [Google Scholar]
- SERNANP. GEO ANP—Visor de las Áreas Naturales Protegidas. Available online: http://geo.sernanp.gob.pe (accessed on 22 May 2021).
- Japan Space Systems ASTER Global Digital Elevation Model. Available online: https://gdemdl.aster.jspacesystems.or.jp/index.html (accessed on 21 February 2021).
- SunEarthTools Sun Position. Available online: https://www.sunearthtools.com/dp/tools/pos_sun.php?lang=en (accessed on 22 August 2020).
- MINAM. Mapa Nacional de Ecosistemas del Perú: Memoria Descriptiva; Dirección General de Ordenamiento Territorial Ambiental: Lima, Peru, 2019. [Google Scholar]
- MINAM. Definiciones conceptuales de los ecosistemas del Perú; Dirección General de Diversidad Biológica: Lima, Peru, 2019. [Google Scholar]
- MIDAGRI. Resolución Ministerial N° 0322-2020-MIDAGRI; Oficializar el Mapa Nacional de Superficie Agrícola del Perú, detallado por departamentos, provincias y distritos: Lima, Peru, 2020.
- Rojas, B.N.B.; Barboza, C.E.; Maicelo, Q.J.L.; Oliva, C.S.M.; Salas, L.R. Deforestación en la Amazonía peruana: Índices de cambios de cobertura y uso del suelo basado en SIG. Bol. de la Asoc. De Geogr. Esp. 2019, 81, 1–34. [Google Scholar] [CrossRef]
- Strahler, A.N. Quantitative geomorphology of drainage basin and channel networks. In Handbook of Applied Hydrology; Chow, V.T., Ed.; McGraw Hill Book Company: New York, NY, USA, 1964; pp. 4–76. [Google Scholar]
- INGEMMET. GEOCATMIN Sistema de Información Geológico y Catastral Minero. Available online: https://geocatmin.ingemmet.gob.pe/geocatmin/ (accessed on 23 May 2021).
- MTC. Descarga de Datos Espaciales. Available online: https://portal.mtc.gob.pe/estadisticas/descarga.html (accessed on 2 April 2021).
- MINEDU. Descarga de Información Espacial del MED. Available online: http://sigmed.minedu.gob.pe/descargas/ (accessed on 15 April 2021).
- MINEDU. Mapa de Escuelas. ESCALE Estadística de Calidad Educativa. Available online: http://sigmed.minedu.gob.pe/mapaeducativo/ (accessed on 15 May 2021).
- Mighty, M.A. Site suitability and the analytic hierarchy process: How GIS analysis can improve the competitive advantage of the Jamaican coffee industry. Appl. Geogr. 2015, 58, 84–93. [Google Scholar] [CrossRef]
- Hossain, M.S.; Das, N.G. GIS-based multi-criteria evaluation to land suitability modelling for giant prawn (Macrobrachium rosenbergii) farming in Companigonj Upazila of Noakhali, Bangladesh. Comput. Electron. Agric. 2010, 70, 172–186. [Google Scholar] [CrossRef]
- Berumen, S.A.; Llamazares, F. La utilidad de los métodos de decisión multicriterio (como el AHP) en un entorno de competitividad creciente. Cuad. Adm. 2007, 20, 65–87. [Google Scholar]
- Aguarón, J.; Moreno-Jiménez, J.M. The geometric consistency index: Approximated thresholds. Eur. J. Oper. Res. 2003, 147, 137–145. [Google Scholar] [CrossRef]
- Smirnoff, A.; Huot-Vézina, G.; Paradis, S.J.; Boivin, R. Generalizing geological maps with the GeoScaler software: The case study approach. Comput. Geosci. 2012, 40, 66–86. [Google Scholar] [CrossRef]
- Samadi, S.; Nokhandan, M.H.; Poor, E.F.; Malbosi, S.; Alizadeh, D. Using the AHP method in site selecting of the road meteorological stations for the main roads of Khorasan Razavi province. J. Clim. Res. 2020, 1398, 93–111. [Google Scholar]
- Heydari, N.; Doostan, R.; Nokhandan, M.H. Site selection of urban meteorological stations in Mashhad. J. Clim. Res. 2016, 1395, 59–75. [Google Scholar]
- Shepherd, J.M.; Taylor, O.O.; Garza, C. A dynamic GIS-multicriteria technique for siting the NASA-Clark Atlanta urban rain gauge network. J. Atmos. Ocean. Technol. 2004, 21, 1346–1363. [Google Scholar] [CrossRef]
- Aybar, C.; Fernández, C.; Huerta, A.; Lavado, W.; Vega, F.; Felipe-Obando, O. Construction of a high-resolution gridded rainfall dataset for Peru from 1981 to the present day. Hydrol. Sci. J. 2020, 65, 770–785. [Google Scholar] [CrossRef]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Agarwal, A.; Marwan, N.; Maheswaran, R.; Ozturk, U.; Kurths, J.; Merz, B. Optimal design of hydrometric station networks based on complex network analysis. Hydrol. Earth Syst. Sci. 2020, 24, 2235–2251. [Google Scholar] [CrossRef]
- Yoon, S.; Jang, K.; Won, M. The spatial distribution characteristics of Automatic Weather Stations in the mountainous area over South Korea. Korean J. Agric. For. Meteorol. 2018, 20, 117–126. [Google Scholar] [CrossRef]
- Bell, S.; Cornford, D.; Bastin, L. The state of automated amateur weather observations. Weather 2013, 68, 36–41. [Google Scholar] [CrossRef]
Criteria/Sub-Criteria | Highly Suitable (4 1) | Moderately Suitable (3 1) | Marginally Suitable (2 1) | Not Suitable (1 1) | Adapted from | |
---|---|---|---|---|---|---|
Biophysical | ||||||
Elevation (120–4900) | 2200–4900 m a.s.l. | 1090–2200 m a.s.l. | 120–1090 m a.s.l. | – | [7] | |
Terrain slope | ≤5% | 5–15% | 15–25% | ≥25% | [17] | |
Terrain hillshade | 0–4 h | 5–7 h | 8–10 h | 11–13 h | [2] | |
Land Use/Land Cover–LU/LC 2 | 40 | 20, 30, 60 | >100 | 0, 50, 80, 90 | [19] | |
Distance to water bodies | Main | ≥1 km | 0.5–1 km | 0.25–0.5 km | ≤0.25 | [1,2,24] |
Secondary | ≥0.5 km | 0.25–5 km | 0.1–0.25 km | ≤0.1 | [1,2,24] | |
Distance to geological faults | ≥1.5 km | 1–1.5 km | 0.5–1 km | ≤0.5 km | [2] | |
Landslide susceptibility | Very low; Low | Medium | High | Very high | [2] | |
Administrative | ||||||
Distance to roads | National | 0.3–0.7 km | 0.7–1.2 km | 1.2–2.2 km | ≤0.3/≥2.2 km | [1,2,24] |
Departmental | 0.2–0.6 km | 0.6–1.1 km | 1.1–2.1 km | ≤0.2/≥2.1 km | [1,2,24] | |
Local | 0.1–0.5 km | 0.5–1 km | 1–2 km | ≤0.1/≥2 km | [1,2,24] | |
Distance to populations | Urban areas | 0.2–0.6 km | 0.6–1.1 km | 1.1–2.1 km | ≤0.2/≥2.1 km | |
Villages | 0.1–0.5 km | 0.5–1 km | 1–2 km | ≤0.1/≥2 km | ||
Distance to the host institution | ≤10 km | 10–50 km | 50–100 km | ≥100 km | [19] | |
Protected natural areas—PNA | Inside | Outside | – | – | [24] |
1/9 | 1/8 | 1/7 | 1/6 | 1/5 | 1/4 | 1/3 | 1/2 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Extreme | Strong | Moderate | Equal | Moderate | Strong | Extreme | ||||||||||
less important | more important |
n | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RI | 0 | 0 | 0.525 | 0.882 | 1.115 | 1.252 | 1.341 | 1.404 | 1.452 | 1.484 | 1.513 | 1.535 | 1.555 | 1.570 | 1.583 | 1.595 |
Criteria | Weight (%) | Rank | Sub-Criteria | Weight (%) | Rank | Standardized Weight (%) | Standardized Rank |
---|---|---|---|---|---|---|---|
Biophysical | 68.3 | 1 | elevation | 9.1 | 5 | 6.2 | 7 |
terrain slope | 22.8 | 1 | 15.6 | 1 | |||
terrain hill shade | 16.2 | 3 | 11.1 | 4 | |||
land use/land cover–LU/LC | 15.3 | 4 | 10.4 | 5 | |||
distance to water sources | 21.4 | 2 | 14.6 | 2 | |||
distance to geological faults | 8.8 | 6 | 6.0 | 9 | |||
landslide susceptibility | 6.4 | 7 | 4.4 | 10 | |||
Administrative | 31.8 | 2 | distance to roads | 36.2 | 1 | 11.5 | 3 |
distance to populations | 32.8 | 2 | 10.4 | 6 | |||
distance to host institution | 19.1 | 3 | 6.1 | 8 | |||
protected natural areas–PNA | 11.9 | 4 | 3.8 | 11 |
Criteria | Sub-Criteria | Highly Suitable | Moderately Suitable | Marginally Suitable | Not Suitable | ||||
---|---|---|---|---|---|---|---|---|---|
km2 | % | km2 | % | km2 | % | km2 | % | ||
Biophysical | elevation | 9074.79 | 21.6 | 12,653.08 | 30.1 | 20,322.50 | 48.3 | 0.00 | 0.0 |
terrain slope | 1401.33 | 3.3 | 6746.96 | 16.0 | 8253.54 | 19.6 | 25,648.55 | 61.0 | |
terrain hill shade | 1273.10 | 3.0 | 38,736.11 | 92.1 | 1457.69 | 3.5 | 583.47 | 1.4 | |
land use/land cover | 6370.39 | 15.1 | 3338.05 | 7.9 | 31,968.04 | 76.0 | 373.89 | 0.9 | |
distance to water sources | 22,745.08 | 54.1 | 8202.42 | 19.5 | 5512.17 | 13.1 | 5590.70 | 13.3 | |
distance to geological faults | 23,594.53 | 56.1 | 5077.33 | 12.1 | 6106.74 | 14.5 | 7271.78 | 17.3 | |
landslide susceptibility | 9825.67 | 23.4 | 13,935.97 | 33.1 | 13,380.99 | 31.8 | 4907.74 | 11.7 | |
Administrative | distance to roads (km) | 2466.98 | 5.9 | 2276.15 | 5.4 | 3167.66 | 7.5 | 34,139.59 | 81.2 |
distance to populations (km) | 1090.42 | 2.6 | 2156.41 | 5.1 | 4953.48 | 11.8 | 33,850.07 | 80.5 | |
distance to the host institution | 3821.34 | 9.1 | 26,049.86 | 61.9 | 7972.20 | 19.0 | 4206.97 | 10.0 | |
protected natural areas | 6157.50 | 14.6 | 35,892.87 | 85.4 | 0.00 | 0.0 | 0.00 | 0.0 |
Criteria/Sub Goal | Highly Suitable | Moderately Suitable | Marginally Suitable | Not Suitable | ||||
---|---|---|---|---|---|---|---|---|
km2 | % | km2 | % | km2 | % | km2 | % | |
Biophysical | 228.01 | 0.5 | 25,070.59 | 59.6 | 16,646.35 | 39.6 | 105.42 | 0.3 |
Administrative | 663.45 | 1.6 | 4135.80 | 9.8 | 26,997.76 | 64.2 | 10,253.37 | 24.4 |
Land suitability for weather stations | 108.55 | 0.3 | 20,562.52 | 48.9 | 21,274.89 | 50.6 | 104.41 | 0.2 |
WS ID | WS Name | Current Suitability | Nearest Highly Suitable Territory | ||
---|---|---|---|---|---|
Distance (m) | Coordinates (◦) | ||||
1 | Agua Dulce | moderate | 243.9 | −77.8791 | −5.6906 |
2 | Chachapoyas | moderate | 171.0 | −77.8515 | −6.2339 |
3 | Bagua | moderate | 58.1 | −78.5113 | −5.6448 |
4 | Cocachimba | moderate | 2153.8 | −77.8943 | −6.0773 |
5 | Huambo | moderate | 117.1 | −77.5237 | −6.4373 |
6 | Olleros | moderate | 838.4 | −77.6574 | −6.0667 |
7 | Leimebamba | moderate | 81.4 | −77.7987 | −6.7234 |
8 | Luya Viejo | moderate | 83.6 | −78.0285 | −6.1384 |
9 | Molinopampa | moderate | 704.9 | −77.6718 | −6.2206 |
10 | Pomacochas | moderate | 254.2 | −77.9632 | −5.8228 |
11 | Suyubamba | marginal | 1124.0 | −77.9546 | −5.9259 |
12 | Congon | marginal | 2387.0 | −78.1210 | −6.3128 |
13 | Jazan | marginal | 1783.9 | −77.9696 | −5.9598 |
14 | Bagua | moderate | 0.9 | −78.5340 | −5.6614 |
15 | Jamalca | moderate | 177.1 | −78.2335 | −5.8912 |
16 | El Palto | moderate | 196.6 | −78.4726 | −5.9998 |
17 | Aramango | marginal | 1828.3 | −78.4443 | −5.4339 |
18 | Chiriaco | marginal | 956.8 | −78.2965 | −5.1631 |
19 | Santa María de Nieva | moderate | 270.8 | −77.9390 | −4.8328 |
20 | Chachapoyas | high | – | – | – |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rojas Briceño, N.B.; Salas López, R.; Silva López, J.O.; Oliva-Cruz, M.; Gómez Fernández, D.; Terrones Murga, R.E.; Iliquín Trigoso, D.; Barrena Gurbillón, M.; Barboza, E. Site Selection for a Network of Weather Stations Using AHP and Near Analysis in a GIS Environment in Amazonas, NW Peru. Climate 2021, 9, 169. https://doi.org/10.3390/cli9120169
Rojas Briceño NB, Salas López R, Silva López JO, Oliva-Cruz M, Gómez Fernández D, Terrones Murga RE, Iliquín Trigoso D, Barrena Gurbillón M, Barboza E. Site Selection for a Network of Weather Stations Using AHP and Near Analysis in a GIS Environment in Amazonas, NW Peru. Climate. 2021; 9(12):169. https://doi.org/10.3390/cli9120169
Chicago/Turabian StyleRojas Briceño, Nilton B., Rolando Salas López, Jhonsy O. Silva López, Manuel Oliva-Cruz, Darwin Gómez Fernández, Renzo E. Terrones Murga, Daniel Iliquín Trigoso, Miguel Barrena Gurbillón, and Elgar Barboza. 2021. "Site Selection for a Network of Weather Stations Using AHP and Near Analysis in a GIS Environment in Amazonas, NW Peru" Climate 9, no. 12: 169. https://doi.org/10.3390/cli9120169
APA StyleRojas Briceño, N. B., Salas López, R., Silva López, J. O., Oliva-Cruz, M., Gómez Fernández, D., Terrones Murga, R. E., Iliquín Trigoso, D., Barrena Gurbillón, M., & Barboza, E. (2021). Site Selection for a Network of Weather Stations Using AHP and Near Analysis in a GIS Environment in Amazonas, NW Peru. Climate, 9(12), 169. https://doi.org/10.3390/cli9120169