Impact of Seasonal Variation in Climate on Water Quality of Old Woman Creek Watershed Ohio Using SWAT
Abstract
:1. Introduction
- To evaluate the performance of each of the twenty GCMs from CMIP5 ensemble using exploratory simulations, calculate Euclidean distance of each model result relative to the multivariate ensemble average, and select the best three GCM models defined as those closest to the multivariate ensemble average, because the multivariate ensemble average of the 20 CMIP5 results is consistent with the average of the PRISM results.
- To reproduce the Parameter-elevation Regressions on Independent Slopes Model (PRISM) data simulation results for the historical climate window using the average result of the simulation made with the best three CMIP5 models.
- To make simulations for the current to near, mid-century, and late-century climate windows using best three CMIP5 models.
2. Materials and Methods
2.1. Old Woman Creek (OWC) Watershed and Estuary
2.2. SWAT Data Acquisition and Preparation
2.3. SWAT Model
2.4. Calibration of SWAT Model
2.5. Seasonal Analysis Simulations for Streamflow and Water Quality Variables
- Evaluating the performance of each of the 20 CMIP5 climate models with respect to the overall average and selecting the best three CMIP5 models.
- Running one monthly simulation using PRISM climate data for the historical climate window.
- Running three monthly simulations using the best three CMIP5 climate models for the historical climate window.
- Comparing the average of the best three CMIP5 models’ simulation results to PRISM results for the historical climate window.
- Running nine monthly simulations consisting of three each for the current to near future, mid-century, and late-century climate windows using the best three CMIP5 climate models.
3. Results
3.1. Historical Climate Window (1985–2014) Results
3.1.1. Actual (PRISM) and Projected (CMIP5) Climate Forcing
3.1.2. PRISM and CMIP5 Streamflow and Water Quality Simulation Results (1985–2014)
3.2. Future Climate Windows Results
3.2.1. Climate Forcing (CMIP5)
3.2.2. CMIP5 Streamflow and Water Quality Simulation Results (2018–2100)
3.2.3. Estimated Change in Simulated Variables across the Century (2018–2100)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Huntington, J.; Mcgwire, K.; Morton, C.; Snyder, K.; Peterson, S.; Erickson, T.; Niswonger, R.; Carroll, R.; Smith, G.; Allen, R. Assessing the role of climate and resource management on groundwater dependent ecosystem changes in arid environments with the Landsat archive. Remote Sens. Environ. 2016, 185, 186–197. [Google Scholar] [CrossRef] [Green Version]
- IPOC Change. Climate Change 2007: The Physical Science Basis. Agenda 2007, 6, 333. [Google Scholar]
- Pathak, P.; Kalra, A.; Ahmad, S. Temperature and precipitation changes in the Midwestern United States: Implications for water management. Int. J. Water Resour. Dev. 2017, 33, 1003–1019. [Google Scholar] [CrossRef]
- Nazari-Sharabian, M.; Taheriyoun, M.; Ahmad, S.; Karakouzian, M.; Ahmadi, A. Water quality modeling of Mahabad Dam watershed–reservoir system under climate change conditions, using SWAT and system dynamics. Water 2019, 11, 394. [Google Scholar] [CrossRef] [Green Version]
- Thodsen, H. The influence of climate change on stream flow in Danish rivers. J. Hydrol. 2007, 333, 226–238. [Google Scholar] [CrossRef]
- Yin, J.; Guo, S.; He, S.; Guo, J.; Hong, X.; Liu, Z. A copula-based analysis of projected climate changes to bivariate flood quantiles. J. Hydrol. 2018, 566, 23–42. [Google Scholar] [CrossRef]
- Githui, F.; Gitau, W.; Mutua, F.; Bauwens, W. Climate change impact on SWAT simulated streamflow in western Kenya. Int. J. Climatol. 2009, 29, 1823–1834. [Google Scholar] [CrossRef]
- Stumpf, R.P.; Wynne, T.T.; Baker, D.B.; Fahnenstiel, G.L. Interannual variability of cyanobacterial blooms in Lake Erie. PLoS ONE 2012, 7, e42444. [Google Scholar] [CrossRef] [PubMed]
- Martin, J.F.; Kalcic, M.M.; Aloysius, N.; Apostel, A.M.; Brooker, M.R.; Evenson, G.; Wang, Y.C.; Kast, J.B.; Kujawa, H.; Murumkar, A.; et al. Evaluating management options to reduce Lake Erie algal blooms using an ensemble of watershed models. J. Environ. Manag. 2020, 280, 111710. [Google Scholar] [CrossRef] [PubMed]
- Kujawa, H.; Kalcic, M.; Martin, J.; Aloysius, N.; Apostel, A.; Kast, J.; Murumkar, A.; Evenson, G.; Becker, R.; Boles, C.; et al. The hydrologic model as a source of nutrient loading uncertainty in a future climate. Sci. Total Environ. 2020, 724, 138004. [Google Scholar] [CrossRef]
- McCarthy, M.J.; Gardner, W.S.; Lavrentyev, P.J.; Moats, K.M.; Jochem, F.J.; Klarer, D.M. Effects of hydrological flow regime on sediment-water interface and water column nitrogen dynamics in a Great Lakes coastal wetland (Old Woman Creek, Lake Erie). J. Great Lakes Res. 2007, 33, 219–231. [Google Scholar] [CrossRef]
- Herdendorf, C.E.; Klarer, D.M.; Herdendorf, R.C. The Ecology of Old Woman Creek, Ohio: An Estuarine and Watershed Profile, 2nd ed.; Ohio Department of Natural Resources, Division of Wildlife: Columbus, OH, USA, 2006. [Google Scholar]
- Reeder, B.C.; Binion, B.M. Algal Community Habitat Preferences in Old Woman Creek Wetland, Erie County, Ohio. Ohio J. Sci. 2008, 108, 95–102. [Google Scholar]
- Flint, L.E.; Flint, A.L. Downscaling future climate scenarios to fine scales for hydrologic and ecological modeling and analysis. Ecol. Process. 2012, 1, 2. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Andréasson, J.; Phil Graham, L.; Olsson, J.; Rosberg, J.; Wetterhall, F. Distribution-based scaling to improve usability of regional climate model projections for hydrological climate change impacts studies. Hydrol. Res. 2010, 41, 211–229. [Google Scholar] [CrossRef]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Srinivasan, R.; Williams, J.R. Soil and water assessment tool user’s manual. In GSWRL Report, version 2000; TWRI Report TR-192; Texas Water Resources Institute: College Station, TX, USA, 2002; Volume 202. [Google Scholar]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hy-drologic modeling and assessment—Part 1: Model development. J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Gull, S.; Ahangar, M.A.; Dar, A.M. Prediction of stream flow and sediment yield of lolab watershed using swat model. Hydrol. Curr. Res 2017, 8, 265. [Google Scholar] [CrossRef] [Green Version]
- Di Luzio, M.; Srinivasan, R.; Arnold, J.G.; Neitsch, S.L. ArcView interface for SWAT2000: User’s guide. In TWRI Report TR-193; Texas Water Resources Institute: College Station, TX, USA, 2002. [Google Scholar]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Confesor, R.B.; Richards, R.P.; Arnold, J.G.; Whittaker, G.W. Modeling Dissolved Phosphorus Exports in Lake Erie Watersheds; ASABE Meeting Presentation Number 1111060; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2011; p. 1. [Google Scholar]
- Scavia, D.; Kalcic, M.; Muenich, R.L.; Read, J.; Aloysius, N.; Bertani, I.; Yen, H. Multiple models guide strategies for agricultural nutrient reductions. Front. Ecol. Environ. 2017, 15, 126–132. [Google Scholar] [CrossRef]
- Confesor, R.B., Jr.; Whittaker, G.W. Automatic Calibration of Hydrologic Models with Multi-Objective Evolutionary Algorithm and Pareto Optimization 1. JAWRA J. Am. Water Resour. Assoc. 2007, 43, 981–989. [Google Scholar] [CrossRef]
- R-Development-Core-Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2011; Available online: http://www.R-project.org (accessed on 5 February 2019).
- Balbus, J. The Fourth National Climate Assessment Vol. II: Impacts, Risks, and Adaptation in the United States. In Proceedings of the 99th American Meteorological Society Annual Meeting, Phoenix, AZ, USA, 6–10 January 2019. [Google Scholar]
- Taft, B.; Koncelik, J. Total Maximum Daily Loads for the Old Woman Creek and Chappel Creek Watersheds. 2000. Available online: https://www.epa.state.oh.us/portals/35/tmdl/OWC_Final_062905.pdf (accessed on 1 August 2018).
- Ficklin, D.L.; Luo, Y.; Luedeling, E.; Zhang, M. Climate change sensitivity assessment of a highly agricultural watershed using SWAT. J. Hydrol. 2009, 374, 16–29. [Google Scholar] [CrossRef]
- Čerkasova, N.; Umgiesser, G.; Ertürk, A. Development of a hydrology and water quality model for a large transboundary river watershed to investigate the impacts of climate change—A SWAT application. Ecol. Eng. 2018, 124, 99–115. [Google Scholar] [CrossRef]
Flow (m3/s) | Sediment (Tons) | Organic Nitrogen (kg) | Organic Phosphorus (kg) | Mineral Phosphorus (kg) | ||||||
PRISM-Avg. | CMIP5-BEST3-Avg. | PRISM-Avg. | CMIP5-BEST3-Avg. | PRISM-Avg. | CMIP5-BEST3-Avg. | PRISM-Avg. | CMIP5-BEST3-Avg. | PRISM-Avg. | CMIP5-BEST3-Avg. | |
Annual Max | 0.68 | 0.81 | 667 | 797 | 4846 | 5736 | 1318 | 1395 | 217 | 283 |
Annual Min | 0.24 | 0.18 | 198 | 109 | 1360 | 678 | 323 | 178 | 82 | 47 |
Annual Range | 0.44 | 0.63 | 470 | 689 | 3486 | 5058 | 995 | 1217 | 136 | 236 |
Fall Avg. | 0.27 | 0.21 | 213 | 162 | 1389 | 1130 | 347 | 272 | 92 | 76 |
Winter Avg. | 0.58 | 0.60 | 534 | 611 | 3590 | 4480 | 889 | 1092 | 207 | 243 |
Spring Avg. | 0.61 | 0.69 | 580 | 684 | 4016 | 4570 | 1070 | 1208 | 183 | 220 |
Summer Avg. | 0.39 | 0.32 | 347 | 239 | 2990 | 2034 | 812 | 559 | 134 | 110 |
Annual Avg. | 0.46 | 0.46 | 419 | 424 | 2996 | 3053 | 780 | 783 | 154 | 162 |
Fall Total | 0.82 | 0.62 | 640 | 485 | 4165 | 3389 | 1040 | 816 | 276 | 227 |
Winter Total | 1.74 | 1.81 | 1601 | 1833 | 10,771 | 13,439 | 2667 | 3276 | 620 | 728 |
Spring Total | 1.83 | 2.08 | 1740 | 2051 | 12,049 | 13,710 | 3211 | 3623 | 548 | 659 |
Summer Total | 1.18 | 0.96 | 1041 | 716 | 8971 | 6101 | 2435 | 1678 | 403 | 331 |
Annual Total | 5.57 | 5.48 | 5022 | 5085 | 35,955 | 36,638 | 9353 | 9392 | 1848 | 1944 |
Chlorophyll a (kg) | CBOD (kg) | Dissolved Oxygen (kg) | Total Nitrogen (kg) | Total Phosphorus (kg) | ||||||
PRISM-Avg. | CMIP5-BEST3-Avg. | PRISM-Avg. | CMIP5-BEST3-Avg. | PRISM-Avg. | CMIP5-BEST3-Avg. | PRISM-Avg. | CMIP5-BEST3-Avg. | PRISM-Avg. | CMIP5-BEST3-Avg. | |
Annual Max | 89 | 119 | 96,341 | 100,631 | 9173 | 10,012 | 18,798 | 19,201 | 1505 | 1677 |
Annual Min | 20 | 8 | 22,522 | 15,323 | 2522 | 2004 | 1942 | 974 | 407 | 224 |
Annual Range | 69 | 111 | 73,819 | 85,308 | 6651 | 8008 | 16,856 | 18,226 | 1098 | 1453 |
Fall Avg. | 21 | 19 | 27,195 | 20,170 | 3127 | 2492 | 3476 | 2448 | 439 | 347 |
Winter Avg. | 68 | 93 | 61,178 | 77,307 | 7728 | 7101 | 11,233 | 10,228 | 1096 | 1334 |
Spring Avg. | 72 | 82 | 76,124 | 85,566 | 6975 | 7856 | 15,799 | 17,997 | 1253 | 1427 |
Summer Avg. | 43 | 25 | 60,988 | 40,483 | 3300 | 2869 | 5408 | 4638 | 946 | 670 |
Annual Avg. | 51 | 55 | 56,371 | 55,882 | 5282 | 5079 | 8979 | 8828 | 933 | 945 |
Fall Total | 64 | 57 | 81,584 | 60,511 | 9381 | 7477 | 10,428 | 7345 | 1317 | 1042 |
Winter Total | 204 | 279 | 183,535 | 231,922 | 23,184 | 21,302 | 33,698 | 30,684 | 3287 | 4003 |
Spring Total | 216 | 246 | 228,371 | 256,697 | 20,926 | 23,568 | 47,398 | 53,990 | 3759 | 4282 |
Summer Total | 129 | 74 | 182,963 | 121,449 | 9899 | 8606 | 16,223 | 13,915 | 2838 | 2009 |
Parameter | PRISM (1985–2014) | CMIP5 (1985–2014) | CMIP5 (2018–2045) | CMIP5 (2046–2075) | CMIP5 (2076–2100) |
---|---|---|---|---|---|
Min PPT (mm) | 54.8 | 62.9 | 65.5 | 64.1 | 64.5 |
Max PPT (mm) | 100.2 | 97.8 | 105.1 | 109.1 | 120.0 |
Min Temp (°C) | −3.1 | −3.3 | −1.7 | 0.0 | 2.0 |
Max Temp (°C) | 22.7 | 22.7 | 24.2 | 26.1 | 27.7 |
Flow (%) | Sed (%) | Org n (%) | Org p (%) | Min p (%) | Chl a (%) | CBOD (%) | DisO2 (%) | Tot n (%) | Tot p (%) | |
---|---|---|---|---|---|---|---|---|---|---|
Fall Avg. | 6.8 | 8.0 | 6.0 | 3.1 | 2.8 | 10.5 | 12.8 | 6.4 | 3.8 | 3.0 |
Winter Avg. | 14.5 | 18.2 | 3.2 | 1.7 | −1.1 | 3.1 | 8.8 | 15.5 | 18.9 | 1.2 |
Spring Avg. | 21.0 | 26.0 | 21.8 | 19.3 | 14.9 | 26.8 | 29.2 | 16.2 | 10.1 | 18.6 |
Summer Avg. | 9.7 | 11.6 | −2.9 | −6.6 | −2.4 | −5.0 | 5.7 | 9.2 | −12.6 | −5.9 |
Annual Max | 10.7 | 13.7 | 11.6 | 21.0 | 1.3 | 5.4 | 29.3 | 11.9 | 12.1 | 15.8 |
Annual Min | 6.7 | 31.6 | 33.9 | 27.2 | 10.7 | 42.6 | 36.8 | 13.3 | 29.5 | 23.8 |
Annual Range | 11.8 | 10.9 | 8.6 | 20.1 | −0.6 | 2.7 | 27.9 | 11.6 | 11.2 | 14.6 |
Annual Total | 15.3 | 19.4 | 9.4 | 7.1 | 4.6 | 11.7 | 16.4 | 13.8 | 9.2 | 6.7 |
Flow (%) | Sed (%) | Org n (%) | Org p (%) | Min p (%) | Chl a (%) | CBOD (%) | DisO2 (%) | Tot n (%) | Tot p (%) | |
---|---|---|---|---|---|---|---|---|---|---|
Fall Avg. | 30.0 | 48.9 | 29.3 | 27.4 | 20.1 | 37.9 | 46.6 | 17.4 | 28.4 | 25.8 |
Winter Avg. | 12.9 | 16.4 | −6.0 | −6.1 | −13.7 | −9.9 | 5.1 | 16.5 | 23.0 | −7.5 |
Spring Avg. | 38.8 | 57.3 | 45.6 | 42.0 | 22.7 | 52.8 | 61.0 | 27.3 | 18.0 | 39.0 |
Summer Avg. | 3.2 | 5.9 | −11.2 | −15.3 | −13.3 | −9.4 | −0.9 | −0.6 | −30.6 | −15.0 |
Annual Max | 34.2 | 59.0 | 22.8 | 32.1 | 0.2 | 8.6 | 50.2 | 26.8 | 23.1 | 24.5 |
Annual Min | 19.3 | 72.9 | 70.3 | 60.1 | 28.7 | 75.2 | 62.9 | 16.1 | 65.0 | 53.6 |
Annual Range | 38.4 | 56.8 | 16.4 | 28.0 | −5.4 | 3.8 | 48.0 | 29.5 | 20.8 | 20.0 |
Annual Total | 23.0 | 34.5 | 15.7 | 13.7 | 2.6 | 17.8 | 29.2 | 18.4 | 13.8 | 11.8 |
Flow (%) | Sed (%) | Org n (%) | Org p (%) | Min p (%) | Chl a (%) | CBOD (%) | DisO2 (%) | Tot n (%) | Tot p (%) | |
---|---|---|---|---|---|---|---|---|---|---|
Fall Avg. | 58.0 | 97.9 | 68.7 | 65.3 | 52.9 | 97.2 | 89.5 | 31.9 | 66.1 | 62.6 |
Winter Avg. | 34.5 | 42.5 | 0.3 | 2.5 | −3.4 | −7.5 | 19.1 | 37.5 | 49.9 | 1.4 |
Spring Avg. | 54.7 | 81.2 | 63.0 | 59.3 | 35.2 | 69.3 | 86.9 | 34.8 | 22.7 | 55.6 |
Summer Avg. | 17.8 | 33.0 | 0.3 | −5.8 | −3.4 | 10.4 | 18.4 | 9.7 | −25.6 | −5.4 |
Annual Max | 55.8 | 88.7 | 45.9 | 55.5 | 19.8 | 50.1 | 78.2 | 42.1 | 32.5 | 49.4 |
Annual Min | 27.5 | 67.4 | 41.1 | 33.3 | 30.7 | 26.6 | 54.4 | 10.2 | 46.0 | 32.8 |
Annual Range | 63.6 | 92.1 | 46.6 | 58.7 | 17.6 | 51.8 | 82.5 | 50.0 | 31.8 | 52.0 |
Annual Total | 41.9 | 62.0 | 30.1 | 28.4 | 16.2 | 32.5 | 51.3 | 31.8 | 27.2 | 26.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olaoye, I.A.; Confesor, R.B., Jr.; Ortiz, J.D. Impact of Seasonal Variation in Climate on Water Quality of Old Woman Creek Watershed Ohio Using SWAT. Climate 2021, 9, 50. https://doi.org/10.3390/cli9030050
Olaoye IA, Confesor RB Jr., Ortiz JD. Impact of Seasonal Variation in Climate on Water Quality of Old Woman Creek Watershed Ohio Using SWAT. Climate. 2021; 9(3):50. https://doi.org/10.3390/cli9030050
Chicago/Turabian StyleOlaoye, Israel A., Remegio B. Confesor, Jr., and Joseph D. Ortiz. 2021. "Impact of Seasonal Variation in Climate on Water Quality of Old Woman Creek Watershed Ohio Using SWAT" Climate 9, no. 3: 50. https://doi.org/10.3390/cli9030050
APA StyleOlaoye, I. A., Confesor, R. B., Jr., & Ortiz, J. D. (2021). Impact of Seasonal Variation in Climate on Water Quality of Old Woman Creek Watershed Ohio Using SWAT. Climate, 9(3), 50. https://doi.org/10.3390/cli9030050