Climate Vulnerability and Adaptation Challenges in Szekszárd Wine Region, Hungary
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Agovino, M.; Casaccia, M.; Ciommi, M.; Ferrara, M.; Marchesano, K. Agriculture, climate change and sustainability: The case of EU-28. Ecol. Indic. 2019, 105, 525–543. [Google Scholar] [CrossRef]
- Burke, M.; Emerick, K. Adaptation to climate change: Evidence from US agriculture. Am. Econ. J. Econ. Policy 2016, 8, 106–140. [Google Scholar] [CrossRef] [Green Version]
- Fraga, H. Viticulture and winemaking under climate change. Agronomy 2019, 9, 783. [Google Scholar] [CrossRef] [Green Version]
- Cabré, F.; Nuñez, M. Impacts of climate change on viticulture in Argentina. Reg. Environ. Chang. 2020, 20, 12. [Google Scholar] [CrossRef]
- Van Leeuwen, C.; Destrac-Irvine, A.; Dubernet, M.; Duchêne, E.; Gowdy, M.; Marguerit, E.; Pieri, P.; Parker, A.; De Rességuier, L.; Ollat, N. An update on the impact of climate change in viticulture and potential adaptations. Agronomy 2019, 9, 514. [Google Scholar] [CrossRef] [Green Version]
- Jones, G.V.; Webb, L.B. Climate Change, Viticulture, and Wine: Challenges and Opportunities. J. Wine Res. 2010, 21, 103–106. [Google Scholar] [CrossRef]
- Scozzafava, G.; Contini, C.; Costanigro, M.; Casini, L.; Anderson, K. Consumer Response to Quality Differentiation Strategies in Wine PDOs. Agric. Agric. Sci. Procedia 2017, 6, 107–114. [Google Scholar] [CrossRef]
- Anderson, K. How might climate changes and preference changes affect the competitiveness of the world׳s wine regions? Wine Econ. Policy 2017, 6, 23–27. [Google Scholar] [CrossRef]
- Coste, A.; Sousa, P.; Malfeito-Ferreira, M. Wine tasting based on emotional responses: An expedite approach to distinguish between warm and cool climate dry red wine styles. Food Res. Int. 2018, 106, 11–21. [Google Scholar] [CrossRef] [Green Version]
- Prata-Sena, M.; Castro-Carvalho, B.M.; Nunes, S.; Amaral, B.; Silva, P. The terroir of Port wine: Two hundred and sixty years of history. Food Chem. 2018, 257, 388–398. [Google Scholar] [CrossRef]
- Renaud-Gentié, C.; Dieu, V.; Thiollet-Scholtus, M.; Mérot, A. Addressing organic viticulture environmental burdens by better understanding interannual impact variations. Int. J. Life Cycle Assess. 2020, 25, 1307–1322. [Google Scholar] [CrossRef]
- Marx, W.; Haunschild, R.; Bornmann, L. Climate change and viticulture-A quantitative analysis of a highly dynamic research field. Vitis-J. Grapevine Res. 2017, 56, 35–43. [Google Scholar] [CrossRef]
- Ponti, L.; Gutierrez, A.; Boggia, A.; Neteler, M. Analysis of Grape Production in the Face of Climate Change. Climate 2018, 6, 20. [Google Scholar] [CrossRef] [Green Version]
- Bernardo, S.; Dinis, L.T.; Machado, N.; Moutinho-Pereira, J. Grapevine abiotic stress assessment and search for sustainable adaptation strategies in Mediterranean-like climates. A review. Agron. Sustain. Dev. 2018, 38, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Pomarici, E.; Vecchio, R. Will sustainability shape the future wine market? Wine Econ. Policy 2019, 8, 1–4. [Google Scholar] [CrossRef]
- Schultz, H.R. Global Climate Change, Sustainability, and Some Challenges for Grape and Wine Production. J. Wine Econ. 2016, 11, 181–200. [Google Scholar] [CrossRef]
- Leolini, L.; Moriondo, M.; Fila, G.; Costafreda-Aumedes, S.; Ferrise, R.; Bindi, M. Late spring frost impacts on future grapevine distribution in Europe. F. Crop. Res. 2018, 222, 197–208. [Google Scholar] [CrossRef]
- Cardell, M.F.; Amengual, A.; Romero, R. Future effects of climate change on the suitability of wine grape production across Europe. Reg. Environ. Chang. 2019, 19, 2299–2310. [Google Scholar] [CrossRef]
- Bucur, G.M.; Cojocaru, G.A.; Antoce, A.O. The climate change influences and trends on the grapevine growing in Southern Romania: A long-term study. BIO Web Conf. 2019, 15, 01008. [Google Scholar] [CrossRef]
- Santos, J.A.; Fraga, H.; Malheiro, A.C.; Moutinho-Pereira, J.; Dinis, L.T.; Correia, C.; Moriondo, M.; Leolini, L.; Dibari, C.; Costafreda-Aumedes, S.; et al. A review of the potential climate change impacts and adaptation options for European viticulture. Appl. Sci. 2020, 10, 3092. [Google Scholar] [CrossRef]
- Jones, N.K. An investigation of trends in viticultural climatic indices in Southern Quebec, a cool climate wine region. J. Wine Res. 2018, 29, 120–129. [Google Scholar] [CrossRef]
- Moscovici, D.; Gottlieb, P.D. Finding a state of sustainable wine: Implications for sustainable viticulture and oenology in New Jersey, USA. Int. J. Sustain. Agric. Manag. Inform. 2017, 3, 196–214. [Google Scholar] [CrossRef]
- Solman, S.; Cabré, M.F.; González, M.H.; Núñez, M.N. Bioclimatic zoning of Argentinian Malbec grape productivity regions by means of a unique combined index. Clim. Res. 2018, 74, 185–199. [Google Scholar] [CrossRef]
- Coelho, A.; Montaigne, E. The Chilean Wine Cluster. In The Palgrave Handbook of Wine Industry Economics; Alonso Ugaglia, A., Cardebat, J.-M., Corsi, A., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 487–506. ISBN 978-3-319-98633-3. [Google Scholar]
- Vink, N. The South African Wine Industry. In The Palgrave Handbook of Wine Industry Economics; Alonso Ugaglia, A., Cardebat, J.-M., Corsi, A., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 201–223. ISBN 978-3-319-98633-3. [Google Scholar]
- Naude, M.J. Impact of Climate Change and Extreme Weather Conditions on wine growing within the Stellenbosch region. J. Contemp. Manag. 2019, 16, 111–134. [Google Scholar] [CrossRef] [Green Version]
- Soltanzadeh, I.; Bonnardot, V.; Sturman, A.; Quénol, H.; Zawar-Reza, P. Assessment of the ARW-WRF model over complex terrain: The case of the Stellenbosch Wine of Origin district of South Africa. Theor. Appl. Climatol. 2017, 129, 1407–1427. [Google Scholar] [CrossRef]
- Jarvis, C.; Barlow, E.; Darbyshire, R.; Eckard, R.; Goodwin, I. Relationship between viticultural climatic indices and grape maturity in Australia. Int. J. Biometeorol. 2017, 61, 1849–1862. [Google Scholar] [CrossRef]
- Bardsley, D.K.; Palazzo, E.; Pütz, M. Regional path dependence and climate change adaptation: A case study from the McLaren Vale, South Australia. J. Rural Stud. 2018, 63, 24–33. [Google Scholar] [CrossRef]
- Phogat, V.; Cox, J.W.; Šimůnek, J. Identifying the future water and salinity risks to irrigated viticulture in the Murray-Darling Basin, South Australia. Agric. Water Manag. 2018, 201, 107–117. [Google Scholar] [CrossRef] [Green Version]
- Mosedale, J.R.; Abernethy, K.E.; Smart, R.E.; Wilson, R.J.; Maclean, I.M.D. Climate change impacts and adaptive strategies: Lessons from the grapevine. Glob. Chang. Biol. 2016, 22, 3814–3828. [Google Scholar] [CrossRef] [Green Version]
- Bonfante, A.; Monaco, E.; Langella, G.; Mercogliano, P.; Bucchignani, E.; Manna, P.; Terribile, F. A dynamic viticultural zoning to explore the resilience of terroir concept under climate change. Sci. Total Environ. 2018, 624, 294–308. [Google Scholar] [CrossRef]
- Hannah, L.; Roehrdanz, P.R.; Ikegami, M.; Shepard, A.V.; Shaw, M.R.; Tabor, G.; Zhi, L.; Marquet, P.A.; Hijmans, R.J. Climate change, wine, and conservation. Proc. Natl. Acad. Sci. USA 2013, 110, 6907–6912. [Google Scholar] [CrossRef] [Green Version]
- Nesbitt, A.; Dorling, S.; Lovett, A. A suitability model for viticulture in England and Wales: Opportunities for investment, sector growth and increased climate resilience. J. Land Use Sci. 2018, 13, 414–438. [Google Scholar] [CrossRef] [Green Version]
- Maciejczak, M.; Mikiciuk, J. Climate change impact on viticulture in Poland. Int. J. Clim. Chang. Strateg. Manag. 2019, 11, 254–264. [Google Scholar] [CrossRef] [Green Version]
- Neethling, E.; Barbeau, G.; Coulon-Leroy, C.; Quénol, H. Spatial complexity and temporal dynamics in viticulture: A review of climate-driven scales. Agric. For. Meteorol. 2019, 276–277, 107618. [Google Scholar] [CrossRef]
- Nowlin, J.W.; Bunch, R.L.; Jones, G.V. Viticultural site selection: Testing the effectiveness of North Carolina’s commercial vineyards. Appl. Geogr. 2019, 106, 22–39. [Google Scholar] [CrossRef]
- Terribile, F.; Bonfante, A.; D’Antonio, A.; De Mascellis, R.; De Michele, C.; Langella, G.; Manna, P.; Mileti, F.A.; Vingiani, S.; Basile, A. A geospatial decision support system for supporting quality viticulture at the landscape scale. Comput. Electron. Agric. 2017, 140, 88–102. [Google Scholar] [CrossRef]
- Fraga, H.; García de Cortázar Atauri, I.; Santos, J.A. Viticultural irrigation demands under climate change scenarios in Portugal. Agric. Water Manag. 2018, 196, 66–74. [Google Scholar] [CrossRef]
- Tóth, J.P.; Végvári, Z. Future of winegrape growing regions in Europe. Aust. J. Grape Wine Res. 2016, 22, 64–72. [Google Scholar] [CrossRef]
- Dunn, M.; Rounsevell, M.D.A.; Boberg, F.; Clarke, E.; Christensen, J.; Madsen, M.S. The future potential for wine production in Scotland under high-end climate change. Reg. Environ. Chang. 2017, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Lereboullet, A.L.; Beltrando, G.; Bardsley, D.K. Socio-ecological adaptation to climate change: A comparative case study from the Mediterranean wine industry in France and Australia. Agric. Ecosyst. Environ. 2013, 164, 273–285. [Google Scholar] [CrossRef]
- Dunn, M.R.; Lindesay, J.A.; Howden, M. Spatial and temporal scales of future climate information for climate change adaptation in viticulture: A case study of User needs in the Australian winegrape sector. Aust. J. Grape Wine Res. 2015, 21, 226–239. [Google Scholar] [CrossRef]
- Costa, J.M.; Vaz, M.; Escalona, J.; Egipto, R.; Lopes, C.; Medrano, H.; Chaves, M.M. Modern viticulture in southern Europe: Vulnerabilities and strategies for adaptation to water scarcity. Agric. Water Manag. 2016, 164, 5–18. [Google Scholar] [CrossRef]
- Li, Y.; Bardají, I. Adapting the wine industry in China to climate change: Challenges and opportunities. OENO One 2017, 51, 71–89. [Google Scholar] [CrossRef]
- Serpa, D.; Nunes, J.P.; Keizer, J.J.; Abrantes, N. Impacts of climate and land use changes on the water quality of a small Mediterranean catchment with intensive viticulture. Environ. Pollut. 2017, 224, 454–465. [Google Scholar] [CrossRef]
- de la Fuente, M.; Linares, R.; Lissarrague, J.R. Adapting to climate change: The role of canopy management and water use efficiency in vineyards. Wine Vitic. J. 2016, 31, 43–46. [Google Scholar]
- Brunori, E.; Farina, R.; Biasi, R. Agriculture, Ecosystems and Environment Sustainable viticulture: The carbon-sink function of the vineyard. Agric. Ecosyst. Environ. 2016, 223, 10–21. [Google Scholar] [CrossRef]
- Ollat, N.; van Leeuwen, C. The challenging issue of climate change for sustainable grape and wine production. OENO One 2017, 51, 2–4. [Google Scholar] [CrossRef] [Green Version]
- Sabir, A. Sustainable Viticulture Practices on the Face of Climate Change. Agric. Res. Technol. Open Access J. 2018, 17. [Google Scholar] [CrossRef]
- Santiago-Brown, I.; Metcalfe, A.; Jerram, C.; Collins, C. Sustainability Assessment in Wine-Grape Growing in the New World: Economic, Environmental, and Social Indicators for Agricultural Businesses. Sustainability 2015, 7, 8178–8204. [Google Scholar] [CrossRef] [Green Version]
- Unruh, G.C. Understanding carbon lock-in. Energy Policy 2000, 28, 817–830. [Google Scholar] [CrossRef]
- Seto, K.C.; Davis, S.J.; Mitchell, R.B.; Stokes, E.C.; Unruh, G.; Ürge-Vorsatz, D. Carbon Lock-In: Types, Causes, and Policy Implications. Annu. Rev. Environ. Resour. 2016, 41, 425–452. [Google Scholar] [CrossRef] [Green Version]
- Kosik, I. Climate Signals in Wine Quality Time-Series of North-East Hungary. Air Water Components Environ. 2017, 9, 219–226. [Google Scholar] [CrossRef]
- Kovács, E.; Puskás, J.; Pozsgai, A. Positive Effects of Climate Change on the Field of Sopron Wine-Growing Region in Hungary. In Proceedings of the Perspectives on Atmospheric Sciences; Karacostas, T., Bais, A., Nastos, P.T., Eds.; Springer International Publishing: Cham, Swizterland, 2017; pp. 607–613. [Google Scholar]
- Kovács, E.; Puskás, J.; Pozsgai, A.; Kozma, K. Shift in the annual growth cycle of grapevines (Vitis vinifera L.) in West Hungary. Appl. Ecol. Environ. Res. 2018, 16, 2029–2042. [Google Scholar] [CrossRef]
- Mesterházy, I.; Mészáros, R.; Pongrácz, R.; Bodor, P.; Ladányi, M. The analysis of climatic indicators using different growing season calculation methods—An application to grapevine grown in Hungary. Idojaras 2018, 122, 217–235. [Google Scholar] [CrossRef]
- Szenteleki, K.; Horváth, L.; Ladányi, M. Climate Risk and Climate Analogies in Hungarian Viticulture. Int. Conf. Futur. Environ. Energy 2012, 28, 250–254. [Google Scholar]
- Magrini, M.; Anton, M.; Chardigny, J.; Duc, G.; Duru, M.; Jeuffroy, M.; Meynard, J.; Micard, V. Pulses for Sustainability: Breaking Agriculture and Food Sectors Out of. Front. Sustain. Food Syst. 2018, 2, 1–17. [Google Scholar] [CrossRef]
- Nair, S.; Howlett, M. From robustness to resilience: Avoiding policy traps in the long term. Sustain. Sci. 2016, 11, 909–917. [Google Scholar] [CrossRef]
- Li, L.; Cao, R.; Wei, K.; Wang, W.; Chen, L. Adapting climate change challenge: A new vulnerability assessment framework from the global perspective. J. Clean. Prod. 2019, 217, 216–224. [Google Scholar] [CrossRef]
- Apreda, C.; D’Ambrosio, V.; Di Martino, F. A climate vulnerability and impact assessment model for complex urban systems. Environ. Sci. Policy 2019, 93, 11–26. [Google Scholar] [CrossRef]
- Hasan, M.K.; Kumar, L. Comparison between meteorological data and farmer perceptions of climate change and vulnerability in relation to adaptation. J. Environ. Manag. 2019, 237, 54–62. [Google Scholar] [CrossRef]
- Kim, B.T.; Brown, C.L.; Kim, D.H. Assessment on the vulnerability of Korean aquaculture to climate change. Mar. Policy 2019, 99, 111–122. [Google Scholar] [CrossRef]
- Aubin, I.; Boisvert-Marsh, L.; Kebli, H.; McKenney, D.; Pedlar, J.; Lawrence, K.; Hogg, E.H.; Boulanger, Y.; Gauthier, S.; Ste-Marie, C. Tree vulnerability to climate change: Improving exposure-based assessments using traits as indicators of sensitivity: Improving. Ecosphere 2018, 9, e02108. [Google Scholar] [CrossRef]
- Birkmann, J.; Welle, T. Assessing the risk of loss and damage: Exposure, vulnerability and risk to climate-related hazards for different country classifications. Int. J. Glob. Warm. 2015, 8, 191–212. [Google Scholar] [CrossRef]
- Sharma, J.; Ravindranath, N.H. Applying IPCC 2014 framework for hazard-specific vulnerability assessment under climate change. Environ. Res. Commun. 2019, 1, 051004. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhao, X.; Tang, H. Vulnerability of communities to climate change: Application of the livelihood vulnerability index to an environmentally sensitive region of China. Clim. Dev. 2019, 11, 525–542. [Google Scholar] [CrossRef]
- Blanka, V.; Mezosi, G.; Meyer, B. Projected changes in the drought hazard in Hungary due to climate change. Idojaras 2013, 117, 219–237. [Google Scholar]
- Fiala, K.; Blanka, V.; Ladányi, Z.; Szilassi, P.; Benyhe, B.; Dolinaj, D.; Pálfai, I. Drought Severity and its Effect on Agricultural Production in the Hungarian-Serbian Cross-Border Area. J. Environ. Geogr. 2015, 7, 43–51. [Google Scholar] [CrossRef] [Green Version]
- Dickinson, R.E.; Errico, R.M.; Giorgi, F.; Bates, G.T. A regional climate model for the western United States. Clim. Chang. 1989, 15, 383–422. [Google Scholar] [CrossRef]
- Giorgi, F.; Coppola, E.; Solmon, F.; Mariotti, L.; Sylla, M.B.; Bi, X.; Elguindi, N.; Diro, G.T.; Nair, V.; Giuliani, G.; et al. RegCM4: Model description and preliminary tests over multiple CORDEX domains. Clim. Res. 2012, 52, 7–29. [Google Scholar] [CrossRef] [Green Version]
- Farda, A.; Déué, M.; Somot, S.; Horányi, A.; Spiridonov, V.; Tóth, H. Model ALADIN as regional climate model for Central and Eastern Europe. Stud. Geophys. Geod. 2010, 54, 313–332. [Google Scholar] [CrossRef]
- Csima, G.; Horanyi, A. Validation of the ALADIN-Climate regional climate model at the Hungarian Meteorological Service. Időjárás 2008, 112, 155–177. [Google Scholar]
- Zsebeházi, G.; Szépszó, G. Modeling the urban climate of Budapest using the SURFEX land surface model driven by the ALADIN-climate regional climate model results. Idojaras 2020, 124, 191–207. [Google Scholar] [CrossRef]
- Mezősi, G.; Bata, T.; Meyer, B.C.; Blanka, V.; Ladányi, Z. Climate Change Impacts on Environmental Hazards on the Great Hungarian Plain, Carpathian Basin. Int. J. Disaster Risk Sci. 2014, 5, 136–146. [Google Scholar] [CrossRef] [Green Version]
- Foden, W.B.; Young, B.E.; Akçakaya, H.R.; Garcia, R.A.; Hoffmann, A.A.; Stein, B.A.; Thomas, C.D.; Wheatley, C.J.; Bickford, D.; Carr, J.A.; et al. Climate change vulnerability assessment of species. Wiley Interdiscip. Rev. Clim. Chang. 2019, 10, 1–36. [Google Scholar] [CrossRef] [Green Version]
- Thorne, J.H.; Choe, H.; Stine, P.A.; Chambers, J.C.; Holguin, A.; Kerr, A.C.; Schwartz, M.W. Climate change vulnerability assessment of forests in the Southwest USA. Clim. Chang. 2018, 148, 387–402. [Google Scholar] [CrossRef] [Green Version]
- Berardy, A.; Chester, M.V. Climate change vulnerability in the food, energy, and water nexus: Concerns for agricultural production in Arizona and its urban export supply. Environ. Res. Lett. 2017, 12, 035004. [Google Scholar] [CrossRef]
- Boswell, M.R.; Greve, A.I.; Seale, T.L. Climate Change Vulnerability Assessment. In Climate Action Planning: A Guide to Creating Low-Carbon, Resilient Communities; Island Press/Center for Resource Economics: Washington, DC, USA, 2019; pp. 172–191. ISBN 978-1-61091-964-7. [Google Scholar]
- Parker, L.; Bourgoin, C.; Martinez-Valle, A.; Läderach, P. Vulnerability of the agricultural sector to climate change: The development of a pan-tropical Climate Risk Vulnerability Assessment to inform sub-national decision making. PLoS ONE 2019, 14, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Blanco-Ward, D.; García Queijeiro, J.M.; Jones, G.V. Spatial climate variability and viticulture in the Miño River Valley of Spain. Vitis-J. Grapevine Res. 2007, 46, 63–70. [Google Scholar]
- Jones, G.V.; Davis, R.E. Climate Influences on Grapevine Phenology, Grape Composition, and Wine Production and Quality for Bordeaux, France. Am. J. Enol. Vitic. 2000, 51, 249–261. [Google Scholar]
- Zsófi, Z.S.; Tóth, E.; Rusjan, D.; Bálo, B. Terroir aspects of grape quality in a cool climate wine region: Relationship between water deficit, vegetative growth and berry sugar concentration. Sci. Hortic. (Amsterdam) 2011, 127, 494–499. [Google Scholar] [CrossRef]
- Shellie, K.C. Interactive Effects of Deficit Irrigation and Berry Exposure Aspect on Merlot and Cabernet Sauvignon in an Arid Climate. Am. J. Enol. Vitic. 2011, 62, 462–470. [Google Scholar] [CrossRef]
- Hajdu, E. Magyar Szőlőfajták (Hungarian Grape Varieties)-in Hungarian; Mezőgazda Kiadó: Budapest, Hungary, 2013; ISBN 978-963-286-670-3. [Google Scholar]
- Ortega-Farias, S.; Riveros-Burgos, C. Modeling phenology of four grapevine cultivars (Vitis vinifera L.) in Mediterranean climate conditions. Sci. Hortic. (Amsterdam) 2019, 250, 38–44. [Google Scholar] [CrossRef]
- Bai, X.; Dawson, R.J.; Ürge-Vorsatz, D.; Delgado, G.C.; Salisu Barau, A.; Dhakal, S.; Dodman, D.; Leonardsen, L.; Masson-Delmotte, V.; Roberts, D.C.; et al. Six research priorities for cities and climate change. Nature 2018, 555, 23–25. [Google Scholar] [CrossRef] [PubMed]
- Liang, Z.; Wu, S.; Wang, Y.; Wei, F.; Huang, J.; Shen, J.; Li, S. The relationship between urban form and heat island intensity along the urban development gradients. Sci. Total Environ. 2019, 708, 135011. [Google Scholar] [CrossRef] [PubMed]
- Bernetti, I.; Menghini, S.; Marinelli, N.; Sacchelli, S.; Sottini, V.A. Assessment of climate change impact on viticulture: Economic evaluations and adaptation strategies analysis for the Tuscan wine sector. Wine Econ. Policy 2012, 1, 73–86. [Google Scholar] [CrossRef] [Green Version]
- Nicholas, K.A.; Durham, W.H. Farm-scale adaptation and vulnerability to environmental stresses: Insights from winegrowing in Northern California. Glob. Environ. Chang. 2012, 22, 483–494. [Google Scholar] [CrossRef]
- Mozell, M.R.; Thachn, L. The impact of climate change on the global wine industry: Challenges & solutions. Wine Econ. Policy 2014, 3, 81–89. [Google Scholar] [CrossRef] [Green Version]
- Fleming, A.; Park, S.E.; Marshall, N.A. Enhancing adaptation outcomes for transformation: Climate change in the Australian wine industry. J. Wine Res. 2015, 26, 99–114. [Google Scholar] [CrossRef]
- Niles, M.T.; Brown, M.; Dynes, R. Farmer’s intended and actual adoption of climate change mitigation and adaptation strategies. Clim. Chang. 2016, 135, 277–295. [Google Scholar] [CrossRef] [Green Version]
- Sacchelli, S.; Fabbrizzi, S.; Menghini, S. Climate change effects and adaptation strategies in the wine sector: A quantitative literature review. Wine Econ. Policy 2016, 5, 114–126. [Google Scholar] [CrossRef] [Green Version]
- Vaz, M.; Coelho, R.; Rato, A.; Samara-Lima, R.; Silva, L.L.; Campostrini, E.; Mota, J.B. Adaptive strategies of two Mediterranean grapevines varieties (Aragonez syn. Tempranillo and Trincadeira) face drought: Physiological and structural responses. Theor. Exp. Plant Physiol. 2016, 28, 205–220. [Google Scholar] [CrossRef]
- Zhu, X.; Moriondo, M.; van Ierland, E.C.; Trombi, G.; Bindi, M. A model-based assessment of adaptation options for Chianti wine production in Tuscany (Italy) under climate change. Reg. Environ. Chang. 2016, 16, 85–96. [Google Scholar] [CrossRef] [Green Version]
- Neethling, E.; Petitjean, T.; Quénol, H.; Barbeau, G. Assessing local climate vulnerability and winegrowers’ adaptive processes in the context of climate change. Mitig. Adapt. Strateg. Glob. Chang. 2017, 22, 777–803. [Google Scholar] [CrossRef]
- Merloni, E.; Camanzi, L.; Mulazzani, L.; Malorgio, G. Adaptive capacity to climate change in the wine industry: A Bayesian Network approach. Wine Econ. Policy 2018, 7, 165–177. [Google Scholar] [CrossRef]
- Santillán, D.; Garrote, L.; Iglesias, A.; Sotes, V. Climate change risks and adaptation: New indicators for Mediterranean viticulture. Mitig. Adapt. Strateg. Glob. Chang. 2019, 25, 881–899. [Google Scholar] [CrossRef]
- Bartholy, J.; Pongracz, R.; Torma, C.; Pieczka, I.; Kardos, P.; Hunyady, A. Analysis of regional climate change modelling experiments for the Carpathian Basin. Int. J. Glob. Warm. 2009, 1, 238–252. [Google Scholar] [CrossRef]
Source | Spatial Focus |
---|---|
[90] | Tuscany, Italy |
[91] | California, US |
[42] | Roussillon (France) and McLaren Vale (Australia) |
[92] | - |
[93] | Australia |
[44] | Spain, Portugal |
[31] | - |
[94] | New Zealand |
[95] | - |
[96] | Portugal |
[97] | Tuscany, Italy |
[45] | China |
[98] | Anjou-Saumur winegrowing sub-region, France |
[29] | Australia |
[99] | Emilia Romagna, Italy |
[30] | Australia |
[50] | - |
[100] | Mediterranean countries |
[5] | - |
Tolerance to … | Increase of HI | Fungal Diseases on … | |||
---|---|---|---|---|---|
Drought | Frost | Leaf | Berries | ||
Blaufränkisch | |||||
Merlot | |||||
Cabernet sauvignon | |||||
Kadarka | |||||
Welschriesling | |||||
Chardonnay | |||||
Sylvaner | |||||
Sauvignon blanc |
Environmental Sustainability Issues | ||||
---|---|---|---|---|
Water Consumption | Energy Consumption | Air Pollution | Biodiversity | |
Use of shading nets/foliar sunscreens | NR | NR | NR | −− |
Harvesting at night by machine | NR | −− | −− | − |
Turning on heaters/wind machines | NR | −− | − | − |
Allowing natural vegetation to grow | ++ | NR | + | ++ |
Fungicide treatments | NR | NR | −− | −− |
Site selection | + | − | − | 0 |
Permanent irrigation | −− | − | NR | ++ |
Use of well-adapted variety/rootstock | + | + | NR | 0 |
Canopy management | + | + | NR | 0 |
Evaporative cooling | −− | −− | − | 0 |
Drip irrigation | − | − | NR | ++ |
Non-chemical pest management | NR | NR | 0 | ++ |
Soil preparation | + | − | 0 | + |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buzási, A. Climate Vulnerability and Adaptation Challenges in Szekszárd Wine Region, Hungary. Climate 2021, 9, 25. https://doi.org/10.3390/cli9020025
Buzási A. Climate Vulnerability and Adaptation Challenges in Szekszárd Wine Region, Hungary. Climate. 2021; 9(2):25. https://doi.org/10.3390/cli9020025
Chicago/Turabian StyleBuzási, Attila. 2021. "Climate Vulnerability and Adaptation Challenges in Szekszárd Wine Region, Hungary" Climate 9, no. 2: 25. https://doi.org/10.3390/cli9020025
APA StyleBuzási, A. (2021). Climate Vulnerability and Adaptation Challenges in Szekszárd Wine Region, Hungary. Climate, 9(2), 25. https://doi.org/10.3390/cli9020025