Observed Daily Temperature Variability and Extremes over Southeastern USA (1978–2017)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Methods
2.2.1. Indices
- Percentile-based temperature indices were calculated for the climatological base period 1961–1990 and include the cool nights (TN10p), warm nights (TN90p), cool days (TX10p), and warm days (TX90p);
- Absolute indices consist of monthly values indicating the hottest day (TXx), coldest night (TNn), coldest day (TXn), and warmest night (TNx);
- Threshold indices consist of summer days (SU25), tropical nights (TR20), frost days (FD0), and ice days (ID0);
- Duration indices include warm spell duration indicator (WSDI), and cold spell duration indicator (CSDI).
2.2.2. Analysis Procedures
3. Results
3.1. Temperature Trends and Variability
3.2. Temperature Extremes
3.2.1. Percentile-Based Indices
3.2.2. Absolute Indices
3.3. Threshold Indices
3.4. Duration Indices
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Stocker, T.F.; Qin, D.; Plattner, G.-K.; Alexander, L.V.; Allen, S.K.; Bindoff, N.L.; Bréon, F.-M.; Church, J.A.; Cubasch, U.; Emori, S.; et al. Technical summary. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK, 2013; pp. 33–115. [Google Scholar] [CrossRef]
- Gleason, K.L.; Lawrimore, J.H.; Levinson, D.H.; Karl, T.R.; Karoly, D.J. A Revised, U.S. Climate Extremes Index. J. Clim. 2008, 21, 2124–2137. [Google Scholar] [CrossRef] [Green Version]
- Herring, S.C.; Hoell, A.; Hoerling, M.P.; Kossin, J.P.; Schreck III, C.J.; Stott, P.A. Explaining Extreme Events of 2015 from a Climate Perspective. Bull. Amer. Meteor. Soc. 2016, 97, S1–S145. [Google Scholar] [CrossRef] [Green Version]
- Hoerling, M.; Eischeid, J.; Perlwitz, J.; Quan, X.; Wolter, K. Characterizing recent trends in U.S. heavy precipitation. J. Clim. 2016, 29, 2313–2332. [Google Scholar] [CrossRef]
- World Meteorological Organization. Atlas of Mortality and Economic Losses from Weather and Climate Extremes. 1970–2012; WMO: Geneva, Switzerland, 2014; p. 1123. [Google Scholar]
- Sheridan, S.C.; Allen, M.J. Changes in the Frequency and Intensity of Extreme Temperature Events and Human Health Concerns. Curr. Clim. Chang. Rep. 2005, 1, 155–162. [Google Scholar] [CrossRef]
- Wallemacq, P.; Below, R.; Mcclean, D. UNISDR and CRED report: Economic Losses, Poverty & Disasters 1998–2017; Centre for Research on the Epidemiology of Disasters, CRED: Brussels, Belgium, 2018; Available online: https://www.preventionweb.net/files/61119_credeconomiclosses.pdf (accessed on 21 November 2019).
- Vogel, E.; Donat, M.G.; Alexander, L.V.; Meinshausen, M.; Ray, D.K.; Karoly, D.; Meinshausen, N.; Frieler, K. The effects of climate extremes on global agricultural yields. Environ. Res. Lett. 2019, 14, 054010. [Google Scholar] [CrossRef]
- Rorie, A.C.; Poole, J. The Role of Extreme Weather and Climate-Related Events on Asthma Outcomes. Immunol Allergy Clin. North Am. 2021, 41, 73–84. [Google Scholar] [CrossRef]
- Weilnhammer, V.; Schmid, J.; Mittermeier, I.; Schreiber, F.; Jiang, L.; Pastuhovic, V.; Herr, C.; Heinze, S. Extreme weather events in Europe and their health consequences—A systematic review. Int. J. Hyg. Environ. Health 2021, 233, 113688. [Google Scholar] [CrossRef]
- IPCC. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation; A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change; Field, C.B., Barros, V., Stocker, T.F., Qin, D., Dokken, D.J., Ebi, K.L., Mastrandrea, M.D., Mach, K.J., Plattner, G.-K., Allen, S.K., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2012; 582p. [Google Scholar]
- Frank, D.; Reichstein, M.; Bahn, M.; Thonicke, K.; Frank, D.; Mahecha, M.D.; Smith, P.; van der Velde, M.; Vicca, S.; Babst, F.; et al. Effects of climate extremes on the terrestrial carbon cycle: Concepts, processes and potential future impacts. Glob. Chang. Biol. 2015, 21, 2861–2880. [Google Scholar] [CrossRef] [Green Version]
- Aragão, L.E.O.C.; Marengo, J.A.; Cox, P.M.; Betts, R.A.; Costa, D.; Kaye, N.; Alves, L.; Smith, L.T.; Cavalcanti, I.F.A.; Sampaio, G.; et al. Assessing the Influence of Climate Extremes on Ecosystems and Human Health in Southwestern Amazon Supported by the PULSE Brazil Platform. Am. J. Clim. Chang. 2016, 5, 399–416. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, D.M.; Heaviside, C.; Vardoulakis, S.; Huntingford, C.; Masato, G.; Guillod, B.P.; Frumhoff, P.C.; Bowery, A.; Allen, M.R. Attributing human mortality during extreme heat waves to anthropogenic climate change. Environ. Res. Lett. 2016, 11, 074006. [Google Scholar] [CrossRef]
- Karl, T.R.; Nicholls, N.; Ghazi, A. CLIVAR/GCOS/WMO workshop on indices and indicators for climate extremes. Clim. Chang. 1999, 42, 3–7. [Google Scholar] [CrossRef]
- Nicholls, N. Long-term climate monitoring and extreme events. Clim. Chang. 1995, 31, 231–245. [Google Scholar] [CrossRef]
- Jones, P.D.; Horton, E.B.; Folland, C.K.; Hulme, M.; Parker, D.E.; Basnett, T.A. The use of indices to identify changes in climatic extremes. Clim. Chang. 1999, 42, 131–149. [Google Scholar] [CrossRef]
- Groisman, P.; Karl, T.; Easterling, D.; Knight, R.; Jamason, P.; Hennessy, K.; Suppiah, R.; Page, C.; Wibig, J.; Fortuniak, K.; et al. Changes in the probability of extreme precipitation: Important indicators of climate change. Clim. Chang. 1999, 42, 243–283. [Google Scholar] [CrossRef]
- Frich, P.; Alexander, L.V.; Della-Marta, P.M.; Gleason, B.; Haylock, M.; Tank, A.M.G.K.; Peterson, T. Observed coherent changes in climatic extremes during the second half of the twentieth century. Clim. Res. 2002, 19, 193–212. [Google Scholar] [CrossRef] [Green Version]
- Peterson, T.C.; Manton, M.J. Monitoring changes in climate extremes: A tale of international collaboration. Bull. Am. Meteorol. Soc. 2008, 89, 1266–1271. [Google Scholar] [CrossRef]
- Klein Tank, A.M.G.; Zwiers, F.W.; Zhang, X. Guidelines on Analysis of Extremes in a Changing Climate in Support of Informed Decisions for Adaptation; Climate Data and Monitoring WCDMP-No. 72, WMO-TD No. 1500; World Meteorological Organization: Geneva, Switzerland, 2009. [Google Scholar]
- Peterson, T.C. Climate change indices. World Meteorol. Organ. Bull. 2005, 54, 83–86. [Google Scholar]
- Peterson, T.C.; Taylor, M.A.; Demeritte, R.; Duncombe, D.L.; Burton, S.; Thompson, F.; Porter, A.; Mercedes, M.; Villegas, E.; Fils, R.S.; et al. Recent changes in climate extremes in the Caribbean region. J. Geophys. Res. 2002, 107, 4601. [Google Scholar] [CrossRef]
- Nicholls, N.; Baek, H.-J.; Gosai, A.; Chambers, L.E.; Choi, Y.; Collins, D.; Della-Marta, P.M.; Griffiths, G.M.; Haylock, M.R.; Iga, N.; et al. The El Niño-Southern Oscillation and daily temperature extremes in east Asia and the west Pacific. Geophys. Res. Lett. 2005, 32, L16714. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Aguilar, E.; Sensoy, S.; Tonyan, H.; Tagiyeva, U.; Ahmed, N.; Kutaladze, N.; Rahimzadeh, F.; Taghipour, A.; Hantosh, T.H.; et al. Trends in Middle East climate extreme indices from 1950 to 2003. J. Geophys. Res. 2005, 110, D22104. [Google Scholar] [CrossRef]
- Aguilar, E.; Peterson, T.C.; Obando, P.R.; Frutos, R.; Retana, J.A.; Solera, M.; Soley, J.; García, I.G.; Araujo, R.M.; Santos, A.R.; et al. Changes in Precipitation and Temperature Extremes in Central America and Northern South America, 1961–2003. J. Geophys. Res. 2005, 110, D23107. [Google Scholar] [CrossRef]
- Klein Tank, A.M.G.; Peterson, T.C.; Quadir, D.A.; Dorji, S.; Zou, X.; Tang, H.; Santhosh, K.; Joshi, U.R.; Jaswal, A.K.; Kolli, R.K.; et al. Changes in daily temperature and precipitation extremes in central and south Asia. J. Geophys. Res. Atmos. 2006, 111. [Google Scholar] [CrossRef]
- Caesar, J.; Alexander, L.V.; Trewin, B.; Tse-ring, K.; Sorany, L.; Vuniyayawa, V.; Keosavang, N.; Shimana, A.; Htay, M.M.; Karmacharya, J.; et al. Changes in temperature and precipitation extremes over the Indo-Pacific region from 1971–2005. Int. J. Climatol. 2011, 31, 791–801. [Google Scholar] [CrossRef]
- Alexander, L.V.; Zhang, X.; Peterson, T.C.; Caesar, J.; Gleason, B.; Klein Tank, A.; Haylock, M.; Collins, D.; Trewin, B.; Rahimzadeh, F.; et al. Global Observed Changes in Daily Climate Extremes of Temperature and Precipitation. J. Geophys. Res. 2006, 111, D05109. [Google Scholar] [CrossRef] [Green Version]
- Alexander, L.V.; Arblaster, J.M. Assessing trends in observed and modelled climate extremes over Australia in relation to future projections. Int. J. Climatol. 2009, 29, 417–435. [Google Scholar] [CrossRef]
- Donat, M.G.; Alexander, L.V.; Yang, H.; Durre, I.; Vose, R.; Dunn, R.J.H.; Willett, K.M.; Aguilar, E.; Brunet, M.; Caesar, J.; et al. Updated analyses of temperature and precipitation extreme indices since the beginning of the twentieth century: The HadEX2 dataset. J. Geophys. Res. Atmos. 2013, 118, 2098–2118. [Google Scholar] [CrossRef]
- Herold, N.; Alexander, L.V.; Green, D.; Donat, M.G. Greater increases in temperature extremes in low versus high income countries. Environ. Res. Lett. 2017, 12, 034007. [Google Scholar] [CrossRef] [Green Version]
- Costa, R.L.; de Mello Baptista, G.M.; Gomes, H.B.; dos Santos Silva, F.D.; da Rocha Júnior, R.L.; de Araújo Salvador, M.; Herdies, D.L. Analysis of climate extremes indices over northeast Brazil from 1961 to 2014. Weather Clim. Extrem. 2020, 28, 100254. [Google Scholar] [CrossRef]
- Peña-Angulo, D.; Reig-Gracia, F.; Domínguez-Castro, F.; Revuelto, J.; Aguilar, E.; van der Schrier, G.; Vicente-Serrano, S.M. ECTACI: European climatology and trend atlas of climate indices (1979–2017). J. Geophys. Res. Atmos. 2020, 125, e2020JD032798. [Google Scholar] [CrossRef]
- Easterling, D.R. Recent changes in frost days and the frost-free season in the United States. Bull. Am. Meteorol. Soc. 2002, 83, 1327–1332. [Google Scholar] [CrossRef]
- Pan, Z.; Arritt, R.W.; Takle, E.S.; Gutowski, W.J., Jr.; Anderson, C.J.; Segal, M. Altered hydrologic feedback in a warming climate introduces a “warming hole”. Geophys. Res. Lett. 2004, 31, L17109. [Google Scholar] [CrossRef] [Green Version]
- Portmann, R.W.; Solomon, S.; Hegerl, G.C. Spatial and seasonal patterns in climate change, temperatures, and precipitation across the United States. Proc. Natl. Acad. Sci. USA 2009, 106, 7324–7329. [Google Scholar] [CrossRef] [Green Version]
- Meehl, G.A.; Arblaster, J.; Branstator, G.W. Mechanisms contributing to the warming hole and the consequent U.S. east-west differential of heat extremes. J. Clim. 2012, 25, 6394–6408. [Google Scholar] [CrossRef]
- Mascioli, N.R.; Previdi, M.; Arlene, M.; Fiore, A.M.; Ting, M. Timing and seasonality of the United States ‘warming hole’. Environ. Res. Lett. 2017, 12, 034008. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, A.; Polvani, L.M.; Fyfe, J.C. The United States “warming hole”: Quantifying the forced aerosol response given large internal variability. Geophys. Res. Lett. 2017, 44, 1928–1937. [Google Scholar] [CrossRef]
- Karl, T.R.; Knight, R.W.; Easterling, D.R.; Quayle, R.G. Indices of climate change for the United States. Bull. Am. Meteorol. Soc. 1996, 77, 279–292. [Google Scholar] [CrossRef] [Green Version]
- Trenberth, K.E.; Jones, P.D.; Ambenje, P.; Bojariu, R.; Easterling, D.; Klein Tank, A.; Parker, D.; Rahimzadeh, F.; Renwick, J.A.; Rusticucci, M.; et al. Observations: Surface and Atmospheric Climate Change. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007. [Google Scholar]
- Rogers, J.C. The 20th century cooling trend over the southeastern United States. Clim. Dyn. 2012, 40, 341–352. [Google Scholar] [CrossRef]
- Misra, V.; Michael, J.-P.; Boyles, R.; Chassignet, E.P.; Griffin, M.; O’Brien, J.J. Reconciling the spatial distribution of the surface temperature trends in the southeastern United States. J. Clim. 2012, 25, 3610–3618. [Google Scholar] [CrossRef] [Green Version]
- Seneviratne, S.I.; Nicholls, N.; Easterling, D.; Goodess, C.M.; Kanae, S.; Kossin, J.; Luo, Y.; Marengo, J.; McInnes, K.; Rahimi, M.; et al. Changes in climate extremes and their impacts on the natural physical environment. In Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation; A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC); Field, C.B., Barros, V., Stocker, T.F., Qin, D., Dokken, D.J., Ebi, K.L., Mastrandrea, M.D., Mach, K.J., Plattner, G.-K., Allen, S.K., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2012; pp. 109–230. [Google Scholar]
- Zwiers, F.W.; Alexander, L.V.; Hegerl, G.C.; Kossin, J.P.; Knutson, T.R.; Naveau, P.; Nicholls, N.; Schär, C.; Seneviratne, S.I.; Zhang, X.; et al. Challenges in estimating and understanding recent changes in the frequency and intensity of extreme climate and weather events. In Climate Science for Serving Society: Research, Modelling and Prediction Priorities; Asrar, G.R., Hurrell, J.W., Eds.; Springer: Dordrecht, The Netherlands; Heidelberg, Germany; New York, NY, USA; London, UK, 2013; pp. 339–389. ISBN 978-94-007-6691-4. [Google Scholar]
- Alexander, L.V. Global observed long-term changes in temperature and precipitation extremes: A review of progress and limitations in IPCC assessments and beyond. Weather Clim. Extrem. 2016, 11, 4–16. [Google Scholar] [CrossRef] [Green Version]
- Davey, C.A.; Pielke, R.A., Sr. Microclimate exposures of surface-based weather stations: Implications for the assessment of long-term temperature trends. Bull. Am. Meteorol. Soc. 2005, 86, 497–504. [Google Scholar] [CrossRef] [Green Version]
- Pielke, R.A., Sr.; Nielsen-Gammon, J.; Davey, C.; Angel, J.; Bliss, O.; Cai, M.; Doesken, N.; Fall, S.; Niyogi, D.; Gallo, K.; et al. Documentation of uncertainties and biases associated with surface temperature measurement sites for climate change assessment. Bull. Am. Meteorol. 2007, 88, 913–928. [Google Scholar] [CrossRef] [Green Version]
- Pielke, R.A., Sr.; Davey, C.; Niyogi, D.; Fall, S.; Steinweg-Woods, J.; Hubbard, K.; Lin, X.; Cai, M.; Lim, Y.K.; Li, H.; et al. Unresolved issues with the assessment of multi-decadal global land surface temperature trends. J. Geophys. Res. 2007, 112, D24S08. [Google Scholar] [CrossRef]
- Fall, S.; Watts, A.; Nielsen-Gammon, J.; Jones, E.; Niyogi, D.; Christy, J.R.; McNider, R.; Pielke, R.A., Sr. Analysis of the impacts of station exposure on the U.S. Historical Climatology Network temperatures and temperature trends. J. Geophys. Res. 2011, 116, D14120. [Google Scholar] [CrossRef] [Green Version]
- Thorne, P.W.; Parker, D.E.; Christy, J.R.; Mears, C.A. Uncertainties in climate trends: Lessons from upper-air temperature records. Bull. Am. Meteorol. Soc. 2005, 86, 1437–1442. [Google Scholar] [CrossRef]
- Menne, M.J.; Williams, C.N.; Vose, R.S. The United States Historical Climatology Network Monthly Temperature Data—Version 2. Bull. Am. Meteorol. Soc. 2009, 90, 993–1107. [Google Scholar] [CrossRef] [Green Version]
- Lawrimore, J.H.; Menne, M.J.; Gleason, B.E.; Williams, C.N.; Wuertz, D.B.; Vose, R.S.; Rennie, J. An overview of the Global Historical Climatology Network Monthly Mean Temperature Dataset, Version 3. J. Geophys. Res. Atmos. 2011, 116, D19121. [Google Scholar] [CrossRef]
- Karl, T.R.; Williams, C.N., Jr.; Quinlan, F.T. United States Historical Climatology Network (HCN) Serial Temperature and Precipitation Data; ORNL/CDIAC-30; Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy: Oak Ridge, TN, USA, 1990.
- Easterling, D.R.; Karl, T.R.; Mason, E.H.; Hughes, P.Y.; Bowman, D.P. ORNL/CDIAC-87; Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy: Oak Ridge, TN, USA, 1996. Available online: https://www.osti.gov/scitech/biblio/205081 (accessed on 14 November 2019).
- Menne, M.J.; Williams, C.N. Homogenization of temperature series via pairwise comparisons. J. Clim. 2009, 22, 1700–1717. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Yang, F. RClimDex (1.0) User Guide; Climate Research Branch Environment Canada: Downsview, ON, Canada, 2004; 22p.
- Zhang, X.; Hegerl, G.; Zwiers, F.W.; Kenyon, J. Avoiding inhomogeneity in percentile-based indices of temperature extremes. J. Clim. 2005, 18, 1641–1651. [Google Scholar] [CrossRef] [Green Version]
- Aguilar, E.; Prohom, M. RClimDex-Extra QC (EXTRAQC Quality Control Software) User Manual; Centre for Climate Change, University Rovira i Virgili: Tarragona, Spain, 2011. [Google Scholar]
- Karl, T.R.; Koscielny, A.J. Drought in the United States: 1895–1981. J. Clim. 1982, 2, 313–329. [Google Scholar] [CrossRef]
- Karl, T.R.; Koss, W.J. Regional and National Monthly, Seasonal and Annual Temperature Weighted by Area, 1895–1983; Hist. Climatol. Series 4–3; National Climatic Data Center: Ashville, NC, USA, 1984. [Google Scholar]
- Lee, S.; Wolberg, G.; Shin, S.Y. Scattered data interpolation with multilevel B-splines. IEEE Trans. Vis. Comput. Graph. 1997, 3, 228–244. [Google Scholar] [CrossRef] [Green Version]
- Cleveland, W.S. Robust locally weighted regression and smoothing scatterplots. J. Am. Stat. Assoc. 1979, 74, 829–836. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Statist. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods; Charles Griffin: London, UK, 1948. [Google Scholar]
- Brown, P.J.; Bradley, R.S.; Keimig, F.T. Changes in extreme climate indices for the northeastern United States, 1870–2005. J. Clim. 2010, 23, 6555–6572. [Google Scholar] [CrossRef]
- Wuebbles, D.; Meehl, G.; Hayhoe, K.; Karl, T.R.; Kunkel, K.; Santer, B.; Wehner, M.; Colle, B.; Fischer, E.M.; Fu, R.; et al. CMIP5 Climate Model Analyses: Climate Extremes in the United States. Bull. Am. Meteorol. Soc. 2014, 95, 571–583. [Google Scholar] [CrossRef] [Green Version]
- Ning, L.; Bradley, R.S. Winter climate extremes over the northeastern United States and southeastern Canada and teleconnections with large-scale modes of climate variability. J. Clim. 2015, 28, 2475–2493. [Google Scholar] [CrossRef] [Green Version]
- Maurer, E.P.; Wood, A.W.; Adam, J.C.; Lettenmaier, D.P.; Nijssen, B. A long-term hydrologically based dataset of land surface fluxes and states for the conterminous United States. J. Clim. 2002, 15, 3237–3251. [Google Scholar] [CrossRef] [Green Version]
- Ning, L.; Riddle, E.E.; Bradley, R.S. Projected changes in climate extremes over the northeastern United States. J. Clim. 2015, 18, 2475–2493. [Google Scholar] [CrossRef] [Green Version]
- Griffiths, M.L.; Bradley, R.S. Variations of twentieth-century temperature and precipitation extreme indicators in the northeast United States. J. Clim. 2007, 20, 5401–5417. [Google Scholar] [CrossRef]
ID | Indicator Name | Definitions | Units |
---|---|---|---|
FD0 | Frost days | Annual count when TN (daily minimum) < 0 °C | Days |
TR20 | Tropical nights | Annual count when TN (daily minimum) > 20 °C | Days |
TXx | Max Tmax (hottest day) | Monthly maximum value of daily maximum temp | °C |
TNx | Max Tmin (warmest night) | Monthly maximum value of daily minimum temp | °C |
TXn | Min Tmax (coldest day) | Monthly minimum value of daily maximum temp | °C |
TNn | Min Tmin (coldest night) | Monthly minimum value of daily minimum temp | °C |
TN10p | Cool nights | Percentage of days when TN < 10th percentile | % Days |
TX10p | Cool days | Percentage of days when TX < 10th percentile | % Days |
TN90p | Warm nights | Percentage of days when TN > 90th percentile | % Days |
TX90p | Warm days | Percentage of days when TX > 90th percentile | % Days |
WSDI | Warm spell duration indicator | Annual count of days with at least 6 consecutive days when TX > 90th percentile | Days |
CSDI | Cold spell duration indicator | Annual count of days with at least 6 consecutive days when TN < 10th percentile | Days |
Indices | Trend Value | Units/Decade |
---|---|---|
TXx | −0.2 | °C |
TNx | 0.1 | °C |
TXn | 0.7 | °C |
TNn | 1 | °C |
TX10P | −0.2 | % Days |
TN10P | −1.8 | % Days |
TX90P | 0.2 | % Days |
TN90P | 1.2 | % Days |
FD | −1.9 | Days |
TR20 | 4.8 | Days |
WSDI | 0.1 | Days |
CSDI | −0.6 | Days |
Indices | This Study | Brown et al. | Alexander et al. | Donat et al. |
---|---|---|---|---|
TXx | −0.2 | 0 | 0 to −0.2 | |
TNx | 0.1 | 0.2 | 0 to 0.2 | |
TXn | 0.7 | 0 | 0 to −0.2 | |
TNn | 1 | 0.3 | 0.2 to 0.4 | |
TX10P | −0.2 | −0.1 | 0 to 3 | 0 to 1 |
TN10P | −1.8 | −0.8 | 0 to −3 | 0 to −1 |
TX90P | 0.2 | 0.1 | 0 to −4 | 0 to −1 |
TN90P | 1.2 | 0.5 | 0 to 4 | 0 to 1 |
FD | −1.9 | −2.1 | 0 to −4 | |
TR20 | 4.8 | 0.5 | ||
WSDI | 0.1 | −0.3 | - | 0 to −1 |
CSDI | −0.6 | −0.4 | 0 to 3 | 0 to −1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fall, S.; Coulibaly, K.M.; Quansah, J.E.; El Afandi, G.; Ankumah, R. Observed Daily Temperature Variability and Extremes over Southeastern USA (1978–2017). Climate 2021, 9, 110. https://doi.org/10.3390/cli9070110
Fall S, Coulibaly KM, Quansah JE, El Afandi G, Ankumah R. Observed Daily Temperature Variability and Extremes over Southeastern USA (1978–2017). Climate. 2021; 9(7):110. https://doi.org/10.3390/cli9070110
Chicago/Turabian StyleFall, Souleymane, Kapo M. Coulibaly, Joseph E. Quansah, Gamal El Afandi, and Ramble Ankumah. 2021. "Observed Daily Temperature Variability and Extremes over Southeastern USA (1978–2017)" Climate 9, no. 7: 110. https://doi.org/10.3390/cli9070110
APA StyleFall, S., Coulibaly, K. M., Quansah, J. E., El Afandi, G., & Ankumah, R. (2021). Observed Daily Temperature Variability and Extremes over Southeastern USA (1978–2017). Climate, 9(7), 110. https://doi.org/10.3390/cli9070110