Projections of Local Knowledge-Based Adaptation Strategies of Mexican Coffee Farmers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Organizations and Regions
2.2. Historical Analysis, Observed and Projected Changes
2.3. Local Knowledge
2.4. Evaluation of Adaptation Strategies
2.4.1. Carbon Content as Indicators of Future Conditions
2.4.2. Water Balance as Indicator of Future Conditions
3. Results and Discussion
3.1. Climate and Climate Change
3.2. Local Knowledge on Adaptation to Extreme Events
3.3. Carbon Content Projections for Future Conditions
3.4. Water Balance Projections for Future Conditions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- UNFCCC. Synthesis Report on the Aggregate Effect of Intended National and Determined Contributions (INDCs). An Overview; United Nations Framework Convention on climate Change: Bonn, Germany, 2015. [Google Scholar]
- UNFCCC. Adoption of the Paris Agreement, 21st Conference of the Parties; United Nations: Paris, France, 2015. [Google Scholar]
- USAID. Analysis of Intended Nationally Determined Contributions (INDCs); United States Agency for International Development: Washington, DC, USA, 2016. [Google Scholar]
- Klein, R.J.T.; Nicholls, R.J.; Thomalla, F. Resilience to natural hazards: How useful is this concept? Environ. Hazards 2003, 5, 35–45. [Google Scholar] [CrossRef]
- Berkes, F. Understanding uncertainty and reducing vulnerability: Lessons from resilience thinking. Nat. Hazards 2007, 41, 283–295. [Google Scholar] [CrossRef]
- Tompkins, E.L.; Lemos, M.C.; Boyd, E. A less disastrous disaster: Managing response to climate-driven hazards in the Cayman Islands and NE Brazil. Glob. Environ. Chang. 2008, 18, 736–745. [Google Scholar] [CrossRef] [Green Version]
- Walker, B.; Holling, C.S.; Carpenter, S.R.; Kinzig, A.P. Resilience, Adaptability and Transformability in Social-ecological Systems. Ecol. Soc. 2004, 9, art5. [Google Scholar] [CrossRef]
- SEMARNAT-INECC. Sexta Comunicación Nacional y Segundo Informe Bienal de Actualización Ante la Convención Marco de las Naciones Unidas Sobre el Cambio Climático; Secretaría de Medio Ambiente y Recursos Naturales: Ciudad de México, Mexico, 2018. [Google Scholar]
- DOF. Cámara de Diputados Ley General de Cambio Climático; Gobierno de México: Ciudad de México, Mexico, 2012; Volume 52. [Google Scholar]
- INECC. Teoría del Cambio de la Política Nacional de Cambio Climático; Instituto Nacional de Ecología y Cambio Climático: Ciudad de México, Mexico, 2017. [Google Scholar]
- SEMARNAT. Mexico. Intended Nationally Determined Contribution; Secretaría de Medio Ambiente y Recursos Naturales: Ciudad de Mexico, Mexico, 2015. [Google Scholar]
- CONEVAL. Diez años de Medición de Pobreza Multidimensional en México: Avances y Desafíos en Política Social; Consejo Nacional de Evaluacion de la Politica de Desarrollo Social: Ciudad de México, Mexico, 2018. [Google Scholar]
- INEGI. Los Hombres y las Mujeres en las Actividades Económicas. Censos Económicos 2014; Instituto Nacional de Estadística y Geografía: Aguascalientes, Mexico, 2015. [Google Scholar]
- INEGI. Encuesta Nacional Agropecuaria 2017; Instituto Nacional de Estadística y Geografía: Aguascalientes, Mexico, 2017. [Google Scholar]
- Läderach, P.; Ramirez–Villegas, J.; Navarro-Racines, C.; Zelaya, C.; Martinez–Valle, A.; Jarvis, A. Climate change adaptation of coffee production in space and time. Clim. Chang. 2017, 141, 47–62. [Google Scholar] [CrossRef] [Green Version]
- Ovalle-Rivera, O.; Läderach, P.; Bunn, C.; Obersteiner, M.; Schroth, G. Projected shifts in Coffea arabica suitability among major global producing regions due to climate change. PLoS ONE 2015, 10, e0124155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brigido, J.G.; Nikolskii, I.; Terrazas, L.; Herrera, S.S. Estimación del impacto del cambio climático sobre fertilidad del suelo y productividad de café en Veracruz, México. Tecnol. Cienc. Agua 2015, 6, 101–116. [Google Scholar]
- Villers-Ruiz, L.; Arizpe, N.; Orellana, R.; Conde, C.; Hernández, J. Impactos del cambio climatico en la floración y desarrollo del fruto del café en Veracruz, México. Interciencia 2009, 34, 322–329. [Google Scholar]
- Peters, V.E.; Carroll, C.R. Temporal variation in coffee flowering may influence the effects of bee species richness and abundance on coffee production. Agrofor. Syst. 2012, 85, 95–103. [Google Scholar] [CrossRef]
- Libert Amico, A.; Ituarte-Lima, C.; Elmqvist, T. Learning from social–ecological crisis for legal resilience building: Multi-scale dynamics in the coffee rust epidemic. Sustain. Sci. 2020, 15, 485–501. [Google Scholar] [CrossRef] [Green Version]
- Avelino, J.; Cristancho, M.; Georgiou, S.; Imbach, P.; Aguilar, L.; Bornemann, G.; Läderach, P.; Anzueto, F.; Hruska, A.J.; Morales, C. The coffee rust crises in Colombia and Central America (2008–2013): Impacts, plausible causes and proposed solutions. Food Secur. 2015, 7, 303–321. [Google Scholar] [CrossRef] [Green Version]
- Magrach, A.; Ghazoul, J. Climate and Pest-Driven Geographic Shifts in Global Coffee Production: Implications for Forest Cover, Biodiversity and Carbon Storage. PLoS ONE 2015, 10, e0133071. [Google Scholar] [CrossRef]
- Schroth, G.; Laderach, P.; Dempewolf, J.; Philpott, S.; Haggar, J.; Eakin, H.; Castillejos, T.; Moreno, J.G.; Pinto, L.S.; Hernandez, R.; et al. Towards a climate change adaptation strategy for coffee communities and ecosystems in the Sierra Madre de Chiapas, Mexico. Mitig Adapt. Strateg. Glob. Chang. 2009, 14, 605–625. [Google Scholar] [CrossRef] [Green Version]
- CENAPRED. Características e Impactos Socioeconómicos de los Principales Desastres Ocurridos en la República Mexicana en el año 2012. Número 14; Centro Nacional de Prevención de Desastres: Ciudad de México, Mexico, 2014. [Google Scholar]
- Cavazos, T. Conviviendo con la Naturaleza: El Problema de los Desastres Asociados a Fenómenos Hidrometeorológicos y Climáticos en México; Cavazos, T., Ed.; REDES-Clim. Ediciones ILCSA: Ciudad de Mexico, Mexico, 2015. [Google Scholar]
- Conde, C. Coping with Climate Change Impacts on Coffee and Maize for Peasants in Mexico. In Coping with Global Environmental Change, Disasters and Security; Brauch, H.G., Ed.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 1067–1080. ISBN 9783642177767. [Google Scholar]
- Tucker, C.M.; Eakin, H.; Castellanos, E.J. Perceptions of risk and adaptation: Coffee producers, market shocks, and extreme weather in Central America and Mexico. Glob. Environ. Chang. 2010, 20, 23–32. [Google Scholar] [CrossRef]
- Gay, C.; Estrada, F.; Conde, C.; Eakin, H.; Villers, L. Potential Impacts of Climate Change on Agriculture: A Case of Study of Coffee Production in Veracruz, Mexico. Clim. Chang. 2006, 79, 259–288. [Google Scholar] [CrossRef]
- Secretariat of the Convention on Biological Diversity. Connecting Biodiversity and Climate Change Mitigation and Adaptation: Report of the Second Ad Hoc Technical Expert Group on Biodiversity and Climate Change; Technical Series No. 41; Convention on Biological Diversity Montreal: Montréal, QC, Canada, 2009; 126p. [Google Scholar]
- Viguera, B.; Alpízar, F.; Harvey, C.A.; Ruth Martínez-Rodríguez, M.; Saborío-Rodríguez, M. Climate change perceptions and adaptive responses of small-scale coffee farmers in Costa Rica. Agron. Mesoam. 2019, 30, 333–351. [Google Scholar] [CrossRef] [Green Version]
- Ajani, E.; Mgbenka, R.N.; Okeke, M.N. Use of Indigenous Knowledge as a Strategy for Climate Change Adaptation among Farmers in sub-Saharan Africa: Implications for Policy. Asian J. Agric. Ext. Econ. Sociol. 2013, 2, 23–40. [Google Scholar] [CrossRef]
- Reyes-Sánchez, C.; González-Ulin, V.; Luna-Ortega, H.; Hernández-Martínez, E.B.; Dey-Zárate, X.; Loreto-Bermúdez, F. Perfil Social y Económico de la Población Indígena en Veracruz, 1st ed.; Secretaría de Finanzas y Planeación: Xalapa, Mexico, 2016; ISBN 978-607-8489-05-3. [Google Scholar]
- Naess, L.O. The role of local knowledge in adaptation to climate change. Wiley Interdiscip Rev. Clim. Chang. 2013, 4, 99–106. [Google Scholar] [CrossRef]
- Altieri, M.A.; Nicholls, C.I. The adaptation and mitigation potential of traditional agriculture in a changing climate. Clim. Chang. 2017, 140, 33–45. [Google Scholar] [CrossRef]
- Escamilla, P.E.; Díaz, S.C. Sistemas de Cultivo de Café en México; Centro Nacional de Investigación, Innovación y Desarrollo Tecnológico del Café. Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación: Huatusco, Veracruz, 2016. [Google Scholar]
- Guevara Romero, M.L.; Téllez Morales, M.B.R.; Flores Lucero, M.D.L. Aprovechamiento sustentable de los recursos naturales desde la visión de las comunidades indígenas: Sierra Norte del Estado de Puebla. Nov. Sci. 2015, 7, 511–537. [Google Scholar] [CrossRef] [Green Version]
- Zuluaga, V.; Labarta, R.; Läderach, P. Climate Change Adaptation: The Case of the Coffee Sector in Nicaragua. In Proceedings of the 2015 AAEA Joint Annual Meeting, San Francisco, CA, USA, 26–28 July 2015; Agricultural and Applied Economics Association: Washington, DC, USA, 2015. [Google Scholar]
- Harvey, C.A.; Martínez-Rodríguez, M.R.; Cárdenas, J.M.; Avelino, J.; Rapidel, B.; Vignola, R.; Donatti, C.I.; Vilchez-Mendoza, S. The use of Ecosystem-based Adaptation practices by smallholder farmers in Central America. Agric. Ecosyst. Environ. 2017, 246, 279–290. [Google Scholar] [CrossRef] [Green Version]
- Janif, S.Z.; Nunn, P.D.; Geraghty, P.; Aalbersberg, W.; Thomas, F.R.; Camailakeba, M. Value of traditional oral narratives in building climate-change resilience: Insights from rural communities in Fiji. Ecol. Soc. 2016, 21, 7. [Google Scholar] [CrossRef] [Green Version]
- López-Díaz, F.; Conde, C.; Sánchez, O. Analysis of indices of extreme temperature events at Apizaco, Tlaxcala, Mexico: 1952–2003. Atmosfera 2013, 26, 349–358. [Google Scholar] [CrossRef] [Green Version]
- Karl, T.R.; Nicholls, N.; Ghazi, A. CLIVAR/GCOS/WMO Workshop on Indices and Indicators for Climate Extremes Workshop Summary. In Weather and Climate Extremes; Karl, T., Nicholls, N., Ghazi, A., Eds.; Springer: Berlin/Heidelberg, Germany, 1999; pp. 3–7. [Google Scholar]
- Zhang, X.; Yang, F. RClimDex (1.0): Manual del Usuario. (Traducción de Santos J.L); Climate Research Branch, Environment Canada: Ottawa, ON, Canada, 2004. [Google Scholar]
- Cavazos, T.; Salinas, J.; Martínez, B.; Colorado, G.; De Grau, P.; Prieto, R.; Conde, C.; Quintanar, A.; Santana, J.; Romero, R.; et al. Actualización de Escenarios de Cambio Climático para México Como Parte de los Productos de la Quinta Comunicación Nacional. Informe Final del Proyecto al INECC; Instituto Nacional de Ecología y Cambio Climático: Ciudad de Mexico, Mexico, 2013. [Google Scholar]
- Campos Sánchez, M.; Herrador, D.; Manuel Valdés, C.; Mccall, M.K. Estrategias de adaptación al cambio climático en dos comunidades rurales de México y El Salvador. Boletín Asoc Geógrafos Españoles 2013, 329–349. [Google Scholar] [CrossRef]
- Paustian, K.; Lehmann, J.; Ogle, S.; Reay, D.; Robertson, G.P.; Smith, P. Climate-smart soils. Nature 2016, 532, 49–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruiz-García, P.; Gómez-Díaz, J.D.; Valdes-Velarde, E.; Tinoco-Rueda, J.A.; Flores-Ordoñez, M.; Monterroso-Rivas, A.I. Biophysical and structural composition characterization in agroforestry systems of organic coffee from Veracruz. Trop. Subtrop. Agroecosyst. 2020, 23, 37. [Google Scholar]
- Masera, O.R.; Garza-Caligaris, J.F.; Kanninen, M.; Karjalainen, T.; Liski, J.; Nabuurs, G.J.; Pussinen, A.; De Jong, B.H.J.; Mohren, G.M.J. Modeling carbon sequestration in afforestation, agroforestry and forest management projects: The CO2FIX V.2 approach. Ecol. Modell. 2003, 164, 177–199. [Google Scholar] [CrossRef]
- Alder, D.; Silva, J.N.M. An empirical cohort model for management of Terra Firme forests in the Brazilian Amazon. For. Ecol. Manag. 2000, 130, 141–157. [Google Scholar] [CrossRef]
- Schelhaas, M.J.; Esch, P.W.; van Groen, T.A.; Jong, B.H.J.; Kanninen, M.; Liski, J.; Masera, O.; Mohren, G.M.J.; Nabuurs, G.J.; Palosuo, T.; et al. CO2FIX V 3.1-A Modelling Framework for Quantifying Carbon Sequestration in Forest Ecosystems; Alterra-Centrum Ecosystemen: Wageningen, The Netherlands, 2004. [Google Scholar]
- Dunne, T.; Leopold, L.B. Water in Environmental Planning; W. H. Freeman Co.: New York, NY, USA, 1978; ISBN 978-0716700791. [Google Scholar]
- Palma-Grayeb, B. Generación de Escenarios de Cambio Climático para la Zona Centro del Estado de Veracruz. Master’s Thesis, Universidad Nacional Autónoma de México, Ciudad de México, Mexico, 2005. [Google Scholar]
- Tejeda-Martínez, A.; Jáuregui, E.; Acevedo, F. Atlas Climático del Estado de Veracruz; Colección; Universidad Veracruzana: Xalapa, Mexico, 1989. [Google Scholar]
- Acevedo-Rosas, F.; Luna-Díaz, P. Principales fenómenos meteorológicos que afectaron al estado de Veracruz en el año 2005. In Inundaciones 2005 en el Estado de Veracruz; Tejeda Martínez, A., Welsh Rodríguez, C., Eds.; Universidad Veracruzana y Consejo Veracruzano de Ciencia y Tecnología: Xalapa, Mexico, 2006; pp. 53–67. [Google Scholar]
- Ticheler, H. Etude analytique de l’épidémiologie du scolyte des graines de café, Stephanodews Izarnpei Ferr., en Côte d’Ivoire. Bachelor’s Thesis, Wageningen University, Wageningen, The Netherland, 1961. [Google Scholar]
- Le Pelley, R. Las Plagas del Café; Editorial Labor: Barcelona, Spain, 1968. [Google Scholar]
- Barrera, J.; Covarrubias, M. Efecto de diferentes condiciones de sombra del cafetal sobre la intensidad del ataque de la broca del grano del café, en el Soconusco, Chiapas, México. In Proceedings of the II Congreso Nacional de Manejo Integrado de Plagas, Guatemala, CA, USA, 20–24 February 1984. [Google Scholar]
- Morfin, V.; Castillo, P.; Vizcaino, G. El Cultivo del Café (Coffea arabica L.) en Colima; Instituto Nacional de Investigación Forestal, Agrícola y Pecuaria INIFAP: Tecomán, Colima, 2006. [Google Scholar]
- Velasco Murguía, A.; Duran Medina, E.; Rivera, R.; Bray, D.B. Cambios en la cobertura arbolada de comunidades indígenas con y sin iniciativas de conservación, en Oaxaca, México. Investig. Geográficas 2015, 56–74. [Google Scholar] [CrossRef] [Green Version]
- Ferro-Soto, C.; Mili, S. Desarrollo rural e internacionalización mediante redes de Comercio Justo del café. Un estudio del caso. Cuad. Desarro. Rural 2013, 10, 267–289. [Google Scholar]
- Bautista, E.; Ordaz, V.; Gutiérrez, M.; Gutierrez, E.; Cajuste, L. Coffee agroforestry systems in Veracruz, Mexico: Spatial identification and quantification using GIS, remote sensing and local knowledge. Terra Lat. 2018, 36, 261–273. [Google Scholar]
- Lin, B.B. Agroforestry management as an adaptive strategy against potential microclimate extremes in coffee agriculture. Agric. For. Meteorol. 2007, 144, 85–94. [Google Scholar] [CrossRef]
- Rahn, E.; Läderach, P.; Baca, M.; Cressy, C.; Schroth, G.; Malin, D.; van Rikxoort, H.; Shriver, J. Climate change adaptation, mitigation and livelihood benefits in coffee production: Where are the synergies? Mitig Adapt. Strateg Glob. Chang. 2014, 19, 1119–1137. [Google Scholar] [CrossRef] [Green Version]
- Escamilla-Prado, E.; Escamilla-Femat, S.; Gómez-Utrilla, J.; Andrade, M.; Ramos-Elorduy, J.; Pino-Moreno, J. Uso tradicional de tres especies de insectos comestibles en agroecosistemas cafetaleros del estado de Veracruz. Trop. Subtrop. Agroecosyst. 2012, 15, 101–109. [Google Scholar]
- Lin, B.B. The role of agroforestry in reducing water loss through soil evaporation and crop transpiration in coffee agroecosystems. Agric. For. Meteorol. 2010, 150, 510–518. [Google Scholar] [CrossRef]
- Ruiz Garcia, P.; Gómez Díaz, J.D.; Monterroso Rivas, A.I.; Uribe Gómez, M. Tecnologías agroforestales para una Selva Baja Caducifolia: Propuesta metodológica. Rev. Mex. Ciencias For. 2019, 10. [Google Scholar] [CrossRef] [Green Version]
- Singh, G.; Gupta, G.N. Living Barriers in Indian Arid Zone and Their Ecological Benefits. Indian For. 2000, 126, 257–268. [Google Scholar]
- Masuhara, A.; Valdés, E.; Pérez, J.; Gutiérrez, D.; Cutberto Vázquez, J.; Salcedo, E.; De Jesús Juárez, M.; Merino, A. Carbono almacenado en diferentes sistemas agroforestales de café en Huatusco, Veracruz, México. Rev. Amaz. Cienc. Tecnol. 2015, 4, 66–93. [Google Scholar]
- Espinoza-Domínguez, W.; Krishnamurthy, L.; Vázquez-Alarcón, A.; Torres- Rivera, A. ALMACÉN DE CARBONO EN SISTEMAS AGROFORESTALES CON CAFÉ. Rev. Chapingo Ser. Ciencias For. Ambient. 2012, 18, 57–70. [Google Scholar] [CrossRef] [Green Version]
- Negash, M.; Kanninen, M. Modeling biomass and soil carbon sequestration of indigenous agroforestry systems using CO2FIX approach. Agric. Ecosyst Environ. 2015, 203, 147–155. [Google Scholar] [CrossRef]
- Soto-Pinto, L.; Jiménez-Ferrer, G. Socio-environmental contradictions in carbon mitigation processes in agroforestry systems. Madera Bosques 2018, 24, e2401887. [Google Scholar] [CrossRef] [Green Version]
- Philpott, S.M.; Lin, B.B.; Jha, S.; Brines, S.J. A multi-scale assessment of hurricane impacts on agricultural landscapes based on land use and topographic features. Agric. Ecosyst Environ. 2008, 128, 12–20. [Google Scholar] [CrossRef]
- de Gomes, L.C.; Cardoso, I.M.; de Mendonça, E.S.; Fernandes, R.B.A.; Lopes, V.S.; Oliveira, T.S. Trees modify the dynamics of soil CO2 efflux in coffee agroforestry systems. Agric. For. Meteorol. 2016, 224, 30–39. [Google Scholar] [CrossRef]
- Ramírez, V.H.; Jaramillo, A.; Arcila, J. Índices para evaluar el estado hídrico en los cafetales. Cenicafé 2010, 61, 55–66. [Google Scholar]
- Norton, J.L.; Hart, S.C. Hydraulic lift: A potentially important ecosystem process. Trends Ecol. Evol. 1998, 13, 232–235. [Google Scholar] [CrossRef]
- Siriri, D.; Wilson, J.; Coe, R.; Tenywa, M.M.; Bekunda, M.A.; Ong, C.K.; Black, C.R. Trees improve water storage and reduce soil evaporation in agroforestry systems on bench terraces in SW Uganda. Agrofor. Syst. 2013, 87, 45–58. [Google Scholar] [CrossRef] [Green Version]
- Jackson, N.A.; Wallace, J.S. Soil evaporation measurements in an agroforestry system in Kenya. Agric. For. Meteorol. 1999, 94, 203–215. [Google Scholar] [CrossRef]
- Whyte, K. Indigenous Climate Change Studies: Indigenizing Futures, Decolonizing the Anthropocene. Engl. Lang. Notes 2017, 55, 153–162. [Google Scholar] [CrossRef]
- Chengappa, P.G.; Devika, C.M.; Rudragouda, C.S. Climate variability and mitigation: Perceptions and strategies adopted by traditional coffee growers in India. Clim. Dev. 2017, 9, 593–604. [Google Scholar] [CrossRef]
Decrease | Increase | |
---|---|---|
Low | - | + |
Moderate | -- | ++ |
High | --- | +++ |
Very high | ---- | ++++ |
No changes | N/C | |
No data | ND |
Index | Description | Coscomatepec | Teocelo | Adaptation Actions * | |
---|---|---|---|---|---|
Individual | Collective | ||||
CDD | Maximum length of dry spell | - | + | Living fences | Use of agroforestry systems |
CSDI | Cold spell duration index | -- | +++ | ||
CWD | Maximum length of wet spell | -- | + | Living barriers | |
DTR | Daily temperature range | - | + | ||
FD | Number of frost days | S/N | + | Use of agroforestry systems. | |
GSL | Growing season length | - | - | ||
ID | Number of icing days | S/N | S/N | ||
PRCPTOT | Annual total precipitation in wet days | ++++ | -- | Living barriers and fences | Use of agroforestry systems with trees that do not compete for water resources with coffee. |
R10 mm | Annual count of days when PRCP ≥ 10 mm | ++ | + | ||
R20 mm | Annual count of days when PRCP ≥ 20 mm | + | - | ||
R95p | Annual total PRCP when RR > 95p | ---- | + | Use of agroforestry systems with trees that do not compete for water resources with coffee. | |
R99p | Annual total PRCP when RR > 99p | --- | -- | ||
Rnnmm | Annual count of days when PRCP≥ nn mm | + | |||
RX1day | Monthly maximum 1-day precipitation | -- | - | Use of agroforestry systems with trees that do not compete for water resources with coffee. | |
RX5day | Monthly maximum consecutive 5-day precipitation | -- | ++ | ||
SDII | Simple precipitation intensity index | + | - | ||
SU | Number of summer days | + | +++ | Tree shade regulation (40–80%) | |
TN10p | Percentage of days when TN < 10th percentile (cold nights) | -- | ++ | ||
TN90p | Percentage of days when TN > 90th percentile (hot nights) | ++ | + | ||
TNn | Monthly minimum value of daily minimum temperature | ++ | - | Tree shade regulation (40–80%) | |
TNx | Monthly maximum value of daily minimum temperature | + | - | ||
TR | Number of tropical nights | - | + | ||
TX10p | Percentage of days when TX < 10th percentile (cold days) | -- | - | Use of agroforestry systems.Tree shade regulation (40–80%) | |
TX90p | Percentage of days when TX > 90th percentile (hot days) | + | ++ | ||
TXn | Monthly minimum value of daily maximum temperature | + | + | ||
TXx | Monthly maximum value of daily maximum temperature | - | + | ||
WSDI | Warm spell duration index | + | ++ |
Agroforestry Design | Carbon Stocks | |||||
---|---|---|---|---|---|---|
Coffee | Shadow Trees * | Banana Tree | Living Barriers | Living Fences | Total | |
Af1 | 2.90 ± 3.51 | 75.52 ± 43.99 ** | ---- | 7.55 ± 4.39 | ---- | 85.98 ± 46.39 |
Af2 | 1.18 ± 0.76 | 78.90 ± 52.12 | 0.13 ± 0.41 | 7.89 ± 5.21 | ---- | 88.11 ± 57.38 |
Af3 | 1.45 ± 1.13 | 53.41 ± 22.07 | 0.69 ± 0.32 | ---- | 16.02 ± 6.62 | 70.88 ± 28.61 |
Current | Climate Change RCP 8.5 by 2099 | ||||
---|---|---|---|---|---|
CNRN | GFDL | HADGEM | MPI | ||
Growing season starts | 12-May | 19-April | 28-April | 23-April | 25-May |
Growing season ends | 19-April | 5-January | 20-February | 8-January | 2-November |
Growing season length (days) | 349 | 298 | 321 | 300 | 97 |
Humid period length (days) | 256 | 182 | 206 | 206 | 36 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruiz-García, P.; Conde-Álvarez, C.; Gómez-Díaz, J.D.; Monterroso-Rivas, A.I. Projections of Local Knowledge-Based Adaptation Strategies of Mexican Coffee Farmers. Climate 2021, 9, 60. https://doi.org/10.3390/cli9040060
Ruiz-García P, Conde-Álvarez C, Gómez-Díaz JD, Monterroso-Rivas AI. Projections of Local Knowledge-Based Adaptation Strategies of Mexican Coffee Farmers. Climate. 2021; 9(4):60. https://doi.org/10.3390/cli9040060
Chicago/Turabian StyleRuiz-García, Patricia, Cecilia Conde-Álvarez, Jesús David Gómez-Díaz, and Alejandro Ismael Monterroso-Rivas. 2021. "Projections of Local Knowledge-Based Adaptation Strategies of Mexican Coffee Farmers" Climate 9, no. 4: 60. https://doi.org/10.3390/cli9040060
APA StyleRuiz-García, P., Conde-Álvarez, C., Gómez-Díaz, J. D., & Monterroso-Rivas, A. I. (2021). Projections of Local Knowledge-Based Adaptation Strategies of Mexican Coffee Farmers. Climate, 9(4), 60. https://doi.org/10.3390/cli9040060