A New Strategy of Satellite Autonomy with Machine Learning for Efficient Resource Utilization of a Standard Performance CubeSat
Abstract
:1. Introduction
2. Background
- Design an onboard image classification model that can run on a standard CubeSat computer to autonomously classify cloudy and clear images so that the satellite can ensure efficient use of bandwidth and onboard storage while discarding cloudy images onboard.
- Formulate the task scheduling problem in the form of a Markov Decision Process (MDP) and ensure the next task in the schedule is not only locally optimal but also contributes to bringing an overall optimal scheduling solution.
- Design an autonomous task scheduling based on a reinforcement learning algorithm for a CubeSat to make schedules of its imaging, downlinking, pointing, and onboard image classification tasks. In addition, assess the importance of including onboard image classification in the schedule.
- Compare the efficiency of the designed scheduling algorithm against a heuristic-based scheduling algorithm in light of the scheduling objective and overall resource utilization.
3. Problem Statement
4. Proposed Methodology
4.1. Onboard Image Classification Using Deep Learning
4.2. Autonomous Task Scheduling
4.2.1. Markov Decision Process (MDP)
4.2.2. Reinforcement Learning (RL)
5. Implementation
5.1. Onboard Image Classification using Deep Learning
5.1.1. Preparing Dataset
5.1.2. Building Classification Model
5.2. Autonomous Task Scheduling
5.2.1. MDP Formulation of Task Scheduling
5.2.2. Scheduling Algorithm
5.2.3. Simulation Results and Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Giuffrida, G.; Diana, L.; De Gioia, F.; Benelli, G.; Meoni, G.; Donati, M.; Fanucci, L. CloudScout: A Deep Neural Network for On-Board Cloud Detection on Hyperspectral Images. Remote. Sens. 2020, 12, 2205. [Google Scholar] [CrossRef]
- Feruglio, L.; Corpino, S. Neural networks to increase the autonomy of interplanetary nanosatellite missions. Robot. Auton. Syst. 2017, 93, 52–60. [Google Scholar] [CrossRef]
- Chien, S.; Doubleday, J.; Thompson, D.R.; Wagstaff, K.L.; Bellardo, J.; Francis, C.; Baumgarten, E.; Williams, A.; Yee, E.; Stanton, E.; et al. Onboard Autonomy on the Intelligent Payload EXperiment CubeSat Mission. J. Aerosp. Inf. Syst. 2016, 14, 307–315. [Google Scholar] [CrossRef]
- Arechiga, A.P.; Michaels, A.J.; Black, J.T. Onboard Image Processing for Small Satellites. In Proceedings of the NAECON 2018—IEEE National Aerospace and Electronics Conference, Dayton, OH, USA, 23–26 July 2018; pp. 234–240. [Google Scholar]
- Fraire, J.A.; Nies, G.; Gerstacker, C.; Hermanns, H.; Bay, K.; Bisgaard, M. Battery-Aware Contact Plan Design for LEO Satellite Constellations: The Ulloriaq Case Study. IEEE Trans. Green Commun. Netw. 2020, 4, 236–245. [Google Scholar] [CrossRef]
- Azami, M.; Orger, N.C.; Schulz, V.H.; Oshiro, T.; Chio, M. Earth Observation Mission of a 6U CubeSat with a 5-Meter Resolution for Wildfire Image Classification Using Convolution Neural Network Approach. Remote Sens. 2022, 14, 1874. [Google Scholar] [CrossRef]
- Curzi, G.; Modenini, D.; Tortora, P. Large Constellations of Small Satellites: A Survey of Near Future Challenges and Missions. Aerospace 2020, 7, 133. [Google Scholar] [CrossRef]
- Liang, J.; Zhu, Y.-H.; Luo, Y.-Z.; Zhang, J.-C.; Zhu, H. A precedence-rule-based heuristic for satellite onboard activity planning. Acta Astronaut. 2021, 178, 757–772. [Google Scholar] [CrossRef]
- Mok, S.-H.; Jo, S.; Bang, H.; Leeghim, H. Heuristic-Based Mission Planning for an Agile Earth Observation Satellite. Int. J. Aeronaut. Space Sci. 2019, 20, 781–791. [Google Scholar] [CrossRef]
- Jo, S.P.; Jaehwan, P.; Bang, H. Mission Scheduling for SAR Satellite Constellations with a Heuristic Approach. In Proceedings of the 30th International Symposium on Space Technology and Science, Kobe-Hyogo, Japan, 4–10 July 2015. [Google Scholar]
- Peng, S.; Chen, H.; Du, C.; Li, J.; Jing, N. Onboard Observation Task Planning for an Autonomous Earth Observation Satellite Using Long Short-Term Memory. IEEE Access 2018, 6, 65118–65129. [Google Scholar] [CrossRef]
- Li, Z.; Xu, R.; Cui, P.; Zhu, S. Artificial Neural Network Based Mission Planning Mechanism for Spacecraft. Int. J. Aeronaut. Space Sci. 2018, 19, 111–119. [Google Scholar] [CrossRef]
- Li, G.; Xing, L.; Chen, Y. A hybrid online scheduling mechanism with revision and progressive techniques for autonomous Earth observation satellite. Acta Astronaut. 2017, 140, 308–321. [Google Scholar] [CrossRef]
- Yao, F.; Li, J.; Chen, Y.; Chu, X.; Zhao, B. Task allocation strategies for cooperative task planning of multi-autonomous satellite constellation. Adv. Space Res. 2019, 63, 1073–1084. [Google Scholar] [CrossRef]
- Miralles, P.; Scannapieco, A.F.; Jagadam, N.; Baranwal, P.; Faldu, B.; Abhang, R.; Bhatia, S.; Bonnart, S.; Bhatnagar, I.; Prasad, P.; et al. Machine Learning in Earth Observation Operations: A review. In Proceedings of the 72nd International Astronautical Congress (IAC), Dubai, United Arab Emirates, 25–29 October 2021. [Google Scholar]
- Cho, D.-H.; Choi, W.-S.; Kim, M.-K.; Kim, J.-H.; Sim, E.; Kim, H.-D. High-Resolution Image and Video CubeSat (HiREV): Development of Space Technology Test Platform Using a Low-Cost CubeSat Platform. Int. J. Aerosp. Eng. 2019, 2019, 8916416. [Google Scholar] [CrossRef]
- Zhang, Z.; Iwasaki, A.; Xu, G.; Song, J. Cloud detection on small satellites based on lightweight U-net and image compression. J. Appl. Remote. Sens. 2019, 13, 026502. [Google Scholar] [CrossRef]
- Hughes, M.J.; Hayes, D. Automated Detection of Cloud and Cloud Shadow in Single-Date Landsat Imagery Using Neural Networks and Spatial Post-Processing. Remote. Sens. 2014, 6, 4907–4926. [Google Scholar] [CrossRef] [Green Version]
- King, M.D.; Platnick, S.; Menzel, W.P.; Ackerman, S.A.; Hubanks, P.A. Spatial and Temporal Distribution of Clouds Observed by MODIS Onboard the Terra and Aqua Satellites. IEEE Trans. Geosci. Remote. Sens. 2013, 51, 3826–3852. [Google Scholar] [CrossRef]
- Ma, L.; Liu, Y.; Zhang, X.; Ye, Y.; Yin, G.; Johnson, B.A. Deep learning in remote sensing applications: A meta-analysis and review. ISPRS J. Photogramm. Remote Sens. 2019, 152, 166–177. [Google Scholar] [CrossRef]
- Flamis, G.; Kalapothas, S.; Kitsos, P. Workflow on CNN utilization and inference in FPGA for embedded applications. In Proceedings of the 6th South-East Europe Design Automation, Computer Engineering, Computer Networks and Social Media Conference (SEEDA-CECNSM 2021), Preveza, Greece, 24–26 September 2021; pp. 1–6. [Google Scholar]
- Chen, J.; Ran, X. Deep Learning with Edge Computing: A Review. Proc. IEEE 2019, 107, 1655–1674. [Google Scholar] [CrossRef]
- Vestias, M.P.; Duarte, R.P.; De Sousa, J.T.; Neto, H.C. A Configurable Architecture for Running Hybrid Convolutional Neural Networks in Low-Density FPGAs. IEEE Access 2020, 8, 107229–107243. [Google Scholar] [CrossRef]
- XILINK. DNNDK User Guide v1.6. 2019; XILINK: San Jose, CA, USA, 2019. [Google Scholar]
- Lee, J.; Kim, H.; Chung, H.; Ko, K. Genetic algorithm-based scheduling for ground support of multiple satellites and antennae considering operation modes. Int. J. Aeronaut. Space Sci. 2016, 17, 89–100. [Google Scholar] [CrossRef]
- Zhang, J.; Xing, L. An improved genetic algorithm for the integrated satellite imaging and data transmission scheduling problem. Comput. Oper. Res. 2022, 139, 105626. [Google Scholar] [CrossRef]
- Chen, X.; Reinelt, G.; Dai, G.; Spitz, A. A mixed integer linear programming model for multi-satellite scheduling. Eur. J. Oper. Res. 2019, 275, 694–707. [Google Scholar] [CrossRef] [Green Version]
- Qu, Q.; Liu, K.; Li, X.; Zhou, Y.; Lu, J. Satellite Observation and Data-Transmission Scheduling using Imitation Learning based on Mixed Integer Linear Programming. In IEEE Transactions on Aerospace and Electronic Systems; IEEE: New York, NY, USA, 2022; pp. 1–25. [Google Scholar]
- Kim, J.; Ahn, J.; Choi, H.-L.; Cho, D.-H. Task Scheduling of Agile Satellites with Transition Time and Stereoscopic Imaging Constraints. J. Aerosp. Inf. Syst. 2020, 17, 285–293. [Google Scholar] [CrossRef]
- Huang, Y.; Mu, Z.; Wu, S.; Cui, B.; Duan, Y. Revising the Observation Satellite Scheduling Problem Based on Deep Reinforcement Learning. Remote Sens. 2021, 13, 2377. [Google Scholar] [CrossRef]
- Wen, Z.; Li, L.; Song, J.; Zhang, S.; Hu, H. Scheduling single-satellite observation and transmission tasks by using hybrid Actor-Critic reinforcement learning. Adv. Space Res. 2022; in press. [Google Scholar] [CrossRef]
- Sarukkai, V.; Jain, A.; Uzkent, B.; Ermon, S. Cloud Removal in Satellite Images Using Spatiotemporal Generative Networks. In Proceedings of the IEEE Winter Conference on Applications of Computer Vision (WACV), Snowmass, CO, USA, 1–5 March 2020; pp. 1785–1794. [Google Scholar]
Layer (Type) | Output Shape | Param # |
---|---|---|
conv2d_10 (Conv2D) | (None, 256, 256, 32) | 2432 |
max_pooling2d_10 (MaxPooling) | (None, 128, 128, 32) | 0 |
conv2d_11 (Conv2D) | (None, 128, 128, 64) | 51,264 |
max_pooling2d_11 (MaxPooling) | (None, 64, 64, 64) | 0 |
flatten_5 (Flatten) | (None, 262144) | 0 |
dense_5 (Dense) | (None, 2) | 524,290 |
Total params: 577,986 Trainable params: 577,986 Non-trainable params: 0 |
Predicted by the Classifier | |||
---|---|---|---|
Clear | Cloudy | ||
Actual Classes | Clear | 1594 | 6 |
Cloudy | 0 | 1600 |
Access | Imaging Tasks |
---|---|
1 | (‘I’, 6237, 6251) |
2 | (‘I’, 6241, 6300) |
3 | (‘I’, 6242, 6289) |
4 | (‘I’, 6246, 6294) |
5 | (‘I’, 6251, 6293) |
6 | (‘I’, 6252, 6285) |
7 | (‘I’,6253,6321) |
8 | (‘I’, 6253, 6310) |
9 | (‘I’, 6286, 6317) |
10 | (‘I’, 22375, 22416) |
11 | (‘I’, 22406, 22466) |
12 | (‘I’, 22417, 22483) |
13 | (‘I’, 105534, 105583) |
14 | (‘I’, 105565, 105606) |
15 | (‘I’, 105588, 105655) |
16 | (‘I’, 105589, 105656) |
17 | (‘I’, 118556, 118619) |
18 | (‘I’, 118562, 118617) |
19 | (‘I’, 118563, 118574) |
20 | (‘I’, 118565, 118608) |
21 | (‘I’, 118566, 118609) |
22 | (‘I’, 118566, 118614) |
23 | (‘I’, 118574, 118620) |
Access | Downlinking Tasks |
---|---|
Kor1 | (‘D’, 347, 715) |
Kor2 | (‘D’, 5955, 6593) |
Kor3 | (‘D’, 11784, 12360) |
Eth1 | (‘D’, 16450, 16852) |
Kor4 | (‘D’, 17705, 18143) |
Eth2 | (‘D’, 22104, 22730) |
Kor5 | (‘D’, 23558, 24032) |
Kor6 | (‘D’, 29326, 29939) |
Kor7 | (‘D’, 35108, 35717) |
Eth3 | (‘D’, 57702, 58289) |
Eth4 | (‘D’, 63500, 64030) |
Kor8 | (‘D’, 89143, 89752) |
Kor9 | (‘D’, 94920, 95534) |
Kor10 | (‘D’, 100827, 101301) |
Eth5 | (‘D’, 105272, 105903) |
Kor11 | (‘D’, 106716, 107154) |
Eth6 | (‘D’, 111177, 111563) |
Kor12 | (‘D’, 112500, 113075) |
Kor13 | (‘D’, 118267, 118905) |
Kor14 | (‘D’, 124145, 124513) |
Eth7 | (‘D’, 140923, 141396) |
Eth8 | (‘D’, 146630, 147244) |
Kor15 | (‘D’, 172355, 172800) |
Current State | Possible Next Action | Notation |
---|---|---|
Imaging (I) | Ground Pointing (G), Image Classification (C), Sun Pointing (S), Imaging (I) | ‘I’: [‘G’,’C’,’S’, ‘I’] |
Downlinking (D) | Nadir Pointing (N), Sun Pointing (S), Ground Pointing (G) | ‘D’: [‘N’,’S’,’G’] |
Sun Pointing (S) | Nadir Pointing (N), Ground Pointing (G), Image Classification(C) | ‘S’: [‘N’,’G’, ‘C’] |
Image Classification (C) | Nadir Pointing (N), Ground Pointing (G),Sun Pointing (S) | ‘C’: [‘N’,’G’,’S’] |
Nadir Pointing (N) | Imaging (I) | ‘N’: [‘I’] |
Ground Pointing (G) | Downlinking (D) | ‘G’: [‘D’] |
Order | Scheduled Task |
---|---|
1 | (‘G’, 316, 346) |
2 | (‘D’, 347, 715) |
3 | (‘S’, 716, 6205) |
4 | (‘N’, 6206, 6236) |
5 | (‘I’, 6237, 6251) |
6 | (‘I’, 6252, 6285) |
7 | (‘I’, 6286, 6317) |
8 | (‘C’, 6318, 6348) |
9 | (‘S’, 6349, 22343) |
10 | (‘N’, 22344, 22374) |
11 | (‘I’, 22375, 22416) |
12 | (‘I’, 22417, 22483) |
13 | (‘C’, 22484, 22514) |
14 | (‘S’, 22515, 105502) |
15 | (‘N’, 105503, 105533) |
16 | (‘I’, 105534, 105583) |
17 | (‘I’, 105588, 105655) |
18 | (‘C’, 105656, 105686) |
19 | (‘S’, 105687, 118524) |
20 | (‘N’, 118525, 118555) |
21 | (‘I’, 118556, 118619) |
22 | (‘C’, 118620, 118650) |
23 | (‘S’, 118651, 124113) |
24 | (‘G’, 124114, 124144) |
25 | (‘D’, 124145, 124513) |
26 | (‘S’, 124514, 140891) |
27 | (‘G’, 140892, 140922) |
28 | (‘D’, 140923, 141396) |
29 | (‘S’, 141397, 146598) |
30 | (‘G’, 146599, 146629) |
31 | (‘D’, 146630, 147244) |
32 | (‘S’, 149113, 172323) |
33 | (‘G’, 172324, 172354) |
34 | (‘D’, 172355, 172800) |
Order | Scheduled Task |
1 | (‘G’, 316, 346) |
2 | (‘D’, 347, 715) |
3 | (‘S’, 716, 6205) |
4 | (‘N’, 6206, 6236) |
5 | (‘I’, 6237, 6251) |
6 | (‘C’, 6252, 6282) |
7 | (‘S’, 6283, 11752) |
8 | (‘G’, 11753, 11783) |
9 | (‘D’, 11784, 12360) |
10 | (‘S’, 12361, 22343) |
11 | (‘N’, 22344, 22374) |
12 | (‘I’, 22375, 22416) |
13 | (‘C’, 22417, 22447) |
14 | (‘G’, 23527, 23557) |
15 | (‘D’, 23558, 24032) |
16 | (‘S’, 24033, 105502) |
17 | (‘N’, 105503, 105533) |
18 | (‘I’, 105534, 105583) |
19 | (‘C’, 105584, 105614) |
20 | (‘G’, 106685, 106715) |
21 | (‘D’, 106716, 107154) |
22 | (‘S’, 107155, 118524) |
23 | (‘N’, 118525, 118555) |
24 | (‘I’, 118556, 118619) |
25 | (‘C’, 118620, 118650) |
26 | (‘S’, 118651, 124113) |
27 | (‘G’, 124114, 124144) |
28 | (‘D’, 124145, 124513) |
29 | (‘S’, 124514, 124573) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeleke, D.A.; Kim, H.-D. A New Strategy of Satellite Autonomy with Machine Learning for Efficient Resource Utilization of a Standard Performance CubeSat. Aerospace 2023, 10, 78. https://doi.org/10.3390/aerospace10010078
Zeleke DA, Kim H-D. A New Strategy of Satellite Autonomy with Machine Learning for Efficient Resource Utilization of a Standard Performance CubeSat. Aerospace. 2023; 10(1):78. https://doi.org/10.3390/aerospace10010078
Chicago/Turabian StyleZeleke, Desalegn Abebaw, and Hae-Dong Kim. 2023. "A New Strategy of Satellite Autonomy with Machine Learning for Efficient Resource Utilization of a Standard Performance CubeSat" Aerospace 10, no. 1: 78. https://doi.org/10.3390/aerospace10010078
APA StyleZeleke, D. A., & Kim, H. -D. (2023). A New Strategy of Satellite Autonomy with Machine Learning for Efficient Resource Utilization of a Standard Performance CubeSat. Aerospace, 10(1), 78. https://doi.org/10.3390/aerospace10010078