Interannual Variability of Air Temperature over Myanmar: The Influence of ENSO and IOD
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. In-Situ Observation
3.2. Methods
4. Results and Discussion
4.1. Characteristics of Air Temperature over Myanmar
4.2. Interannual Variability of Air Temperature in Myanmar
4.3. Detection of Abrupt Climate Change in Air Temperature over Myanmar
4.4. Dominant Modes in Air Temperature over Myanmar and Possible Causes
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Empirical Orthogonal Function
Appendix B
Mann-Kendall Test
References
- Suman, M.; Maity, R. Southward shift of precipitation extremes over south Asia: Evidences from CORDEX data. Sci. Rep. 2020, 10, 6452. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Hazra, A.; Goswami, B.N. Role of interaction between dynamics, thermodynamics and cloud microphysics on summer monsoon precipitating clouds over the Myanmar Coast and the Western Ghats. Clim. Dyn. 2014. [Google Scholar] [CrossRef]
- Sein, K.K.; Chidthaisong, A.; Oo, K.L. Observed Trends and Changes in Temperature and Precipitation Extreme Indices over Myanmar. Atmosphere 2018, 9, 477. [Google Scholar] [CrossRef] [Green Version]
- Sein, Z.M.M.; Zhi, X. Interannual variability of summer monsoon rainfall over Myanmar. Arab. J. Geosci. 2016, 9, 469. [Google Scholar] [CrossRef]
- Dutta, R. Drought Monitoring in the Dry Zone of Myanmar using MODIS Derived NDVI and Satellite Derived CHIRPS Precipitation Data. Sustain. Agric. Res. 2018. [Google Scholar] [CrossRef] [Green Version]
- Omer, A.; Zhuguo, M.; Zheng, Z.; Saleem, F. Natural and anthropogenic influences on the recent droughts in Yellow River Basin, China. Sci. Total Environ. 2020, 704, 135428. [Google Scholar] [CrossRef]
- Lawrence, M.G. The Relationship between Relative Humidity and the Dewpoint Temperature in Moist Air: A Simple Conversion and Applications. Bull. Am. Meteorol. Soc. 2005, 86, 225–234. [Google Scholar] [CrossRef]
- Sutton, R.T.; Dong, B.; Gregory, J.M. Land/sea warming ratio in response to climate change: IPCC AR4 model results and comparison with observations. Geophys. Res. Lett. 2007. [Google Scholar] [CrossRef]
- Chowdary, J.S.; John, N.; Gnanaseelan, C. Interannual variability of surface air-temperature over India: Impact of ENSO and Indian Ocean Sea surface temperature. Int. J. Climatol. 2014, 34, 416–429. [Google Scholar] [CrossRef]
- Asia-Pacific Mountain Network Building resilience of mountain communities to climate change- Asia. Cambio Clim. Adapt. Retroceso Glaciares 2008, 2, 3.
- Faustin Katchele, O.; Ma, Z.G.; Yang, Q.; Batebana, K. Comparison of trends and frequencies of drought in central North China and sub-Saharan Africa from 1901 to 2010. Atmos. Ocean. Sci. Lett. 2017, 10, 418–426. [Google Scholar] [CrossRef] [Green Version]
- Roy Bhowmik, S.K.; Durai, V.R. Multi-model ensemble forecasting of rainfall over Indian monsoon region. Atmosfera 2008, 21, 225–239. [Google Scholar]
- Kreft, S.; Eckstein, D.; Melchior, I. Global Climate Risk Index 2017. Who Suffers Most from Extreme Weather Events? Weather-relatred loss events in 2015 and 1996 to 2015. Think Tank Res. 2017, 76, 1–28. [Google Scholar]
- IPCC. Summary for Policymakers—Global Warming of 1.5oC, an IPCC Special Report; IPCC: Geneva, Switzerland, 2018; ISBN 9783540773405. [Google Scholar]
- Sein, M.M.Z.; Ogwang, B.A.; Ongoma, V.; Ogou, F.K.; Batebana, K. Inter-annual variability of Summer Monsoon Rainfall over Myanmar in relation to IOD and ENSO. J. Environ. Agric. Sci. 2015, 4, 28–36. [Google Scholar]
- Htway, O.; Matsumoto, J. Climatological onset dates of summer monsoon over Myanmar. Int. J. Climatol. 2011. [Google Scholar] [CrossRef]
- Oo, S.S.; Hmwe, K.M.; Aung, N.N.; Su, A.A.; Soe, K.K.; Mon, T.L.; Lwin, K.M.; Thu, M.M.; Soe, T.T.; Htwe, M.L. Diversity of Insect Pest and Predator Species in Monsoon and Summer Rice Fields of Taungoo Environs, Myanmar. Adv. Entomol. 2020. [Google Scholar] [CrossRef]
- Rao, M.; Htun, S.; Platt, S.G.; Tizard, R.; Poole, C.; Than, M.; Watson, J.E.M. Biodiversity Conservation in a Changing Climate: A Review of Threats and Implications for Conservation Planning in Myanmar. Ambio 2013, 42, 789–804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kreft, S.; Eckstein, D. Global Climate Risk Index 2014. Who Suffers Most from Extreme Weather Events; Germanwatch: Bonn, Germany, 2016; ISBN 9783943704143. [Google Scholar]
- Trenberth, K.E. Recent observed interdecadal climate changes in the Northern Hemisphere. Bull. -Am. Meteorol. Soc. 1990. [Google Scholar] [CrossRef] [Green Version]
- Kiladis, G.N.; Diaz, H.F. Global Climatic Anomalies Associated with Extremes in the Southern Oscillation. J. Clim. 1989. [Google Scholar] [CrossRef] [Green Version]
- Halpert, M.S.; Ropelewski, C.F. Surface Temperature Patterns Associated with the Southern Oscillation. J. Clim. 1992. [Google Scholar] [CrossRef] [Green Version]
- Kothawale, D.R.; Munot, A.A.; Kumar, K.K. Surface air temperature variability over India during 1901-2007, and its association with enso. Clim. Res. 2010. [Google Scholar] [CrossRef]
- Joseph, P.V. Role of Ocean in the Variability of Indian Summer Monsoon Rainfall. Surv. Geophys. 2014. [Google Scholar] [CrossRef]
- Lim, E.P.; Hendon, H.H. Causes and Predictability of the Negative Indian Ocean Dipole and Its Impact on la Niña during 2016. Sci. Rep. 2017. [Google Scholar] [CrossRef] [Green Version]
- Thirumalai, K.; DInezio, P.N.; Okumura, Y.; Deser, C. Extreme temperatures in Southeast Asia caused by El Ninõ and worsened by global warming. Nat. Commun. 2017. [Google Scholar] [CrossRef] [PubMed]
- Sen Roy, N.; Kaur, S. Climatology of monsoon rains of Myanmar (Burma). Int. J. Climatol. 2000. [Google Scholar] [CrossRef]
- Mie Sein, Z.M.; Islam, A.R.M.T.; Maw, K.W.; Moya, T.B. Characterization of southwest monsoon onset over Myanmar. Meteorol. Atmos. Phys. 2015. [Google Scholar] [CrossRef]
- Burki, T. Floods in Myanmar damage hundreds of health facilities. Lancet 2015, 386, 843. [Google Scholar] [CrossRef]
- Kreft, S.; Eckstein, D. Global Climate Risk Index 2014: Who suffers most from extreme weather events? Weather-related loss events in 2012 and 1993 to 2012. Ger. Brief. Pap. 2013, 28. [Google Scholar]
- Omer, A.; Elagib, N.A.; Zhuguo, M.; Saleem, F.; Mohammed, A. Water scarcity in the Yellow River Basin under future climate change and human activities. Sci. Total Environ. 2020, 749, 141446. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.; Angel, W.; Boyer, T.; Cheng, L.; Chepurin, G.; Freeman, E.; Liu, C.; Zhang, H.M. Evaluating SST analyses with independent ocean profile observations. J. Clim. 2018. [Google Scholar] [CrossRef]
- Ullah, I.; Ma, X.; Yin, J.; Asfaw, T.G.; Azam, K.; Syed, S.; Liu, M.; Arshad, M.; Shahzaman, M. Evaluating the meteorological drought characteristics over Pakistan using In-situ observations and reanalysis products. Int. J. Climatol. 2021, j7063. [Google Scholar] [CrossRef]
- Hannachi, A.; Jolliffe, I.T.; Stephenson, D.B. Empirical orthogonal functions and related techniques in atmospheric science: A review. Int. J. Climatol. 2007, 27, 1119–1152. [Google Scholar] [CrossRef]
- Walsh, J.E.; Mostek, A. A quantitative analysis of meteorological anomaly patterns over the United States, 1900–1977. Mon. Weather Rev. 1980. [Google Scholar] [CrossRef]
- Wilks, D.S. Statistical Methods in the Atmospheric Sciences, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2007; ISBN 9780127519661. [Google Scholar]
- Kabanda, T.A.; Jury, M.R. Inter-annual variability of short rains over northern Tanzania. Clim. Res. 1999. [Google Scholar] [CrossRef]
- Zin, E.E.; Aung, L.L.; Zin, E.E.; Theingi, P.; Elvera, N.; Aung, P.P.; Han, T.T.; Oo, Y.; Skaland, R.G. Myanmar Climate Report. Norwgian Meterological Inst. 2017, 105. [Google Scholar]
- Oo, H.T.; Zin, W.W.; Thin Kyi, C.C. Assessment of Future Climate Change Projections Using Multiple Global Climate Models. Civ. Eng. J. 2019, 5, 2152–2166. [Google Scholar] [CrossRef] [Green Version]
- Enfield, D.B.; Mestas-Nuñez, A.M.; Trimble, P.J. The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental U.S. Geophys. Res. Lett. 2001. [Google Scholar] [CrossRef] [Green Version]
- Davy, R.; Esau, I.; Chernokulsky, A.; Outten, S.; Zilitinkevich, S. Diurnal asymmetry to the observed global warming. Int. J. Climatol. 2017. [Google Scholar] [CrossRef] [Green Version]
- NECC. MECF Myanmar’s National Adaptation Programme of Action (NAPA) to Climate Change; NECC: Haverhill, MA, USA, 2012; p. 126. [Google Scholar]
- Ko, M.; Kyaw, K.; Aye, N.; Thant, A.A. Drought Analysis for Ayeyarwady Basin. Available online: https://d1wqtxts1xzle7.cloudfront.net/60027700/pdf20190716-52601-16l3i7v.pdf?1563295069=&response-content-disposition=inline%3B+filename%3DDrought_Analysis_for_Ayeyarwady_Basin.pdf&Expires=1613969561&Signature=duXItJG6FheDDGqbbD2BOq4Bxw4zky1x9hjaPFxcR69bLC3s~W27tcwdT3JWgQ2Ubft8-sASePcqmrBF-ebr4~KWOoE5w5JBvnQ5xPArC~oHVUHqymlK1AW57-7VTgcvUwML7SU2hvvfv6UgbAkcEluBgiUM77zGR8Ho18rSXiaedP6cThPcdh~1VhPEnNjyxb29s9yWbpUfJ~PYVix1afrS-nYmry1ZxSGLzmTMO8T8I2ospZMlphr7u1q6kuTrke-rcMmwZbb5gZa4x~YIO9xW2nFaDv7E0y9Cf0kyZNf4CHnKHZiksmQSqic~kxRzvUaurwaLC0Efbs9yzbVQ0w__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA (accessed on 19 December 2020).
- Zin, W.W.; Kawasaki, A.; Hörmann, G.; Acierto, R.A.; San, Z.M.L.T.; Thu, A.M. Multivariate flood loss estimation of the 2018 bago flood in Myanmar. J. Disaster Res. 2020. [Google Scholar] [CrossRef]
- De, U.; Dube, R.; Rao, G. Extreme weather events over India in the last 100 years. J. Indian Geophys. Union 2005. [Google Scholar]
- Dommenget, D.; Latif, M. A cautionary note on the interpretation of EOFs. J. Clim. 2002. [Google Scholar] [CrossRef] [Green Version]
- Baldwin, M.P.; Stephenson, D.B.; Jolliffe, I.T. Spatial weighting and iterative projection methods for EOFs. J. Clim. 2009. [Google Scholar] [CrossRef] [Green Version]
- Lorenz, E.N. Empirical Orthogonal Functions and Statistical Weather Prediction. Tech. Rep. Stat. Forecast Proj. Rep. 1 Dep. Meteorol. MIT 49 1956. [Google Scholar]
- Mann, H.B. Nonparametric Tests Against Trend. Econometrica 1945. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods, 4th ed.; Griffin: Spokane, WA, USA, 1957. [Google Scholar]
- Nalley, D.; Adamowski, J.; Khalil, B.; Ozga-Zielinski, B. Trend detection in surface air temperature in Ontario and Quebec, Canada during 1967-2006 using the discrete wavelet transform. Atmos. Res. 2013. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mie Sein, Z.M.; Ullah, I.; Syed, S.; Zhi, X.; Azam, K.; Rasool, G. Interannual Variability of Air Temperature over Myanmar: The Influence of ENSO and IOD. Climate 2021, 9, 35. https://doi.org/10.3390/cli9020035
Mie Sein ZM, Ullah I, Syed S, Zhi X, Azam K, Rasool G. Interannual Variability of Air Temperature over Myanmar: The Influence of ENSO and IOD. Climate. 2021; 9(2):35. https://doi.org/10.3390/cli9020035
Chicago/Turabian StyleMie Sein, Zin Mie, Irfan Ullah, Sidra Syed, Xiefei Zhi, Kamran Azam, and Ghulam Rasool. 2021. "Interannual Variability of Air Temperature over Myanmar: The Influence of ENSO and IOD" Climate 9, no. 2: 35. https://doi.org/10.3390/cli9020035
APA StyleMie Sein, Z. M., Ullah, I., Syed, S., Zhi, X., Azam, K., & Rasool, G. (2021). Interannual Variability of Air Temperature over Myanmar: The Influence of ENSO and IOD. Climate, 9(2), 35. https://doi.org/10.3390/cli9020035